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Abstract—In this paper, we propose a new parallel statistical
analysis method for large analog circuits using determinant
decision diagram (DDD) based graph technique based on GPU
platforms. DDD-based symbolic analysis technique enables exact
symbolic analysis of vary large analog circuits. But we show
that DDD-based graph analysis is very amenable for massively
threaded based parallel computing based on GPU platforms. We
design novel data structures to represent the DDD graphs in the
GPUs to enable fast memory access of massive parallel threads
for computing the numerical values of DDD graphs. The new
method is inspired by inherent data parallelism and simple data
independence in the DDD-based numerical evaluation process.
Experimental results show that the new evaluation algorithm
can achieve about one to two order of magnitudes speedup over
the serial CPU based evaluations and 2–3 times speedup over
numerical SPICE-based simulation method on some large analog
circuits.

I. INTRODUCTION

It is well known that analog and mixed-signal circuits are

very sensitive to the process variations as many matchings

and regularities are required. This situation becomes worse

as technology continues to scale to 90 nm and below owing

to the increasing process-induced variability [1], [2]. For

example, due to an inverse-square-root-law dependence with

the transistor area, the mismatch of CMOS devices nearly

doubles for each process generation less than 90 nm [3],

[4]. To consider the impacts of process variations on circuit

performance. Monte-Carlo based statistical approach is the

most reliable solutions to this problem. But the prohibitive

computational costs of Monte Carlo method perverts it from

solving large analog circuits.

Modern computer architecture has shifted towards designs

that employ multiple processor cores on a chip, so called

multi-core processor [5], [6]. The graphic processing unit

(GPU) are one of the most powerful many-core computing

systems in mass-market use. For instance, NVIDIA Telsa T10

chips have a peak performance of over 1 TFLOPS versus

about 80–100 GFLOPS of Intel i5 series Quad-core CPUs [7].

In addition to the primary use of GPUs in accelerating

graphics rendering operations, there has been considerable

interest in exploiting GPUs for general purpose computation

(GPGPU) [8]. Accordingly, the introduction of new parallel

programming interfaces for general purpose computations,
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such as Computer Unified Device Architecture (CUDA) [9],

Stream SDK [10] and OpenCL [11], has made GPUs powerful

and attractive for developing high-performance tools of solving

practical engineering problems. Parallelization on GPU plat-

forms is an emerging strategy to improve the efficiency of

Monte-Carlo based statistical analysis method. But traditional

numerical simulators based on LU decomposition such as

SPICE is difficult to be parallelized on GPUs due to irregular

memory access and huge memory-intensive operations.

Graph-based symbolic technique is a viable tool for calcu-

lating the behavior or characteristic of analog circuits [12]. The

introduction of determinant decision diagrams based symbolic

analysis technique (DDD) allows exact symbolic analysis

of much larger analog circuits than all the other existing

approaches [13], [14]. Furthermore, with hierarchical symbolic

representations [15], [16], exact symbolic analysis via DDD

graphs essentially allows the analysis of arbitrary large analog

circuits. Once the small-signal characteristics of circuits are

presented by DDDs, evaluation of DDDs, whose CPU time is

proportional to the size of DDDs, will give exact numerical

values. One important observation is that the DDD-based

simulation is very amenable for parallel computing as the

main computation is distributed to each DDD node (via graph

traversals) and the data dependency is very simple due to the

simple binary graph structure.

In this article, we develop efficient parallel graph-based

simulation technique based on GPU computing platforms for

Monte-Carlo based statistical analysis of analog circuits. We

design novel data structures to represent the DDD graphs in

the GPUs to enable fast memory access of massive parallel

threads for computing the numerical values of DDD graphs.

The new method is inspired by inherent data parallelism

and simple data independence in the DDD-based numerical

evaluation process. Experimental results show that the new

evaluation algorithm can achieve about one to two orders of

magnitudes speedup over the serial CPU based evaluations

of analog circuits and 2–3 times speedup over numerical

SPICE-based simulation method on some large analog circuits.

Further more, the proposed parallel techniques can be used

for the parallelization of many more decision diagrams based

applications, such as logic synthesis, optimization and formal

verifications, which are based on binary decision diagrams

(BDDs) and its variants [17], [18].

This paper is organized as follows. Section II outlines DDD-
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Fig. 1: DDD representation for matrix M .

based symbolic analysis techniques. Then, we introduce the

flow of the proposed GPU Monte Carlo simulation. Section IV

describes the proposed GPU parallel algorithm, followed by

several numerical examples in section V. Last, Section VI

concludes the paper.

