
QBF-Based Boolean Function Bi-Decomposition

Huan Chen
University College Dublin

Dublin, Ireland

Mikoláš Janota
INESC-ID

Lisbon, Portugal

Joao Marques-Silva
Unversity College Dublin

Dublin, Ireland

Abstract—Boolean function bi-decomposition is ubiquitous in
logic synthesis. It entails the decomposition of a Boolean function
using two-input simple logic gates. Existing solutions for bi-
decomposition are often based on BDDs and, more recently,
on Boolean Satisfiability. In addition, the partition of the input
set of variables is either assumed, or heuristic solutions are
considered for finding good partitions. In contrast to earlier
work, this paper proposes the use of Quantified Boolean Formulas
(QBF) for computing bi-decompositions. These bi-decompositions
are optimal in terms of the achieved quality of the input set
of variables. Experimental results, obtained on representative
benchmarks, demonstrate clear improvements in the quality of
computed decompositions, but also the practical feasibility of
QBF-based bi-decomposition.

I. INTRODUCTION

Bi-decomposition is arguably the most widely used form
of Boolean function decomposition. Bi-decomposition [2]–[4],
[6]–[8] consists of decomposing Boolean function f(X) into
the form of f(X) = h(fA(XA, XC), fB(XB , XC)), under
variable partition X = {XA|XB |XC} wherein fewer number
of variables are required in each sub-set XA, XB and XC .

Decomposition of Boolean functions has been extensively
studied, and initial work can be traced back to 1950s. Tra-
ditional approaches, e.g. [7], use BDDs as the underlying
data structure. However, BDDs impose severe constraints on
the number of input variables circuits can have. It is also
generally accepted that BDDs do not scale for large Boolean
functions. As a result, recent work [3], [6] proposed the use
of Boolean Satisfiability (SAT) and Minimally Unsatisfiable
Subformulas (MUS) to manipulate large Boolean functions.
This resulted in significant performance improvements. In
addition, [3], [6] proposed heuristic approaches for identifying
variable partitions. Explicit (but heuristically restricted) enu-
meration of variable partitions [6] sometimes produces good
solutions, corresponding to adequate values of disjointness and
balancedness [3], [6]. However, it is in general difficult to
guarantee the quality of variable partitions, since the number
of possible partitions grows exponentially with the number of
inputs. This prevents brute-force search [6] in practice.

The quality of Boolean function decomposition is often
related with the quality of variable partitions [3], [4], [6], as
an optimal solution requires fewer input variables and simpler
sub-functions.

This paper addresses the problem of computing bi-
decompositions with optimum variable partitions. The opti-
mality of achieved variable partitions is measured in terms
of existing metrics, namely disjointness and balancedness.
The proposed solutions are based on novel QBF formulations

978-3-9810801-8-6/DATE12/ c©2012 EDAA

for the problem of Boolean function bi-decomposition sub-
ject to target metrics (e.g. disjointness, balancedness, etc.).
Besides the novel QBF formulations, the paper shows how
bi-decomposition can be computed with optimum values for
the target metrics. Experimental results, obtained on well-
known benchmarks, demonstrate that QBF-based function
bi-decomposition performs comparably with recent heuristic
approaches [3], [6], while guaranteeing optimum variable
partitions.

The paper is organized as follows. Section II covers the
preliminaries. Section III reviews models for Boolean function
bi-decomposition. Section IV proposes the new QBF-based
models. Section V presents the experimental results. Finally,
section VI concludes the paper and outlines future work. More
details are in the extended version [2] of this paper.

II. PRELIMINARIES

Variables are represented by set X = {x1, x2, . . . , xn}. The
cardinality of X is denoted as ||X||. A partition of a set X
into Xi ⊆ X for i = 1, . . . , k (with Xi

⋂
Xj = ∅, i #= j and⋃

i Xi = X) is denoted by {X1|X2| . . . |Xk}. A Completely
Specified Function (CSF) is denoted by f : Bn → B. Similar
to the recent work [3], [6], this paper assumes CSFs.

