Design of a Low-Energy Data Processing
Architecture for WSN Nodes

Cedric Walravens and Wim Dehaene
K.U.Leuven ESAT-MICAS, Kasteelpark Arenberg 10, 3001 Heverlee, Belgium
Email: {cwalrave,wdehaene} @esat.kuleuven.be

Abstract—Wireless sensor nodes require low-energy compo-
nents given their limited energy supply from batteries or scav-
enging. Currently, they are designed around off-the-shelf low-
power microcontrollers for on-the-node processing. However, by
employing more appropriate hardware, the energy consumption
can be significantly reduced. This paper identifies that many
WSN applications employ algorithms which can be solved by
using parallel prefix-sums. Therefore, an alternative architecture
is proposed to calculated them energy-efficiently. It consists of
several parallel processing elements (PEs) structured as a folded
tree. Profiling SystemC models of the design with ActivaSC
helps to improve data-locality. Measurements of the fabricated
chip confirm an improvement of 10-20x in terms of energy as
compared with traditional MCUs found in sensor nodes.

I. INTRODUCTION

Wireless Sensor Network (WSN) nodes essentially consist
of sensors, a radio and a micro-controller (MCU) combined
with a limited power supply, e.g. battery or energy scaveng-
ing. Since radio transmissions are very expensive in terms
of energy, they must be kept to a minimum in order to
extend node lifetime [12]. As a result, data communication
must be traded for more on-the-node computation. In addi-
tion, the variety of WSN applications —ranging from medical
monitoring, to environmental sensing, industrial inspection
and military surveillance— demands a significant degree of
flexibility. This is the main reason why sensor nodes are still
designed around off-the-shelf low-power MCUs like the Atmel
Xmega [1], STM8L [14] and TI-MSP430 [15]. To improve
energy-efficiency, this paper introduces an alternative low-
power ASIC approach for WSN data processing in sensor
nodes without sacrificing too much of the flexibility found in
traditional MCUs. First, Section II identifies that many WSN
applications use algorithms which can be solved by employing
parallel prefix-sums. Then, Section III presents the proposed
architecture for solving parallel prefix-sums energy-efficiently.
A SystemC-based profiling methodology is used to identify
bottlenecks and improve data-locality of the architecture. Fi-
nally, Section IV provides measurements of the silicon chip
which uses 10-20x less energy compared to related work.

II. PROPOSED APPROACH
A. WSN applications and on-the-node data aggregation
Notwithstanding the seemingly vast nature of WSN applica-
tions, a set of basic building blocks for on-the-node processing
can be identified. Common on-the-node operations performed
on input data collected directly from the node’s sensors or

€= e (e e

CINC AN
=)

| E)EEE)

Fig. 1: A binary tree (left, 7 PEs) is functionally equivalent to the novel folded
tree topology (right, 4 PEs) used in this architecture.

up-phase down-phase

x=3 1 2 0 4 1 1 3 red=0 3 4 6 6 10 11 12

Fig. 2: Finding the reduced-prefix-sums for + on a tree.

through in-the-network aggregation include filtering, fitting,
sorting and searching [11]. We found that these can be
expressed as parallel prefix-sums operations. Prefix-sums can
be calculated in a number of ways [3], but we chose the binary
tree approach [13] because its flow matches the desired on-the-
node data aggregation. This can be visualised as a binary tree
of Processing Elements (PEs) across which input data flows
from the leaves to the root (Fig. 1, left). This topology will
form the fixed part of our approach, but in order to serve
multiple applications, flexibility is also required. The tree-
based data flow will therefore be executed on a datapath of
programmable PEs which provides this flexibility.

B. Parallel prefix-sums

Given a binary closed and associative operator & with
identity element [and an ordered set of n elements
[ag, a1, ag, - ,an_1], the reduced-prefix-sums is the ordered
set [I,ag, (ag ® a1), - ,(ap ®ay @ -+ & ap_2)], while the
all-prefix-sums is the ordered set [ag, (ag@ay), -, (agP a1 ®
-+ @ an—1)], of which the last element (ag ®ay B D an—1)
is called the prefix-sum.

