
Application-Specific Power-Efficient Approach for
Reducing Register File Vulnerability

Hamed Tabkhi, Gunar Schirner
Department of Electrical and Computer Engineering, Northeastern University

Email: {tabkhi, schirner}@ece.neu.edu

Abstract—This paper introduces a power efficient approach
for improving reliability of heterogeneous register files in em-
bedded processors. The approach is based on the fact that
control applications have high demands in reliability, while many
special-purpose register are unused in a considerable portion
of execution. The paper proposes a static application binary
analysis which is applied at function-level granularity and offers
a systematic way to manage the RF’s protection by mirroring the
content of used registers into unused ones. The simulation results
on an enhanced Blackfin processor demonstrate that Register File
Vulnerability Factor (RFVF) is reduced from 35% to 6.9% in
cost of 1% performance lost on average for control applications
from Mibench suite.

I. INTRODUCTION

Soft errors caused by high energy particle strike are expo-
nentially increasing with shrinking feature size, . Register File
(RF) as a key component in the processor’s performance has
also a significant influence over the processor’s reliability [1].
An investigation on ARM processors shows that more than
50% of errors affecting the correct state of processor comes
from faults in the RF [1]. Access frequency to RF is quite high
and errors are mostly exposed to the outside. Consequently, an
error in RF easily propagates to data path and whole system
leading to system crash or silent data corruption [2].

At the same time, RF is already one of the main sources of
energy dissipation in embedded processors, consuming 15%-
36% of the total processor power [3]. ECC (Error Correction
Code) or fully duplicated RF may not be applicable to the en-
tire RF due to their huge power overhead. Different RF caching
solutions and partial protected RFs have been proposed in
order to protect just the most vulnerable register words [4][1].
However, adding ECC or duplication even for part of RF still
imposes a considerable amount of static and dynamic power
to the processor. For instance, the required energy for an ECC
checking is three times higher than a register accesses [5],
while it can correct just a single bit flip.

In the recent years, processors are designed with larger reg-
ister files to reduce the number of references to memory thus
increasing performance. One trend of embedded processors
is composing a complex register file out of heterogeneous
register banks with specialized functionality [6]. Heteroge-
neous RFs aid embedded processors to efficiently support
variety of applications from control to media applications.
Heterogeneous RFs are currently implemented in embedded
processors like ADI Blackfin families [6].

In this paper, we propose an application-based approach
for improving the register file vulnerability against soft errors.
The approach relies on the fact that control applications are
more critical in terms of reliability while at the same time,
they do not use all of the heterogeneous registers. The paper
proposes an static application binary analysis which is applied
at function level granularity and offers a systematic way to
manage the RF’s protection according to runtime conditions by
mirroring the content of used registers into unused ones. The
simulation results on Blackfin processor show that, for control
applications the RF Vulnerability Factor is reduced from %35
to %7 on average with negligible performance overhead.

The rest of this paper is organized as following. Section
2 discuses the previous work. Section 3 presents background
information of the paper. Section 4 introduces our proposed
approach. The implementation and simulation results are pre-
sented in Section 5. Finally, Section 6 concludes this paper.

II. PREVIOUS WORK

As ECC and duplication are too costly, current approaches
try to protect register file partially. Overall, most of the
previous approaches are hardware only solutions [2][7][1][4].
[1][4] propose a register caching mechanisms to protect just
most frequent register words. They keep an extra copy of
most recently accessed values protected either by embedding
SEU-tolerant latches [4], or with CRC code [1] providing
the correction capability. In these approaches, although RF
protection can be applied efficiently, still the power overhead
for register caching logic is considerable. In high-performance
processors, some approaches take the advantage of the large
physical RF using for register renaming [2][7]. [7] selectively
applies ECC to those registers containing useful data. Alter-
natively, [2] duplicates the content of live registers to those
micro-architectural unused ones. These approaches are not
applicable to embedded processors who typically do not use
register renaming.