A. Boolean Function Bi-Decomposition
Definition 1: Bi-decomposition [8] for Completely Speci-

fied Function (CSF) f(X) consists of decomposing f(X)
under variable partition X = {XA|XB |XC}, into the form of
f(X) = fA(XA, XC) <OP> fB(XB , XC), where <OP> is
a binary operator, typically OR, AND or XOR.

This paper addresses OR, AND and XOR bi-decomposition
because these three basic gates form other types of bi-
decomposition [6]. Bi-decomposition is termed disjoint if
||XC || = 0. A partition of X is trivial if X = XA

⋃
XC

or X = XB
⋃

XC holds. Similar to earlier work [3], [6], this
paper addresses non-trivial bi-decompositions.

B. Quantified Boolean Formulas
Quantified Boolean Formulas (QBF) generalize Boolean

formulas by quantifying variables, either existentially (∃) or
universally (∀). Throughout this paper, all Boolean variables
in QBF are assumed to be quantified (or bound). QBF are
assumed to be in the prenex form Q1p1 . . . Qnpn.φ, with
Qi ∈ {∃, ∀}, pi are distinct Boolean variables, and φ is
a propositional formula using only the variables pi and the
constants 0 (false), 1 (true).

C. Quality Metrics

The quality of variable partitions mainly impacts the quality
of bi-decomposition [3], [4], [6], and indirectly impacts the

decomposed network, e.g. delay, area and power consump-
tion [4]. Similar to [3], [6], this paper measures the quality of
variable partitions through two relative quality metrics, namely
disjointness and balancedness. This paper develops QBF mod-
els for achieving disjointness and balancedness targets, or even
the optimum solutions.

III. RELATED WORK

Bi-Decompositions of Boolean functions are either based on
BDDs or on SAT. A brief review of BDD-based approaches
is given in [2]. This section briefly overviews earlier work on
SAT-based bi-decomposition.

A. SAT-Based and MUS-Based Bi-Decomposition
With the objective of targeting bi-decomposition of large

Boolean functions with a large number of inputs, and corre-
spondingly large number of variable partitions, recent work
proposed SAT-based bi-decomposition [6] and MUS-based
bi-decomposition [3], [6]. SAT-based OR, AND and XOR
bi-decompositions under known and unknown partition of
variables were proposed in [6]. For example, the widely used
OR bi-decomposition can be computed by SAT solving [6].
Given a non-trivial variable partition X = {XA|XB |XC}, the
following result holds:

Proposition 1: [6] A completely specified function f(X)
can be written as fA(XA, XC) ∨ fB(XB , XC) for some
functions fA and fB if and only if the Boolean formula

f(XA, XB , XC) ∧ ¬f(X′
A, XB , XC) ∧ ¬f(XA, X′

B , XC) (1)

is unsatisfiable, where variable set Y ′ is an instantiated
version of variable set Y .

An instantiated version x′ of Boolean variable x can be
viewed as a new Boolean variable x′ that replaces x. This ap-
proach assumes that a variable partition X = {XA|XB |XC}
is given. In practice, such variable partitions are generally
unknown and must be automatically derived. One possible
approach is to consider the following formulation [6]:

f(X) ∧ ¬f(X′) ∧
∧

i

((xi ≡ x′i) ∨ αxi) ∧ ¬f(X′′) ∧
∧

i

((xi ≡ x′′i) ∨ βxi)

(2)

where x′ ∈ X ′ and x′′ ∈ X ′′ are instantiated versions of x ∈
X . αxi and βxi are control variables for enumerating variable
partitions. By assigning different Boolean values to αxi and
βxi , some of the clauses ((xi ≡ x′

i)∨αxi), ((xi ≡ x′′
i)∨βxi)

are relaxed. The resulting clauses (xi ≡ x′
i) and (xi ≡ x′′

i)
impose equivalence relations for each pair of variables in sets
X and X ′, and in X and X ′′, respectively.

