
Towards New Applications of Multi-Function

Logic: Image Multi-Filtering

Lukas Sekanina and Vojtech Salajka

Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Brno, Czech Republic

Email: sekanina@fit.vutbr.cz

Abstract—Multifunctional (or polymorphic) gates are capable
of performing two or more logic functions according to the setting
of control signals. They can be considered as building blocks for
new and cheap reconfigurable chips. In this paper, we utilized
multifunctional components that can be implemented using mul-
tifunctional gates as building blocks of image filters. We applied
genetic programming to evolve image filters performing different
filtering tasks under different settings of control signals. Evolved
solutions exhibit a significant reduction in utilized operations and
interconnects w.r.t. the multiplexing of conventional solutions.

I. INTRODUCTION

A low cost reconfiguration, which does not require an

expensive reconfiguration infrastructure (such as switches and

configuration memory) could be achieved by means of recently

developed multifunctional gates. For example, a reconfigurable

graphene logic gate design based on graphene pn junctions was

proposed which can provide multifunctions just by adjusting

some control gate voltages [1]. Another technology is called

polymorphic electronics, where new components – CMOS-

based polymorphic gates – are capable of performing several

logic functions as response to various control voltages, Vdd

levels or temperature [2], [3], [4], [5]. For instance, a 6-

transistor NAND/NOR gate controlled by Vdd was fabricated

in a 0.5-micron HP process [3]. Multifunctional logic could

lead to a new class of reconfigurable devices with significantly

reduced interconnecting networks.

Designing a single compact circuit, which contains multi-

functional gates to implement several required functions is a

challenging task. Let us suppose that only two functions (F1

and F2) have to be provided. Fig. 1 (left) shows a conventional

multiplexer-based implementation. However, when a suitable

multifunctional gate is available then a very elegant solution

can be obtained (Fig. 1 (right)). While the first solution is

universal and area inefficient, the second solution assumes

that one is able to effectively ‘merge’ F1 and F2 using

multifunctional gate(s). If this is possible (and that is our case

in Fig. 1 (right)), a significant reduction in the area and routing

can be obtained.

Formally, a single network containing multifunctional and

ordinary gates has to be constructed such that F1 is imple-

mented for one setting of the global control signal and F2

is implemented for another setting of the control signal. This

978-3-9810801-8-6/DATE12/ c©2012 EDAA

Fig. 1. Implementations of a multifunctional circuit based on multiplexer
(left) and multifunctional gate (right)

concept can be generalized for n settings of the control signal.

Then we say that a multifunctional circuit operates in n modes.

Several methods have been proposed to design multifunc-

tional circuits [6]. The basic method, called polymorphic mul-

tiplexing, utilizes a two-input polymorphic multiplexer which

propagates signal A in the first mode and signal B in the

second mode. Consider that a target polymorphic circuit has

to implement functions F and G. A conventional approach is

used to synthesize a circuit implementing F and another circuit

implementing G independently. The outputs of the circuits

are then multiplexed using polymorphic multiplexers. In order

to reduce the number of gates, the goal of synthesis can be

to maximize the number of gates that are shared by both

circuits and minimize the outputs that have to be equipped

with polymorphic multiplexers.

The most area-efficient multifunctional circuits have been

obtained using evolutionary design, namely Cartesian genetic

programming (CGP) [6]. Unfortunately, direct evolutionary

design is applicable for very small problem instances only.

Theoretical foundations of multifunctional logic such as the

completeness theory were presented in [7].

In this paper, we propose to extend the concept of multi-

functional gates to multifunctional components at the register-

transfer level (RTL). We devise a method for designing of

digital circuits that operate as multifunctional image filters.

These circuits enable to suppress a given type of noise in

the first mode and another type of noise in the second mode

of operation of multifunctional components. The method is

based on genetic programming which is employed to create a

circuit description at RTL. We will show that resulting circuits

are functional and area-efficient in comparison with a solution

based on multiplexing.

II. PROPOSED METHOD

Every image filter will be considered as a circuit operating

with nine 8-bit inputs (the 3 × 3-pixel kernel) and a single

8-bit output, which processes grayscale (8-bits/pixel) images.

The objective is to propose a filter composed of ordinary and

multifunctional components capable of suppressing Gaussian

noise in the first mode and shot noise in the second mode.