For example, if & is a simple addition, then the prefix-
sum of the ordered set [3,1,2,0,4,1,1,3] is Xa; = 15. The
standard procedure to calculate the prefix-sum on a binary tree
(Fig. 2) requires one up-phase, starting from the leaves. Each

978-3-9810801-8-6/DATE12/(©2012 EDAA

PE along the way up executes exactly one store-and-calculate
operation on its inputs. The desired result is found at the
root. Getting the reduced-prefix-sums [0,3,4,6,6,10,11, 12]
requires an additional down-phase, now starting back from the
root. Each PE forwards the incoming value to the left (the root
uses the identity element) and sends the calculated result to
the right. The all-prefix-sums can be found by simply shifting
the reduced-prefix-sums to the left and putting the prefix-
sum found earlier at the end. Further details can be found
in literature [3]. Possible applications that relate to WSNs
include peak detection, polynomial evaluation for model-
fitting, lexically compare strings, add multi-precision numbers,
delete marked elements from arrays and quick sort [4].

C. MCUs and the von Neumann bottleneck

Modern MCUs are still based on the von Neumann archi-
tecture [10], or a minor variation thereof. Every algorithm
operating on the contents of main memory must send vast
numbers of data words back and forth between the CPU and
main memory, making it a bottleneck [2] which consumes a
significant amount of energy. Also, the lack of task-specific
operations found in today’s ultra-fast RISC (Reduced Instruc-
tion Set Computer) processors leads to inefficient execution,
which results in longer algorithms, significant memory book
keeping and a worsened energy-performance overall. To avoid
the von Neumann bottleneck, data-locality is required. Fur-
thermore, this locality must be realised with a minimum of
overhead. Only then energy can be conserved. By exploiting
the tree topology for the parallel prefix-sums algorithm, data
is automatically pushed through the tree and brought to the
PEs, so locality is indeed spontaneously realised.

III. DESIGN METHODOLOGY

A. Macro-architecture : towards a folded tree
First, an un-timed (UT) SystemC model of the binary tree
of PEs (Fig. 1, left) is written based on the findings of the
previous section. ActivaSC [16] is used to profile models.
Pipelining is one of the benefits of the binary tree [13]: as
soon as a layer of PEs finishes, the results are passed on
and calculations can recommence based on the output data
from the proceeding layer. However, a straight-forward binary
tree implementation costs a significant amount of area as n
inputs require p = n — 1 PEs. To reduce area and power,
pipelining can be traded for throughput. The idea is to fold
the tree back onto itself to maximally reuse the PEs. In doing
so, p becomes proportional to n/2 and the area is cut in
half. Note that also the interconnect is reduced. On the other
hand, throughput decreases by a factor of logs(n) but since
the sample rate of different relevant physical phenomena does
not exceed 100 kHz [9], this leaves enough room for the trade-
off to be made. This newly proposed folded tree topology is

depicted in Fig. 1 on the right.
Moving forward, the model is adjusted to represent the

folded tree topology (Fig. 1, right) and processing delays
are added. The profiling of this approximately-timed (AT)
SystemC model identified a significant amount of unneeded
activity. When data moves down the folded version of the

Folded Tree

59)
g & | Main
§u§ Control
O
Triggers 8
s = ¢
IC— v
data bus Instruct
——— trigger bus Mem
internal control —~ — 1
== i}

@

(b)

Fig. 3: Schematic overview of the whole design: (a) top-level view with folded
tree (4 PEs), (b) detail of one PE data path.

tree, the number of nodes which do calculations decreases by a
factor of 2 (e.g. for 8 PEs: 8,4,2,1). However, all nodes remain
active. This was solved by using handshaking signalling to
arrange the data transfer between PEs and keep them in an
idle state when no new input data is present.

Combining all this into a cycle-accurate model (CA) led to
also use the introduced handshaking for steering clock gating
signals. ActivaSC can readily provide a comparison of data
bus activity with and without handshaking. For a folded tree
with 8 PEs, a reduction of at least 60% in terms of activity is
realized for the case of one single up-phase. The handshaking
overhead is minimal considering the fact that the data bus is
much wider (16 bit) than the single bit request-acknowledge
handshakes and considering the beneficial impact of keeping
unused PEs idle. In addition, this handshaking is also reused
to control the bidirectional implementation of the data bus to
support both the up- and down-phase. This greatly simplifies
the interconnection of the PE structure.