II. DDD AND DDD-BASED ANALYSIS

The DDD technique uses directed binary graphs to represent

a determinant where the paths in the graph represents the

product terms from determinant. Since the number of paths in

a graph can be much larger than the number of nodes, DDD

representation enables symbolic analysis of much larger analog

circuits than before [13]. The concept of DDD representation

is briefly reviewed as follows. The determinant of a matrix can

be expressed as the symbolic product terms from the subset of

all elements in the matrix. For example, consider the following

matrix determinant.

det(M) =
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= adgj−adhi−aefj−bcgj+cbih

(1)

We can express each element using a node in a diagram and

each product term using a path going through four nodes. For

every node, it has a value of itself and a sign attached to it. The

sign of each product term is decided by multiplying the sign

of every node in the corresponding path. When the matrix M
is an circuit matrix (such as modified nodal analysis (MNA)

matrix), the value for each node represents the RLC value for

the element in the MNA matrix. The diagram for the above

matrix is shown in Fig. 1.

A DDD is a signed, rooted, directed acyclic graph with two

terminal nodes, namely the 0-terminal node and the 1-terminal

node. Each non-terminal DDD node is labeled by a symbol in

the determinant denoted by ai (a to j in Fig. 1), and a positive
or negative sign denoted by s(ai). It originates two outgoing
edges, called 1-edge and 0-edge. Each node ai represents a

symbolic expression D(ai) defined recursively as follows:

D(ai) = ai · s(ai) · Dai
+ Dai

, (2)

where Dai
and Dai

represent, respectively, the symbolic

expressions of the nodes pointed by the 1-edge and 0-edge of

ai. The 1-terminal node represents expression 1, whereas the

0-terminal node represents expression 0. For example, node

h (in Fig. 1) represents expression h, and node i represents
expression −ih, and node g represents expression gj− ih. We
also say that a DDD node g represents an expression defined
the DDD subgraph rooted at g. For each node, there are two
values, vself and vtree. In (2), vself represents the value of the

element itself, which is Dai
; while the vtree represents the

value of the whole tree (or subtree), which is D(ai).
A 1-path in a DDD corresponds with a product term in the

original DDD, which is defined as a path from the root node

(a in our example) to the 1-terminal including all symbols
and signs of the nodes that originate all the 1-edges along the

1-path. In our example, there exist five 1-paths representing

five product terms: adgj, adhi, aefj, bcgj, and cbih. The
root node represents the sum of these product terms. Size of

a DDD is the number of DDD nodes, denoted by |DDD|.
Once a DDD has been constructed, its numerical values of

the determinant it represents can be computed by performing

the depth-first type search of the graph and performing (2) at

each node, whose time complexity is linear function of the

size of the graphs (its number of nodes). The computing step

is call Evaluate(D) where D is a DDD root.

III. THE PROPOSED GRAPH-BASED PARALLEL

STATISTICAL ANALYSIS

In this section, we first provides an overview of our graph-

based GPU-based parallel statistical analysis before the de-

tailed explanation.

As mentioned before, in DDD-based analysis, computing

numerical value of the determinant of the DDD essentially

boils down to the depth-first traversal of the graph. The data

dependency is very simple: a node can be evaluated only

after its children are evaluated. Such dependency implies the

parallelism where all the nodes satisfying this constraint can

be evaluated at the same time. Also, in statistical frequency

analysis of analog circuits, evaluation of a DDD node at

different frequency points and different Monte-Carlo runs can

be performed in parallel. We show that all those parallelism

will be explored by the new statistical analysis approach on

GPU platforms.

A. The overall algorithm flow

Fig. 2 gives the overall flow of our statistical method. The

whole algorithm has two main parts, the CPU part (host)

and GPU part (device) as clearly marked in the figure. CPU

part mainly reads the netlist, generate the original DDD

tree structures and builds new continuous DDD vector array

structure (for GPU) and outputs the final numerical results.

GPU part takes care of the main parallel DDD evaluation and

communicates with CPU. The new program reads input netlist

containing variation information of the relevant circuit devices.

Then, the analyzer builds the MNA (modified nodal analysis)

matrix and DDD binary tree data structure [13] as shown in

step ¬.
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Fig. 2: The flow of GPU-based parallel Monte Carlo analysis.

B. New continuous and levelized DDD structure

To prepare for the GPU computing, we need to build new

data structures from the original binary tree DDD structures.

This will be done in the CPU as the construction only needs

to be performed once and traversal of original DDD linked

trees is still sequential in nature and will be difficult to handle

in GPU, as labeled ­ in Fig. 2.