In contrast to hardware-only solutions, recent approaches
try to take application analysis into account [3][8][5]. It was
shown that just by instruction rescheduling, RF Vulnerability
can be reduced up to 30% [5]. [8] uses RF profiling in-
formation to detect the register words with long vulnerable
period and stores their values into L1 cache assuming that L1
cache is already protected by ECC. Recently, Compiler-based
approaches are considered to protect RF [3]. [3] presents a

978-3-9810801-8-6/DATE12/ c©2012 EDAA



static RF vulnerability estimation can be applied as a part of
compilation process using for RF vulnerability optimization
with this assumption that a part of RF is already protected.

III. REGISTER ACTIVITY
The Register File Vulnerability Factor (RFVF) has become

a common metric to evaluate the RF reliability. RFVF derives
form Architecture Vulnerability Factor(AVF), and calculates
the proportion of time that the RF is susceptible to soft errors
[8]. At any point of time, a register is vulnerable if an error in
the register potentially can affect the correct architectural state
of program. For a regular register without any protection, the
vulnerable period starts by a write operation, and extends until
the last read. In the duration between the last read until the next
write, the register is unused, thus it is also invulnerable. RFVF
is equal to the average of vulnerability factors of all register
words. RF’s reliability improves throughout RFVF reduction
either by shortening length of the vulnerable periods or by
protecting vulnerable registers.

As a case study, we chose the Blackfin processor designed
for supporting both control and signal processing applica-
tions [9]. Blackfin has a 32x32 bits ISA RF composed of
eight data registers (#0-7), eight pointer registers (#8-15),
and sixteen circular addressing registers (#16-31) counted as
special-purpose registers, such as circular addressing registers
[6]. Special-purpose registers mostly are employed in data
streaming applications, e.g. accelerating computation through
fast and continuous data memory addressing. Fig.1 shows
the average utilization of different registers in the Blackfin’s
RF for two classes of applications. The results are gathered
through runtime profiling of six and four optimized (gcc-O3-
compiled) benchmarks from Mibench and DSPStone suites
[10][11], respectively. The profiling highlight that in signal
processing programs, all the special-purpose registers, spe-
cially circular addressing registers, are highly utilized. In con-
trast, in the control applications, the special-purpose registers
are seldom used and do not have effective contributions to
program execution. The low utilization of special-purpose
registers has two reasons. First of all, compilers may not detect
code patterns to benefit from heterogeneous registers in a large
set of applications. Therefore, many embedded programmers
handcraft their applications in assembly to freely utilize all
resources. And secondly, many applications inherently do not
require all resources. In contrast, the general-purpose registers
are fairly active in the control applications thus these regis-
ters are highly vulnerable to the transient faults. As control

50

75

100 Control

DSP

ty
 F
ac
to
r
[%

]

0

25

50

V
u
ln
e
ra
b
ili
t

0 5 10 15 20 25 30
Register #

Fig. 1. Average register utilization in Blackfin’s RF.

applications work with a limited set of registers, there is an
opportunity to utilize the existing unused registers in order to
protect the vulnerable general-purpose registers.

IV. APPROACH
Control applications have high demands in reliability. In

these applications, while general purpose registers are highly
used thus vulnerable, many special purpose register are un-
used in a considerable portion of execution. Consequently,
through utilizing unused registers and mirroring the content
of vulnerable registers, the overall vulnerability of the RF can
be improved significantly, leading to an improved reliability
of applications without imposing a significant overhead. Al-
though, this approach can be applied to any sort of register file,
it is particularly efficient for heterogeneous RFs with different
register usage patterns.