The shot noise (salt-and-pepper noise) is usually suppressed

by a (nonlinear) median filter which calculates the median

value from the nine input pixels. The area-optimal imple-

mentation consists of a network of 30 two-input components

calculating minimum or maximum [8]. The Gaussian noise

elimination is based on a simple averaging filter.

A straightforward implementation (without multifunctional

gates) of the multifunctional filter for the shot noise and

Gaussian noise should perform multiplexing of the median

circuit and the averaging circuit. As the structures of both

filters are totally different, the final cost (area) is expected to

be roughly a sum of the areas required for both filters.

In order to design inherently multifunctional circuits, we

will apply CGP [9]. The proposed approach extends the

work on (single-purpose) image filter evolution using CGP

which has been conducted for several years and led to well-

performing and area-efficient filtering circuits [10], [11], [12].

In next subsections, we will describe the proposed circuit en-

coding in the chromosome, genetic operators, search strategy

and fitness function.

A. Problem Representation

In order to model a generic image filter, a candidate circuit

is represented as an array of w (columns) × h (rows) of

programmable elements. All candidate circuits have nine 8-bit

primary inputs and one 8-bit primary output. Every 2-input

programmable element can be connected either to the output

of an element placed in previous L columns or to one of the

primary inputs. The feedback is not allowed. Programmable

elements accept two 8-bit inputs and provide a single 8-bit

output. Examples of supported functions are given in Table I.

A programmable element can perform either a single function

(then it is not a multifunctional element) or two functions (both

selected from Table I). In the second case, the programmable

element is considered as multifunctional providing that the first

function is activated in the first mode and the second function

is activated in the second mode. The set of available functions

will be denoted as R.

The chromosome is a list of integers starting with the value

of c utilized by the first function of Table I. Then, it contains

w × h triplets, each of them encoding a single programmable

element, where the first two integers address the connection

points for its two inputs and the third integer is the function

code. Note that the primary inputs are addressed by 0, 1 . . . 8
and programmable elements by 9 . . . wh + 8. The last integer

defines the primary output of the circuit. Every circuit is thus

encoded using 3wh + 2 integers. An example of chromosome

and a corresponding circuit is given in Fig. 2. We assume that

the circuit function is controlled by a single Boolean value (not

Code Function Description

const c constant
ident x identity
or x | y bitwise OR
nor ˜(x | y) bitwise OR inverted
and x & y bitwise AND
nand ˜(x & y) bitwise AND inverted
xor x ˆ y bitwise XOR
nxor ˜(x ˆ y) bitwise XOR inverted
_or (˜x) | y not and bitwise OR
inv ˜x inversion
div2 x >> 1 division by 2
div4 x >> 2 division by 4
add x + y add
adds min(x + y, 255) add with saturation
mean (x + y) >> 1 average
max max(x, y) maximum
min min(x, y) minimum

TABLE I
LIST OF FUNCTIONS SUPPORTED BY PROGRAMMABLE ELEMENTS

0 1 2

3 4 5

6 7 8

mean

max

9 mean

min

11 13 mean

max

15

mean

min

10 mean

min

12 mean

min

14 19 16

5

7 4

3

1

8

Fig. 2. Example of a candidate bi-functional image
filter with CGP parameters w = 4, h = 2, L = 2,
R = {const/ident, ident, add, max, mean/min, mean/max}.
Chromosome: 19, 5,7,5, 3,1,4, 9,4,4, 8,10,4, 11,10,1, 10,12,4, 11,14,5,
14,11,0, 15.

shown in Fig. 2, but denoted as s). In the first mode (s = 0),

the functions shown in the upper part of boxes are active. In

the second mode (s = 1), the functions of the bottom part are

active. Notice that some elements (13 and 16) are not utilized.

B. Search Algorithm

CGP employs a simple (1 + λ) evolution strategy to search

in the search space [9]. The initial population is randomly

generated. Then, it is evaluated and the best-scored individual

is considered as the parent for a new population. CGP uses a

mutation operator to create λ offspring of the parent to fill the

new population. The mutation randomly picks k integers and

replaces them by randomly generated (but legal) values. The

evolution is terminated after producing g generations.