B. Micro-architecture : towards triggered PEs

Fig. 3 gives a detailed overview of the global implementa-
tion. The handshaking triggers manage the data flow across the
bidirectional data bus throughout the folded tree architecture.
They activate the PEs only when new data is available and
in such a way that they functionally become a binary tree in
up- and down-phase. Each PE within the folded tree is an
identical instance of the same generic PE element. It consists
of a micromachine which interacts with its own data path. All
data path control signals are provided locally. Muxes select
external data, stored data or the previous result as the next
input for the data path. The data path contains an Algorithmic
Logical Unit (ALU) with register files (RF) at the inputs
for operand isolation. These RFs become the distributed data

Main control / debug

Fig. 4: Die photograph of the implemented processor with 8 PEs.

memory of the whole system. They are the only clocked
elements within the data path. As data flows through the tree
it is constantly kept local to its designated operation. This
is one of the goals of this work, which effectively removes
the von Neumann bottleneck and saves power. A PE takes 6
(down-phase) or 7 (up-phase) cycles to process one instruction
which can be divided in three stages: (1) Preparation, which
acknowledges the data and starts the core when input triggers
are received (1 cycle); (2) Execution, which performs the
load-execute-jump stages to do the calculations and fetch the
next instruction pointer (4 cycles); and (3) Transfer, which
forwards the result by triggering the next PE in the folded
tree path on a request-acknowledge basis (1-2 cycle). This
is tailored towards executing the store-and-calculate operation
of the parallel prefix algorithm on a tree as described earlier.
Combined with the flexibility to program the PEs using any
combination of operators available in their data path, the
folded tree has the freedom to run a variety of parallel-prefix
applications [4]. Furthermore, the folded tree can implement
other sequential (non parallel prefix) algorithms by running
it on one single PE. However, this does no longer exploit
data-locality and reintroduces a von Neumann bottleneck.
In addition, the memory available to such an application is
severely limited as only the local RFs are accessible. To
alleviate both somewhat, the folded tree structure can also be
configured as a chain of PEs which can regain some data-
locality and has access to about half of the total distributed
memory. Referring to the right-hand side of Fig. 1, this is
achieved by starting at the outer right node (PE4) and passing
the results onwards while effectively hopping along a chain of
roughly half the PEs (PE4, PE2 and PEI).

IV. EXPERIMENTAL VALIDATION

The folded tree processor has been fabricated in 130 nm
standard cell CMOS (Fig. 4) containing eight 16-bit PEs
which can process 16 inputs simultaneously. Each support 14
arithmetic and logical operations with associated flag tests and
jump commands. The register files within the PEs can store 4
data words per input. The design targets 20-80 MHz operation
at 1.2 V, using VLIW processing of 36-bit instructions.

The chip has separate power domains so the power con-
sumption of separate parts can be measured. Off-the-shelf
memory IP macros were originally used to implement the
PE’s instruction memories. These memory macros are in no

: Active ldle |PE Instr.
1 Processing Element PE core | PE core | Mem.
Dynamic energyl/instr (pJ)| 14.6 4.7 2.10
Leakage power (uW)| 0.3 0.3 0.01
Total power @ 20 MHz (uW)| 42.0 13.7 6.0
Folded Tree (up-phase) |Estimate | Measured |nt;\/|l.'lanr§tr
Total dynamic energy (pJ)| 298.8 289.2 356.4
Leakage power (uW)| 2.5 2.5 2.6
Total power @ 20 MHz (uW)| 215.9 | 209.1 | 257.2

Fig. 5: Leakage power and dynamic energy for one PE and the folded tree
with 8 PEs executing an up-phase under nominal conditions (20MHz,1.2V).