A. Design Tradeoffs

The register mirroring can be done at different levels of
granularity; application, function, loop, or basic block. An
application granularity would be too coarse grain and cannot
provide enough flexibility, while basic block would be too
fine, resulting in too many configuration changes. Our profiling
results show the considerable portion of unused periods are
higher than 8000 instructions long (65%), appeared in either
functions or loops with many iterations. Although, both offer
a reasonable level of granularity, the loop-level would im-
pose additional complexities. Detecting the loops with many-
iterations and unused register periods in the loop are data
dependent in many cases, requiring additional analysis. In
contrast, functions provide isolation over register accesses
in the program code. Moreover, the predefined rules over
register access within functions simplify tracking the register
dependencies. Consequently, we use function-level granularity
is used for detecting unused periods.

In the hardware layer, different register mapping policies
can be applied with different flexibilities. The register mapping
defines the number of register candidates that can be used as
backup. In our preliminary estimation, we observed the most
significant drop in RF vulnerability from no mirroring (>50%)
to Direct mapping (about 12%). 4-ways Associative mapping
only slightly improves the RFVF over Direct mapping (down
to about 6%)1. In contrast, the hardware complexity required
to support associative mapping is significantly higher 2 In
order to achieve a considerable improvements in RFVF with
minimum overhead, we choose Direct Mapping when one
backup candidate for each vulnerable register.

B. Instruction Set Architecture (ISA) Extension

In order to provide control over RF configuration, the ISA
needs to be extended with a new register called Map Register
(MR). We consider MR as an architectural register. The width
of MR is equal to the number of registers in RF which are in
register mirroring scope.

1Obtained estimation results are omitted due to the space constraints.
2Due to space constraints, the micro architecture implementation details are

not scope of this paper.



Additionally, the ISA has to be expanded for configura-
tion and backup/restore. First, a new instruction is required
for loading the Mapping Register (MR) with an immediate
value to configure the register backup. MR’s bitmap value
determines the set of registers utilized for backup. Second,
to support function calls, the MR needs to be pushed to and
popped from stack. We consider the MR stack operations
similar to Frame Pointer (FP) in respect of call preserve
rules. MR stack operations can be supported by dedicated new
instructions or considered as the part of current instructions.
Even though the basic operation is the same in both cases,
the code size overhead is lower when embedding MR push
and pop operations into current instructions. For example,
in the Blackfin ISA, Link/Unlink instructions stores/restores
FP and SP registers. For our experiments, we expanded the
Link/Unlink instructions to handle MR as well.

C. Application Analysis and Instruction Insertion

Application analysis statically detects unused periods for
each register. In this way, the analyzer gains a comprehensive
insight of register accesses in the program. Our proposed static
analysis does not require simulation profiling thus it avoids
long simulation-based analysis time and avoids simulation
ambiguity where register accesses may differ with input data.
Our application analyzer operates on program binary as a
post compiler stage, after all compiler optimizations and
library linking. As discussed, register mirroring is managed
at function-level granularity. Fig. 2 shows the instrumentation
flow of the proposed approach in two main stages: Binary
Analyzer and Instruction Insertion. The binary analyzer detects
register unused periods cross function calls. It is a composi-
tion of function call graph generator, register profiling, and
dependency analysis. At first, callable functions are detected
and a function call graph is created. Next, the register pro-
filer parses each function body detecting register accesses.
Following that, the dependency analyzer traces the register
dependency between callee and caller. Dependency analyzer
uses the function call graph and register accesses information
to identify registers for backup, as well as identifying those
registers that need to be stored/restored into the stack to
avoid data loss during the use as backup-registers. Finally, the
instruction insertion utilizes the analysis results to generate
a new augmented binary. While inserting new instructions it
also updates relative addresses that are due to inserting new
instructions.

Each function has a set of active registers accessed within
the function’s body. As long as a register is referred inside the
body of a function, regardless of runtime conditions, counted

Binary Analyzer

Application Binary

Intermediate Rep.

Instruc. Insertion

Reg. Mirroring Binary

Dependency analyzer

Function Graph

Register Profiler

Fig. 2. Register mirroring instrumentation flow.