For GPU computing, the main challenge is to allow fast

memory access by threads or reduce memory traffic as much as

possible by using shared memory (or texture memory) within

blocks so that GPU cores can be busy all the time. In GPU, fast

global memory access by threads can be done by coalesced

memory access where a half warp (or a warp) of threads (16

or 32 threads respectively) can read their data from the global

memory in one read access. Coalesced memory access requires

that data are arranged continuously in memory and consecutive

with respective to involved thread indexes. As a result, we need

to remap the linked DDD trees into a memory-continuous data

structure.

The second issue is that we do not need to perform the

DDD node evaluation for all the DDD nodes. Only those nodes

whose children have been evaluated should be computed by

threads (one thread for one DDD node). This can be done by

sorting the DDD nodes by their level. Two DDD nodes have

same level if they have the same number of edges on their

longest path to the 1-terminal. For instance, node g and node

f has the same level in Fig. 1. DDD nodes at the same level

can be computed in parallel in GPU. As we can see, the largest

level of DDD nodes will be bounded by the numbers of non-

zeros in a determinant. But practically, number of level can

be much less than the number of non-zeroes. For instance, we

have 5 levels in the DDD shown in Fig. 1 versus 10 nonzero

elements.

In the new DDD structure, all the DDD nodes at the same

level will be put in continuous and consecutive memories
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Fig. 3: Levelized continuous storage of a DDD, and levelwise

GPU evaluation of the DDD in Fig. 1.

(mainly the vself and future vtree values) and be assigned to

threads (one DDD node per thread) at the same time (one

kernel launch). The level assignment can be done by simple

depth-first traversal of the DDD graph. After this, we can allow

the continuous memory for all the DDD nodes for one level

starting from the lowest level until the highest level. We use

the DDD example in Fig. 1 again to illustrate the new data

structure shown in Fig. 3. For each value associated with a

DDD node such as its value (vself ), left child index, right

child index, level index, sign (not shown), a linear array will

be generated based on the level indexes of DDD node. For

example, node b in Fig. 1 becomes the 7-th element in the
vector, and the index of its children, g and 0-terminal, are 4
and −2 accordingly. Note that, by our definition, 1-terminal’s
index is −1, and 0-terminal’s is −2. Those arrays then will
be copied into GPU memory for future DDD evaluation.

Fig. 3 also shows the execution pattern of GPU threads

during DDD evaluation where we start with the DDD nodes

in the lowest level and continue one level at a time until we

hit the highest level. Since all nodes of the same level have

been reorganized into one continuous memory segment, the

active GPU threads working on them can achieve coalesced

read/write access and also minimize the occurrence of branch

divergence. As we observed, consecutive and levelwise data

format improves the performance of GPU by 2–3× for large
sized circuits.

IV. NEW PARALLEL GPU-BASED MONTE-CARLO

ANALYSIS METHOD

A. Random number assignment to MNA elements and DDD

nodes

For statistical analysis, we need to generate variations from

devices into the elements of the determinant and then into

the data in the continuous DDD data structure. Due to MNA

formulation, each device may appear 4 positions in a MNA

matrix. Hence we track and save the MNA stamp patterns

of circuit devices, and also their locations in DDD, during

DDD construction. These data are transferred to GPU texture

memory as texture memory are read-only and can be accessed

much faster than GPU global memory.



Algorithm 1 Parallel random value assignment for DDD nodes

1: for all Monte Carlo runs do // launch threads in grids

2: Assign random numbers to involved device parameters

and stamp MNA elements.

3: Save each DDD node’s admittance, capacitance, and

inductance components as R[k] = {g, c, l}.
4: for all DDD nodes do // launch threads in grids

5: Load frequency values to f .
6: for all frequencies do // launch threads in a block

7: vself [i] = R[k].g + j · (R[k].c · f [i] + R[k].l/f [i])
8: end for

9: Save vself .

10: end for

11: end for

Next, in random number assignment, CURAND libray is

used to generate variations on nominal values of circuit

parameters in GPU kernel function. We need to make sure

that one device variation, which may appear in 4 position in

the MNA will take the same value and this also reflect on the f

the four DDD nodes will reflect the same change. This is done

in Line 2 and Line 3 of the pseudo-code in Algorithm 1. The

variations introduced in our experiments are Gaussian random

values, whose means and deviations can be specified by users

from input netlist.

Note that since we perform the frequency domain analysis,

we need to evaluate the MNA and DDD on all frequency

points of interest. To enable coalesced memory access to

compute DDD values for many frequencies, as Line 5 and

Line 9, the DDD continuous structure will be further changed

so that all frequency responses of the same element or node

reside in consecutive memory addresses. We observe that this

frequency related calculation is very suitable for intra-block

GPU computing as all the threads in a block can share the

same DDD information (except for the frequency values).