The original work on SAT-based bi-decomposition [6] pro-
posed the use of interpolation for computing the target func-
tions fA and fB . Given that our work focuses on improving
the identification of variable partitions, interpolation can also
be used for computing functions fA and fB . Similarly to
OR bi-decomposition, AND and XOR bi-decomposition can
be computed by using SAT. Due to space limitations, this
section omits the explanation of SAT-based AND and XOR bi-
decompositions (e.g. see [6]). The approaches proposed in [6]
are referred to as LJH in the remainder of the paper.

SAT-based bi-decomposition [3], [6] proposed a number
of MUS-based techniques for computing good variables par-
titions. These include plain MUS computation and, more
recently, group-oriented MUS computation. These approaches
can be viewed as practical engineering solutions for bi-
decomposition of large Boolean functions. Nevertheless, these
approaches are heuristic and provide no guarantees regarding
the quality of computed variable partitions.

IV. QBF-BASED BI-DECOMPOSITION

This section develops QBF models for computing Boolean
function bi-decomposition with optimum variable partitions.
The case for OR bi-decomposition is considered. The extended
version [2] summarizes AND and XOR bi-decomposition.

Observe that, as described above, assignments to the αxi

and βxi variables specify the sets XA, XB and XC . A key
observation is that formulation (2) above provides the basis for
a natural (albeit incomplete) QBF formulation. Formulation (2)
essentially quantifies existentially the αxi and βxi variables
and, by requiring unsatisfiability, quantifies the X,X ′, X ′′

variables universally. This results in the following QBF for-
mulation:

∃αxi ,βxi
, ∀X,X′,X′′ .¬[f(X) ∧ ¬f(X′) ∧

∧

i

((xi ≡ x′i) ∨ αxi)

∧¬f(X′′) ∧
∧

i

((xi ≡ x′′i) ∨ βxi)]
(3)

This QBF formulation has a few important drawbacks: (i) the
solution can be a trivial partition; and (ii) the quality of a
non-trivial partition can be arbitrary. As a result, the ability to
control the quality of the computed variable partition, requires
extending (3) as follows:

∃αxi ,βxi
, ∀X,X′,X′′ .¬[f(X) ∧ ¬f(X′) ∧

∧

i

((xi ≡ x′i) ∨ αxi)

∧¬f(X′′) ∧
∧

i

((xi ≡ x′′i) ∨ βxi)] ∧ fN (αX , βX) ∧ fT (αX , βX)
(4)

where fN (αX ,βX) requires a non-trivial variable partition,
and fT (αX ,βX) requires the computed variable partition to
respect target metrics, e.g. disjointness or balancedness.

1) Ensuring Non-trivial Partitions: Filtering of trivial par-
titions is achieved through constraints added to fN (αX ,βX).
A trivial partition of X is such that either X = XA

⋃
XC

or X = XB
⋃

XC holds. In other words, a non-trivial
partition is such that XA #= ∅ ∧ XB #= ∅. This condition is
expressed with cardinality constraints AtLeast1(

⋃
x∈X αx)∧

AtLeast1(
⋃

x∈X βx).
2) Targeting Disjointness: Constraints on variables αxi and

βxi serve to require target values of disjointness. Observe that
in model (4), the assignment (αx,βx) = (0, 0) denotes that
x ∈ XC . Improvements in disjointness consists of reducing
the size of XC . This is achieved by computing variable
partitions with a sufficiently small number of pairs (αx,βx)
with (αx,βx) = (0, 0). For a target level of disjointness ε,
with 0 ≤ ε < 1, let k ∈ N, k = ,||X|| · ε-. Hence, the target
constraint fT (αX ,βX) is defined as follows:

(
∑

x∈X

αx · βx) ≤ k (5)

Clearly, k is discrete and finite, and so the optimum value
can be computed by iteratively solving QBF (4) for different
values of k.