Caller()

Callee()

Prologue

Epilogue

Map Ins.
Push/Link

Pop/Unlink

Body
Pre-Call

Call
Post Call

Fig. 3. Function call support.

as a used thus vulnerable register. The remaining registers,
which are not referenced thus unused/idle within the func-
tion, can be used for register mirroring. Based on the direct
mapping, any active register can only be duplicated where its
corresponding backup register is unused. For every callable
function, the profiler creates two lists of used and unused
registers. For all instructions, a Map instruction is inserted in
the prologue section (see Fig.3). The Map instruction loads an
intermediate value to the MR enabling the register mirroring.
Before updating the MR, an extra push is required in order
to preserve the callers MR. In the epilogue, before returning
to the caller, the callers MR is popped restoring the previous
configuration, following call preserved semantics (like FP).

Registers can be divided based on how they have to be
preserved over function calls: call-preserved, and scratch reg-
isters. The content of call-preserved registers needs to be
preserved (saved by callee before they are used). Therefore,
they appear unchanged to the caller. In contrast, the content
of scratch registers does not need to be saved and restored.
The scratch registers are not preserved across function calls.
In register mirroring, there is a potential data loss if call-
preserved registers are used for register mirroring while theirs
contents are already used in caller function. In order to
maintain a value of call-preserved registers, its content has
to be stored and restored from stack memory. Every function
has four lists; Parent (caller functions), Used, Unused, and
Stack including the registers that need to be preserved. For
each unused register of every callable function, the algorithm
checks all direct parents of the function. If the unused register
is used at least in one of the parents and also the register
belongs to the call-preserved category, its content should be
preserved. Therefore, the register is added to the stack list of
the function. Please note, each function only needs to keep
track of its direct parents (caller functions) and does not care
the descendant functions.

For preserved registers, extra pushes are inserted into the
callee prologue before loading MR. Pops are inserted in epi-
logue after restoring the previous MR content. (Note: functions
with multiple returns have multiple prologues). The same
method applied for recursive function calls when both caller
and callee are same. For dynamic function calls, since the
address of callee would be determined in runtime, caller
has to preserve all active call-preserved registers to prevent
from any data loss. Register mirroring can be disabled for
ISRs (Interrupt Service Routines). Please note, our dependency
analysis only extends to call-preserved registers. Most of the



60%

75% Non‐protected

Register Mirroring

30%

45%

RF
VF

15%

30%R

0%

Fig. 4. Register File Vulnerability Factor with different register protection

3%ad

1%

2%

3%

Register Mirroring

rm
an

ce
O
ve
rh
e
a

0%P
e
rf
o

Fig. 5. Performance overhead of register mirroring

special-purpose registers, such as circular addressing registers
are scratch registers [9][6]. These registers can be use in the
callee function without any concern regarding their contents.
This fact motivates us to focus on special-purpose registers for
mirroring (minimizing additional stack operations) rather than
using general-purpose registers.

V. EXPERIMENTAL RESULTS
To evaluate our approach, we developed an Instruction-Set

Simulator (ISS) for Blackfin processor [6] based on the Trap-
ADL [12]. ISA and Blackfin ISS were extended in order to
support the mphMap Register (MR) instructions outlined in
Section IV-B. In our version, the general-purpose registers (#0-
15) can selectively be protected in direct mapping to special-
purpose registers (#16-31) depending on configuration. Bench-
marks are selected form MiBench [12] and DSPstone [11]
as workloads for control and signal processing applications,
respectively. The benchmarks are compiled with gcc (-O3).

Fig. 4 shows the RF Vulnerability Factor (RFVF) calcu-
lated through ISS simulation for different register protection
scenarios. In this figure, we compare RVFV reduction from
the non-protected scenario, with our register mirroring. On
average, the RFVF of control applications is considerably
reduced (from 35% to 6.9%). DSP applications use the special-
purpose registers much frequently, allowing only little room
for our register mirroring. However, since we assume that
DSP applications have a much lower demand on reliability
than control applications, this can be acceptable. Our register
mirroring prevents from costly ECC generating and checking
in every read/write accesses which would significantly increase
power consumption. Instead, our approach only duplicates the
write operations and adds extra parity checking, with a simple
comparator in the read access. Additionally, register mirroring
takes the advantage of current unused registers leading to
lower area, thus lower static power.