In GPU, the threads are organized into grids (can be two

dimensional) and number of grids can be as large as 64K and

each grid contains a block and each block can have as many

as 1024 threads (in current GPU families from NVIDIA) and

they can be organized in 3 dimensions. Threads in a block

can communicate via shared or texture memory and can be

explicitly synchronized. In our problem, the dimension of the

grid is set to NMC × |DDD|, i.e., the number of Monte
Carlo runs times the number of DDD nodes (assume that

it is less than 64K) and each block of this grid contains

TILE DIM threads, where TILE DIM is multiply of 16 to
enable coalesced access on neighboring frequency responses

and is also set with consideration of available GPU resources

per block. In practice, we set TILE DIM = 256. So we
can allow to compute 256 frequency responses for one DDD

node. Notice that all the three FOR loops in Algorithm 1

will be replaced by massive thread launches in parallel. The

two outer FOR loops are parallelized at grid level, and the

innermost FOR loop is parallelized at block level. Hence, the

DDD node values vself are computed for all Monte Carlo
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Fig. 4: GPU parallel evaluation of the DDD in Fig. 1.

runs and all frequency points in their respective blocks and

threads (Line 7). If number of frequency points is larger than

TILE DIM, the innermost FOR loop will be kept inside the
kernel function. But instead of loop over each frequency point,

we loop over TILE DIM frequency points every time.
The number of Monte Carlo runs in each kernel launch

is determined by the GPU specification and the allocated

resources, such as global memory, to each Monte Carlo

calculation. For a typical µA741 circuit whose DDD contains
6205 nodes and 2400 evaluated frequency points, the Tesla

C2070 can allow 20 Monte Carlo runs in parallel. In case

more runs are required, the steps from ® through ± in Fig. 2

are repeated as many times as needed.

B. Parallel evaluation of DDDs

The evaluation of DDD is a process that computes the

final numerical value of the determinant it represents. This

procedure is labeled with ¯ in Fig. 2. As we previously

discussed in Section III-B, the data structure of DDD has been

remapped to GPU friendly continuous and consecutive arrays

and are sorted by level to enhance efficiency of evaluation.

Similar to the GPU calculation of DDD node values men-

tioned in previous subsection, we also launch independent

blocks for different Monte Carlo runs and different DDD

nodes, and use each thread block to calculate values of each

node’s vtree for all frequency points, which is depicted in

Fig. 4.

Algorithm 2 lists the main flow of this algorithm. To ensure

that the nodes are evaluated from bottom to top, the first FOR

loop iterates the level index from 0 to the maximum level in the
DDD, and launches kernel function on the DDD nodes of the

specific level, one at a time. Note that we keep this FOR loop

in CPU control, instead of moving it inside the GPU kernel,

in order to accomplish inter-block synchronization. This is

necessary because we deploy the evaluation of different nodes

in different thread blocks, and, if there is no synchronization,



Algorithm 2 Parallel Monte Carlo evaluation of DDDs

1: for level=0 to top level do // CPU host iteration

2: for all Monte Carlo runs do // launch threads in grids

3: for all DDD nodes do // launch threads in grids

4: if node.level == level then

5: Load vself of the current node, and vtree of its

children.

6: for all frequencies do // launch threads in a

block

7: Evaluate vtree for the current node by Eq. (2)

on all frequencies.

8: end for

9: Save current node’s vtree.

10: end if

11: end for

12: end for

13: end for

it is possible that a node of higher level gets evaluated before

its children. Moreover, CUDA only provides synchronization

among threads in a block, the kernel has to be finished if

all blocks in the kernel grid are required to be synchronized.

Therefore, in our implementation, the index of current level is

passed into the kernel function as an argument, and the kernel

will evaluate those thread blocks with the same level indicated

by the argument index.

The coalesced memory access to the node’s vself and its

children’s vtree values are also ensured in the load and save

operations in Line 5 and Line 9, because during the evaluation

of the current node on all frequencies, the k-th thread will
work on the k-th frequency, and all threads in a warp execute
the same code path. Consequently, such a kernel launching

exhibits a highly data intensive pattern, and reduces global

memory traffic at the same time.

V. EXPERIMENTAL RESULTS

To show the performance of the proposed GPU parallel

Monte Carlo simulation, we test the program on several indus-

trial benchmark circuit netlists. For running time comparisons,

we also measure the time cost by the CPU version of DDD

evaluation and HSPICE.