C. Fitness function

In order to evolve an image filter capable of suppressing a

given type of noise, the original uncorrupted (training) image

is needed to determine the fitness value. The goal of CGP is to

find a circuit minimizing the difference between the original

image and the output of the filter. The quality of filtering

has to be numerically expressed. For this purpose, the mean

absolute error per pixel (mdpp) is calculated [10]. In case of

multifunctional filters, we have to evaluate both modes of any

candidate filter. The fitness value is then calculated as:

f = Q − (D1 + D2), (1)

Fig. 3. Training image, 256 × 256 pixels

CGP array size 7 × 4 8 × 5

L 4 5

Max. poly functions 8 unlimited 8 unlimited

Mutations 2 2 2 2

Average mdpp 8.01 12.14 8.72 13.35
Best mdpp 6.40 7.32 6.63 7.39

TABLE II
THE BEST AND AVERAGE mdpp FOR VARIOUS CGP PARAMETERS

where

D1 =

N−2∑

i=1

N−2∑

j=1

|B1(i, j) − C1(i, j)| (2)

and

D2 =

N−2∑

i=1

N−2∑

j=1

|B2(i, j) − C2(i, j)|. (3)

The ideal image which we are attempting to reach in the first

mode (second mode) is denoted by C1 (C2). The filtered image

which was obtained in the first mode (second mode) is denoted

by B1 (B2). D1 and D2 are auxiliary differences. Finally,

N ×N denotes the size of image and Q = 2.28.(N −2)2 is a

constant representing the worst possible score. Figure 3 shows

the ideal version of the training image.

III. EXPERIMENTAL RESULTS

The target filter should be capable of suppressing the

Gaussian noise (σ = 0.1 for normalized inputs 〈0,0; 1,0〉) in

the first mode and the shot noise (the 5% salt and pepper

noise) in the second mode.

A. Evolved Filter

CGP was utilized with parameters λ = 4 and k = 2. Several

combinations of the CGP array size and L-back parameter

were tested where each test consisted of 40,000 generations in

20 independent runs. In one experiment, all possible functions

and their combinations from Table I were allowed in R.

In another experiment, max. 8 polymorphic functions were

allowed. The results reported in Table II indicate that the

restricted function set, L = 4, w = 7 and h = 4 give the

best minimum and average mdpp.

The best-evolved filter is shown in Fig. 4. While the mean

function is the most frequent one used in the first mode, the

functionality of the second mode is based on computing the

mean

max

xor

inv

mean

max

mean

xor

min

min

mean

min

adds max

max

min

min

mean

min

mean

min

mean

max

max

max

min

min

mean

min

max

adds

max

max

Fig. 4. One of filters evolved for Gaussian/Shot noise

div2 add
Filter min max mux logic mean Sum

shift sub

Conventional Average 8 8
Conventional Median 15 15 1 31
Average-Median MUX 39

Evolved Gaussian (mode 1) 3 4 1 9 17
Evolved Shot (mode 2) 7 6 3 1 17-6∗

Gaussian/Shot (Fig. 4) 28

TABLE III
THE NUMBER OF OPERATIONS FOR THE MULTIPLEXED CONVENTIONAL

FILTER AND EVOLVED MULTIFUNCTIONAL FILTER. ∗THE OPERATIONS

SHARED BY BOTH MODES ARE SUBTRACTED IN THE SUM.

minimum and maximum. We expected this type of function

utilization. Examples of input images and filtered images are

given in Fig. 5.

B. Comparisons and Design Time

1) Filtering Quality: The evolved filter was compared in

both modes with conventional filters using 16 test images

(taken from [12]). We can observe that the average mdpp of

the evolved filter for Gaussian noise (first mode) is slightly

higher than the mddp obtained for the conventional averaging

filter (10.367 vs. 10.019). The evolved salt-and-pepper noise

filter (second mode) exhibits lower average mdpp with respect

to the median filter (2.267 vs. 4.216).

2) Implementation Cost: Because of the early stage of de-

velopment of the multifunctional gate technology it is difficult

to calculate the area on a chip with a high level of confidence.

Hence we have performed our comparison at the RTL and

adopted a relatively pessimistic assumption that the cost of

a multifunctional element is twofold w.r.t. ordinary elements.

Table III shows that we counted the number of operations

utilized in both modes, including the output multiplexer in

conventional filters. A significant area reduction is observable

as 39 operations of the conventional Averaging/Median filter

are reduced to 28 operations of the evolved filter. Finally,

the same reduction can be achieved in the interconnects

assuming that the control signal of multifunctional gates can

be distributed inexpensively.

3) Time of Evolution: We measured the running time of

CGP (λ = 4, g = 500, k = 1, L = 2, w = h = 4) using a

laptop equipped with the Pentium M 1.8 GHz processor. For a

small training image (64×64 pixels), CGP finished in 3.06 s.