Moreover, observe that Boolean function bi-decomposition
exhibits key symmetry properties. For example, sets XA and
XB are indistinguishable, and so the optimum solution is
obtained even if constraint ||XA|| ≥ ||XB || is included in the
problem formulation. This constraint can either be added to
fN (αX ,βX) or to fT (αX ,βX). In practice, this optimization
reduces substantially the search space of the resulting QBF.

3) Targeting Balancedness: Similarly to the approach for
disjointness, constraints on variables αxi and βxi serve to re-
quire target values of balancedness. Balancedness is improved
if the difference between the number of variables x in set
XA, i.e. (αx,βx) = (1, 0), and the number of variables x in
set XB , i.e. (αx,βx) = (0, 1) is minimized. For a target level
of balancedness ε, with 0 ≤ ε < 1, let k ∈ N, k = ,||X|| · ε-.
Hence, the target constraint fT (αX ,βX) is defined as follows:

0 ≤ (
∑

x∈X

αx · βx −
∑

x∈X

αx · βx) ≤ k (6)

Observe that, as before, the optimum value of k can be
searched for, by iteratively solving the QBF (4) for different
values of k. In addition, note that, in this case, the symmetry
between XA and XB is automatically removed, by requiring
||XA|| ≥ ||XB ||.

4) Integrating Disjointness & Balancedness: In practical
settings, it is often the case that the objective is to achieve
some simultaneous level of disjointness and balancedness.

Definition 2 (Cost of Disjointness and Balancedness):
The cost of Disjointness and Balancedness is the arithmetic
sum of weighted Disjointness and weighted Balancedness,
which is expressed as the following cost function:

∑
#D · Disjointness + #B · Balancedness (7)

where %D (%D ∈ [0, 1]) and %B (%B ∈ [0, 1]) are weights
for Disjointness and Balancedness, respectively.

Observe that cost function (7) can be simplified if disjoint-
ness and balancedness are equally preferred, i.e. %D = %B =
1. Moreover, if ||XA|| is assumed to be no less than ||XB ||,
then the cardinality constraint can be simplified as follows.

0 ≤ (
∑

x∈X

αx · βx +
∑

x∈X

αx · βx −
∑

x∈X

αx · βx) ≤ k (8)

where k ∈ N, k = ,||X|| · ε-.
5) Practical Implementation: In practice, the use of the

2QBF formula (4) is not straightforward because it requires
auxiliary variables to encode it into CNF, as required by
most QBF solvers. These auxiliary variables are existentially
quantified in the innermost level of the QBF prefix and
consequently result in a 3QCNF formula.

Consider a 2QBF formula ∃Z , ∀X .φ, where φ is not in CNF.
As indicated above, converting φ to CNF requires additional
variables, which results in a 3QCNF formula. Instead of using
a solver for QBF formulas with three levels of quantifiers, a
different approach is used, which has been recently suggested
in [5]. Consider the negation of ∃Z , ∀X .φ, i.e. ∀Z , ∃X .¬φ.

Observe that if ∃Z , ∀X .φ is valid, then ∀Z , ∃X .¬φ cannot be
valid. Thus, if the QBF solver provides a counterexample for
why ∀Z , ∃X .¬φ cannot be satisfied, it represents a model of
∃Z , ∀X .φ. For QBF (4), the model represents the intended
variable partition. As a result, the 2QBF formula to be used
becomes:

∀αxi ,βxi
, ∃X,X′,X′′ .[f(X) ∧ ¬f(X′) ∧

∧

i

((xi ≡ x′i) ∨ αxi)

∧¬f(X′′) ∧
∧

i

((xi ≡ x′′i) ∨ βxi)] ∨ ¬fN (αX , βX) ∨ ¬fT (αX , βX)
(9)

6) Finding the Optimum: This section summarizes the
approaches that can be used for computing the optimum
disjointness or balancedness. An initial upper bound, on both
disjointness and balancedness, can be obtained with the group-
oriented MUS-based model [3]. Alternatively, the upper bound
can be set to 1. Three strategies have been studied for
computing the optimum disjointness and balancedness values.