Finally, Fig. 5 shows the performance overhead of our
approach due to executing additional instructions for RF con-
figuration and stack operations. The results vary significantly
with the application’s function granularity. Frequently called
small functions like in FFT yield a considerable overhead of
2.5%. In most benchmarks, however, the overhead is negligible
in comparison to overall execution time (less than 1% on
average for control applications). BitCount and CRC with
few functions show negligible overhead compared to the
recursively called Quicksort (1.5% overhead).

VI. CONCLUSION
In this paper, we introduced a power efficient approach for

improving reliability of heterogeneous register files (RFs) in
embedded processors. Control applications have high demands
in reliability, while many special-purpose register are unused
in a considerable portion of execution. Through an static
analysis over program binary, approach utilizes the unused
registers for protecting vulnerable registers, thus reducing
the overall RF vulnerability. The simulation results on an
enhanced Blackfin processor demonstrate that Register File
Vulnerability Factor (RFVF) is reduced from 35% to 6.9% in
cost of 1% performance lost on average for control applica-
tions from Mibench suite.

REFERENCES
[1] J. A. Blom, S. Gupta, S. Feng, and S. Mahlke, “Cost-efficient soft error

protection for embedded microprocessors,” in Proceedings of the 2006
international conference on Compilers, architecture and synthesis for
embedded systems, ser. CASES ’06, 2006, pp. 421–431.

[2] G. Memik, M. Kandemir, and O. Ozturk, “Increasing register file
immunity to transient errors,” in Proceedings of Design, Automation
and Test in Europe, march 2005, pp. 586 – 591.

[3] J. Lee and A. Shrivastava, “Static analysis of register file vulnerabil-
ity,” Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 30, no. 4, pp. 607 –616, april 2011.

[4] M. Fazeli, A. Namazi, and S. Miremadi, “Robust register caching: An
energy-efficient circuit-level technique to combat soft errors in embed-
ded processors,” Device and Materials Reliability, IEEE Transactions
on, vol. 10, no. 2, pp. 208 –221, june 2010.

[5] J. Yan and W. Zhang, “Compiler-guided register reliability improvement
against soft errors,” in Proceedings of the 5th ACM international
conference on Embedded software, ser. EMSOFT ’05, 2005, pp. 203–
209.

[6] “Blackfin processor programming reference mannual,” Analog Devices
Inc., September 2008.

[7] P. Montesinos, W. Liu, and J. Torrellas, “Using register lifetime pre-
dictions to protect register files against soft errors,” in 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works, DSN ’07., june 2007, pp. 286 –296.

[8] J. Lee and A. Shrivastava, “A compiler optimization to reduce soft errors
in register files,” in Proceedings of the 2009 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools for embedded systems,
ser. LCTES ’09, 2009, pp. 41–49.

[9] D. Katz, T. Lukasiak, and R. Gentile, “Understanding advanced pro-
cessor features promotes efficient coding,” Technical Report, Analog
Devices Inc., 2009.

[10] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Proceedings of IEEE International Workshop on
Workload Characterization, WWC-4, dec. 2001, pp. 3 – 14.

[11] V. Zivojnovic, J. Martinez, C. Schlager, and H. Meyr, “Dspstone: A
dsp-oriented benchmarking methodology,” in Proceedings of the Inter-
national Conference on Signal Processing Applications and Technology,
1994, pp. 715–720.

[12] L. Fossati, “Leon2/3 systemc simulator: User manual.” Technical Report,
Politecnico di Milano (Italy), http://code.google.com/p/trap-gen/.