All of our programs are implemented in C++, with NVIDIA

CUDA for the GPU computation part. All running time are

sampled from a Linux server with an 2.4 GHz Intel Xeon

Quad-Core CPU, and 36 GBytes memory. The GPU card

installed on this server is Tesla C2070, which contains 448

cores running at 1.15 GHz and up to 5 GBytes global memory.

Now let us investigate one typical example in detail. Fig. 5

shows the schematic of a µA741 circuit. This bipolar opamp
contains 26 transistors and 11 resistors. DC analysis is first

performed by SPICE to obtain the operation point, and then

small-signal model, shown in Fig. 6, is used for DDD sym-

bolic analysis and numerical evaluation. The AC analysis is

performed with the variation of several circuit components for

Monte Carlo simulation. Several Monte Carlo samples of the

Fig. 5: The circuit schematic of µA741

Fig. 6: The small signal model for bipolar transistor

magnitude response are plotted in Fig. 7. The 3-db bandwidth

of all the statistics is calculated and shown in the histogram in

Fig. 8. In this example, the nominal 3-db frequency is 1.2 kHz.

As we can observe from Fig. 8, the histogram of the bandwidth

frequency is similar to the Gaussian distribution.

Next, we study the speedup and scalability of the GPU and

CPU DDD based Monte Carlo simulations. The measurements

of time taken by both programs running on the same RC

tree circuit are shown in Table I, where different number of

Monte Carlo runs are tested. It is obvious that the speedup

of GPU method over the CPU one is significant. Also, when

the number of Monte Carlo runs increases, GPU running time

Fig. 7: The cluster of frequency responses of the tested µA741
circuit



Fig. 8: Histogram diagram of the 3-db points for all these

results

TABLE I: Performance comparison of CPU serial and GPU

parallel DDD evaluation for RC tree circuit
# MC Runs GPU time (s) CPU time (s) Speedup

1 1.98 23.0 11
2 2.08 46.2 22
4 2.21 90.5 41
8 2.50 183.8 73
16 3.03 364.1 120
32 4.76 725.3 152
64 8.68 1442 166
128 17.42 2910 167

does not multiply as fast as the CPU version does, provided

that the GPU resources can accommodate parallel execution of

these Monte Carlo evaluations in one kernel launch. Hence, in

this way, all the GPU streaming multiprocessors are kept busy

and the throughput is maximized, which results in a striking

speedup over the CPU serial version.

Last, we list the results of all benchmark tests in Table II.

The information of the circuits and their DDD representation

is also included in the same table. The 2nd through 5th column

record number of nodes in circuit, number of elements in the

MNA matrix, number of DDD nodes in the generated DDD

graph, number of determinant product terms, respectively.. The

last three columns summarize the run-time of GPU parallel

algorithm, serial algorithm and the HSPICE. The number of

Monte Carlo runs for all tests is set to 128. It is clear from

this table that the GPU-accelerated version outperforms its

CPU counterpart, and also achieves 2–3 times speedup over

the commercial HSPICE on a variety of test circuits.

TABLE II: Performance comparison of GPU, CPU, and

HSPICE Monte Carlo simulations
circuit # cir. # cir. |DDD| DDD GPU CPU HSPICE
name nodes devices terms time (s) time (s) time (s)

bigtst 32 112 642 2.68 × 10
7 19.7 3143 38.4

ccstest 9 35 109 260 0.80 108 2.5
rlctest 9 39 119 572 1.05 145 2.6
vcstst 12 46 121 536 0.73 104 3.8
ladder21 22 64 64 28657 2.10 365 5.1

ladder100 101 301 301 9.27 × 10
20 30.6 3965 42.5

rctree1 40 119 211 1.15 × 10
8 5.55 928 11.3

rctree2 53 158 302 4.89 × 10
10 17.42 2910 46.1

µA741 23 89 6205 363914 59.1 6243 73.6

VI. CONCLUSION

A new parallel statistical analysis method for large analog

circuits using determinant decision diagram (DDD) based

graph technique is proposed. To make it amenable for mas-

sively threaded based parallel computing GPU platforms, we

designed novel data structures to represent the DDD graphs

in the GPUs to enable fast memory access of massive parallel

threads for computing the numerical values of DDD graphs.

The new method is inspired by inherent data parallelism

and simple data independence in the DDD-based numerical

evaluation process. Experimental results show that the new

evaluation algorithm can achieve about one to two order of

magnitudes speedup over the serial CPU based evaluations

and 2–3× speedup over numerical SPICE-based simulation
method on some large analog circuits.
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