Monotonically Increasing (MI) denotes iteratively increas-
ing the value of k. Monotonically Decreasing (MD) denotes
iteratively decreasing the value of k. Finally, dichotomic
divide-and-conquer denotes binary search (Bin). In our experi-
ments, the best results for disjointness were obtained using the
sequence: MD → Bin → MI, where the number of iterations
for each is heuristically chosen. For balancedness the best
results for balancedness were obtained with MI.

V. EXPERIMENTAL RESULTS

The tool, STEP — Satisfiability-based funcTion dEcom-
Position, implements the techniques proposed by this pa-
per. STEP is implemented in C++, and uses ABC [1]
for underlying circuit manipulation. The off-the-shelf 2QBF
solver AReQS [5] and MUS solver MUSer [2] were used
for QBF solving and MUS-based pre-processing of QBF
searching bounds, respectively. The proposed QBF models
for targeting solely disjointness, solely balancedness, and
integrated disjointness and balancedness (with cost function
‘1∗disjointness + 1∗balancedness‘) were used for computing
the optimum solutions; these are termed STEP-QD, STEP-QB
and STEP-QDB, respectively. The tool Bi-dec implements OR
bi-decomposition of LJH model 1 [6]. STEP-MG represents
group-oriented MUS-based bi-decomposition [3].

Given a circuit, each Boolean function of Primary Output
(PO) is decomposed into smaller sub-functions using the
proposed and the earlier models. This section compares ex-
perimental results on the quality and performance of Boolean
function bi-decomposition between different tools, namely
Bi-dec (with its best quality mode, using command ‘bi dec
[circuit.blif] or 0 1‘), STEP-MG (fastest mode of STEP) and
STEP-{QD,QB,QDB}. The experiments were performed on
a Linux server with an Intel Xeon X3470 2.93GHz processor
and 6GB RAM. Experimental data were obtained on industrial
benchmarks ISCAS’85, ISCAS’89, ITC’99 and LGSYNTH.
Circuits with zero decomposable PO functions were removed
from the tables of results. For each circuit, the total timeout

1Unfortunately, AND and XOR bi-decompositions of LJH model is un-
available in tool Bi-dec. No result of LJH AND, XOR could be shown here.

TABLE I
COMPARISON OF QUALITY METRICS BETWEEN OR MODELS

Circuit
Circuit Statistics OR LJH [6] vs. STEP-{QD,QB,QDB}

Disjointness Balancedness Disjointss+Balancedness

#In #InM #Out STEP-QD Both two are STEP-QB Both two are STEP-QDB Both two are
better (%) equal (%) better (%) equal (%) better (%) equal (%)

C7552 207 194 108 30.00 70.00 50.00 50.00 0.00 100.00
s15850.1 611 183 684 0.00 100.00 7.69 92.31 7.69 92.31
s38584.1 1464 147 1730 18.60 81.40 70.15 29.85 41.76 58.24
C2670 233 119 140 8.33 91.67 48.72 51.28 11.54 88.46
i10 257 108 224 17.57 82.43 73.23 26.77 18.92 81.08
s38417 1664 99 1742 12.28 87.72 52.65 47.35 6.45 93.55
s9234.1 247 83 250 11.58 88.42 60.78 39.22 8.11 91.89
rot 135 63 107 4.17 95.83 72.92 27.08 8.33 91.67
s5378 199 60 213 10.38 89.62 82.24 17.76 5.00 95.00
s1423 91 59 79 3.85 96.15 42.31 57.69 5.00 95.00
pair 173 53 137 26.60 73.40 82.46 17.54 38.10 61.90
C880 60 45 26 33.33 66.67 81.25 18.75 0.00 100.00
clma 415 42 115 0.00 100.00 37.50 62.50 0.00 100.00
ITC b07 49 42 57 7.69 92.31 84.62 15.38 0.00 100.00
ITC b12 125 37 127 0.00 100.00 12.66 87.34 0.00 100.00
sbc 68 35 84 17.65 82.35 88.24 11.76 21.05 78.95
mm9a 39 31 36 30.00 70.00 38.10 61.90 0.00 100.00
mm9b 38 31 35 11.11 88.89 42.11 57.89 0.00 100.00