The running time for a large training image (1024×1024 pix-

els) was 1215.82 s. A typical experiment utilizing a 256×256-

pixel image and running for 20,000 generations then took 48

(a) Gaussian noise (b) First mode output (c) Averaging filter

(d) 5% shot noise (e) Second mode output (f) Median filter

Fig. 5. Test images with noise (a, d); images filtered by the evolved filter (b, e); images filtered by conventional filters (c, f)

min. To reduce the design time, multiple runs were carried out

on a server with two four-core Intel Xeon 2.66 GHz chips.

IV. CONCLUSIONS

We presented multifunctional image filters as a new ap-

plication of multi-function logic. We utilized multifunctional

components that can be implemented using multifunctional

or polymorphic gates as building blocks of image filters. In

the case study, CGP evolved a solution which exhibits a

significant reduction in utilized operations and interconnects

w.r.t. multiplexing of conventional solutions. Future work will

be devoted to developing new applications of this technology

as well as improving the CGP-based design method.

V. ACKNOWLEDGMENTS

This work was supported by the Czech science founda-

tion project P103/10/1517, the research programme MSM

0021630528 and the IT4Innovations Centre of Excellence

CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] S. Tanachutiwat, J. U. Lee, W. Wang, and C. Y. Sung, “Reconfigurable
multi-function logic based on graphene p-n junctions,” in Design Au-

tomation Conference, DAC. ACM, 2010, pp. 883–888.

[2] A. Stoica, R. S. Zebulum, and D. Keymeulen, “Polymorphic electronics,”
in Proc. of Evolvable Systems: From Biology to Hardware Conference,
ser. LNCS, vol. 2210. Springer, 2001, pp. 291–302.

[3] A. Stoica, R. Zebulum, X. Guo, D. Keymeulen, I. Ferguson, and
V. Duong, “Taking Evolutionary Circuit Design From Experimentation
to Implementation: Some Useful Techniques and a Silicon Demonstra-
tion,” IEE Proc.-Comp. Digit. Tech., vol. 151, no. 4, pp. 295–300, 2004.

[4] L. Sekanina, R. Ruzicka, Z. Vasicek, R. Prokop, and L. Fujcik,
“Repomo32 – new reconfigurable polymorphic integrated circuit for
adaptive hardware,” in 2009 IEEE Workshop on Evolvable and Adaptive

Hardware. IEEE Computational Intelligence Society, 2009, pp. 39–46.
[5] R. Ruzicka, V. Simek, and L. Sekanina, “Behavior of cmos polymorphic

circuits in high temperature environment,” in Proc. of the 2011 IEEE

Symposium on Design and Diagnostics of Electronic Circuits and

Systems. IEEE CS, 2011, pp. 447–452.
[6] Z. Gajda and L. Sekanina, “On evolutionary synthesis of compact

polymorphic combinational circuits,” Journal of Multiple-Valued Logic

and Soft Computing, vol. 17, no. 6, pp. 607–631, 2011.
[7] Z. Li, W. Luo, L. Yue, and X. Wang, “On the completeness of the

polymorphic gate set,” ACM Transactions on Design Automation of

Electronic Systems, vol. 15, no. 4, p. 25, 2011.
[8] J. I. Smith, “Implementing median filters in xc4000e fpgas,” Xilinx Xcell,

vol. 23, p. 16, 1996.
[9] J. F. Miller, D. Job, and V. K. Vassilev, “Principles in the Evolutionary

Design of Digital Circuits – Part I,” Genetic Programming and Evolvable

Machines, vol. 1, no. 1, pp. 8–35, 2000.
[10] Z. Vasicek and L. Sekanina, “An area-efficient alternative to adaptive

median filtering in fpgas,” in Proc. of the 17th Conf. on Field Pro-

grammable Logic and Applications. IEEE CS, 2007, pp. 216–221.
[11] Z. Vasicek, L. Sekanina, and M. Bidlo, “A method for design of

impulse bursts noise filters optimized for fpga implementations,” in
DATE 2010: Design, Automation and Test in Europe. European Design
and Automation Association, 2010, pp. 1731–1736.

[12] S. Harding and W. Banzhaf, “Genetic programming on gpus for image
processing,” in Proc. of the First Int. Workshop on Parallel and Bioin-

spired Algorithms. Complutense University of Madrid Press, 2008, pp.
65 – 72.