0.01

0.1

1

10

100

1k
6k

0.01 0.1 1 10 100 1k 6k
0.01

0.1

1

10

100

1k
6k

0.01 0.1 1 10 100 1k 6k
0.01

0.1

1

10

100

1k
6k

0.01 0.1 1 10 100 1k 6k
0.01

0.1

1

10

100

1k
6k

0.01 0.1 1 10 100 1k 6k
0.01

0.1

1

10

100

1k
6k

0.01 0.1 1 10 100 1k 6k

0.01

0.1

1

10

100

1k
6k

0.01 0.1 1 10 100 1k 6k

LJ
H

0.01

0.1

1

10

100

1k
6k

0.01 0.1 1 10 100 1k 6k

LJ
H

0.01

0.1

1

10

100

1k
6k

0.01 0.1 1 10 100 1k 6k

LJ
H

0.01

0.1

1

10

100

1k
6k

0.01 0.1 1 10 100 1k 6k

LJ
H

0.01

0.1

1

10

100

1k
6k

0.01 0.1 1 10 100 1k 6k

LJ
H

0.01

0.1

1

10

100

1k
6k

0.01 0.1 1 10 100 1k 6k

LJ
H

STEP-QDSTEP-QD

STEP-QD

STEP-QBSTEP-QB

STEP-QBSTEP-QB

STEP-QDBSTEP-QDB

STEP-QDBSTEP-QDB

ST
EP

-M
G

ST
EP

-M
G

ST
EP

-M
G

ST
EP

-M
G

ST
EP

-M
G

LJH vs. STEP-QDLJH vs. STEP-QD LJH vs. STEP-QBLJH vs. STEP-QB LJH vs. STEP-QDBLJH vs. STEP-QDB

STEP-MG vs. STEP-QD STEP-MG vs. STEP-QBSTEP-MG vs. STEP-QB STEP-MG vs. STEP-QDBSTEP-MG vs. STEP-QDB

Fig. 1. CPU time comparison between models for all 145 circuits

was set to 6000 seconds. Each run of the QBF solver was
given a timeout of 4 seconds. Due to space restrictions, only
representative experimental results (for the large benchmarks,
with #InM > 30) are shown.

A. Quality of Variable Partitions

The quality of variable partitions are essential to function bi-
decomposition and determine the overall quality [2]–[4], [6].
STEP-{QD,QB,QDB} can guarantee the quality of variable
partitions. For example, the new QBF models allow for
controllable disjoint, balanced and customized, i.e. with user-
specified cost functions, bi-decompositions. Similar to [3], [6],
disjointness and balancedness were used to validate the quality
of the results obtained with the new QBF models.

Table I shows the results of quality metrics between models
for OR bi-decomposition. Columns #In, #InM and #Out
denote the number of primary inputs, maximum number of
support variables in POs, PO functions (to be decomposed),
respectively. STEP-{QD,QB,QDB} is bootstrapped with the
result of STEP-MG. Hence, STEP-{QD,QB,QDB} cannot
yield metrics worse than STEP-MG. Moreover, the obtained
experimental results of STEP-{QD,QB,QDB} for any PO,
even if unable to prove the optimum, were no worse than Bi-
dec. As can be observed, STEP-QD, STEP-QB, and STEP-
QDB are in many cases capable of improving the metrics
computed by the other two tools. As can be concluded, the
proposed QBF models were able to bi-decompose Boolean
functions whenever possible, whereas earlier models fail to
achieve the best decompositions in many cases.

TABLE II
PERCENTAGE OF SOLVED POS WITH STEP FOR OR BI-DECOMPOSITION

#Out STEP-QD (%) STEP-QB (%) STEP-QDB (%)
38582 91.97 97.81 84.42

B. Practical Performance of QBF Models
Performance is also significant to function bi-decomposition

as logic synthesis involves several iterations of function de-
compositions [3], [4]. Figure 1 shows scatter plots com-
paring the run times of STEP-{QD,QB,QDB} against the
other tools for all 145 circuits. As can be observed, STEP-
{QD,QB,QDB} outperforms Bi-dec, but performs worse than
STEP-MG. Nevertheless, it is important to point out that
both Bi-dec and STEP-MG compute approximate solutions,
whereas STEP-{QD,QB,QDB} computes exact solutions. Ta-
ble II shows the percentage of instances solved by STEP-
{QD,QB,QDB}. As can be observed, STEP-QD solves close
to 92% of the POs, STEP-QB solves close to 98% of the POs,
and STEP-QDB solves close to 85% of the POs. These results
are promising, given the current pace of improvement of QBF.

VI. CONCLUSIONS

Boolean function decomposition is ubiquitous in logic
synthesis. This paper addresses Boolean function bi-
decomposition and develops novel QBF models for finding
optimum bi-decompositions according to the well-established
metrics, namely disjointness and balancedness. In addition,
the paper describes techniques for improving the models and,
consequently, for QBF solving. A key example is breaking
the symmetry between sets of variables in the computed bi-
decomposition. Experimental results obtained on representa-
tive benchmark circuits, demonstrate that the new QBF models
can be solved efficiently with modern 2QBF solvers [5], and
perform comparably with state-of-the-art heuristic solutions
for Boolean function bi-decomposition [3], [6].

Future work will address performance improvements,
through tight integration of the new QBF models with heuristic
SAT-based approaches.

Acknowledgement We would like to thank Prof. Jie-Hong
Roland Jiang for kindly providing the tool Bi-dec. This work is
partially supported by SFI PI grant BEACON (09/IN.1/I2618).

REFERENCES

[1] “Berkeley Logic Synthesis and Verification Group. ABC: A Sys-
tem for Sequential Synthesis and Verification, Release 70930,” in
http://www.eecs.berkeley.edu/∼alanmi/abc/.

[2] H. Chen, M. Janota, and J. Marques-Silva, “QBF-Based Boolean Func-
tion Bi-Decomposition.” Computing Research Repository (CoRR),
abs/1112.2313, December 2011.

[3] H. Chen and J. Marques-Silva, “Improvements to Satisfiability-Based
Boolean Function Bi-Decomposition,” in VLSI-SoC, 2011, pp. 142–147.

[4] M. Choudhury and K. Mohanram, “Bi-decomposition of large Boolean
functions using blocking edge graphs,” in ICCAD, 2010, pp. 586–591.

[5] M. Janota and J. Marques-Silva, “Abstraction-Based Algorithm for
2QBF,” in SAT, 2011, pp. 230–244.

[6] R.-R. Lee, J.-H. Jiang, and W.-L. Hung, “Bi-decomposing large Boolean
functions via interpolation and satisfiability solving,” in DAC, 2008, pp.
636–641.

[7] A. Mishchenko, B. Steinbach, and M. Perkowski, “An algorithm for bi-
decomposition of logic functions,” in DAC, 2001, pp. 103–108.

[8] T. Sasao and J. T. Butler, “on bi-decomposition of logic functions,” in
IWLS, 1997, pp. 1–6.