DP Process VDD Clk | Efinstr |Norm. E/Instr
Core Arch (bits) (nm) (V) (MHz)| (pJ) (pJ)
SNAP/LE RISCGP 16 180 1.8 200 | 218.0 157.4
BitSNAP RISCGP 16 180 1.8 54 54.0 17.3
Smart Dust RISCGP 8 250 10 05 12.0 18.0
one single PE |CISCGP 16 130 1.2 20 4.2 4.2

Fig. 6: Energy per instruction of related work [5][6][17], normalised to

130nm,1.2V,16bit.

way optimised for power. Therefore, the energy consumption
of the folded tree PE cores is first measured separately,
excluding the instruction memory. The upper table in Fig. 5
gives the dynamic energy and leakage power for one PE
core under full stress with varying data inputs. It consumes
42 uW or 2.1 uW/MHz including 0.3 uW leakage. Thanks
to the macro-architectural choices (Sect. III-A) the factor 3
difference between the active and idle PE consumption can be
fully exploited to reduce power. To make a fair comparison
against existing MCUs later on, a power-optimised register-
based replacement for the small instruction memories was
developed for a follow-up design. It was taken through full
P&R, so parasitic extraction of this sign-off layout allowed to
accurately simulate its power. These power values are given
in last column of the PE table in Fig. 5. To validate the
measurements and to check whether the derived values for
a single PE are correct, they are combined in an estimate
for the folded tree with 8 PEs. When such tree executes an
up-phase, it will take 4 steps to reach the root (Sect. II-B).
Thanks to the handshaking, the number of active PEs is cut
in half as 8,4,2,1 for each step. The number of idle PEs
increases accordingly as 0,4,6,7. This makes a total of 15
active PEs and 17 idle PEs. By combining this information
with the PE’s consumption, the folded tree consumption can
be estimated. As can be seen in the lower table of Fig. 5 the
estimate closely matches the measured values for the folded
tree. The last column also takes the instruction memories into
account. Overall, the folded tree processor consumes 257 uW
or 13 pl/cycle including memories.

A standard benchmark suite of applications for WSN sys-
tems does not exist though some initial attempts have been
made [8][11]. Especially regarding academic work, readers
are often left with only the energy-per-instruction metric to
compare different systems. Fig. 6 presents a summary of
related academic work. The given energy/instruction values are
normalised to the presented work using following formula:

Erorm = Eorig x 130nm/L x (1.2V/Vyq)? x 16bit/W (1)
given energy per instruction F,,;4, process L, supply V4 and
datapath bitwidth D of the other system. This work requires at

DP Memory Process Supply VDD Clk |Energy/cycle| Normalized | Algo Unit Algo Unit
Core Arch (bits) (KB) (nm) Current (uUA) (V) (MHz) (pJ) E/cyc (pJ) (cycles) Norm. E (pJ)
ATxmegal28D4 RISCGP 8 8 250 1100 3.0 2 1650 2746 8 2196
STM8L101 CISCGP 8 15 130 900 3.0 8 338 108.0 8 864
TI MSP430F550x | RISCGP 16 4 180 2840 30 20 426 49.2 8 394
OpenMSP430 RISCGP 16 2 130 765 12 20 459 459 8 367
Thiswork—1PE | CISCGP 16 05 130 40 12 20 2.4 2.4 7 17
This work — Tree | CISC Tree 16 4 130 214 12 20 12.9 12.9 7 90
Fig. 7: Comparing total energy for the algorithmic unit sequence (load-execute-store-jump)
. . . . 16 4
least 4.1.2x les.s in terms of energy per 1nstruct19n. The nqtlon —Folded Tree
of an instruction, however, might significantly differ especially 14 s MsP430
as WSN systems often employ specific ISAs and specialised 12 speed gain s
hardware to reach extreme energy efficiency. This is the case g 10 > g
for this work since the benefit of the parallel prefix-sums s 8 2 3
o
framework cannot be fully quantified using the small-scale “;{ 6 ®
energy-per-instruction metric. e 4 1
. 2
A better metric for comparison is the energy per algorithmic o .

unit (AU). The AU is a sequence of frequently used steps
in the target applications. To calculate this metric, a com-
plete data sheet with full instruction set and detailed power
measurements is needed. In contrast to academic work, this
information is readily available for many commercial MCUs.
Given the context of WSN applications, the AU is defined as
a load-execute-store-jump sequence which is predominantly
present in data processing algorithms that loop over data
arrays. For each MCU, the total number of cycles for the
AU sequence is calculated. Each time, the most efficient
instructions are chosen from each MCU’s specific instruction
set. The energy per cycle is based on the information found
in the data sheet and normalised using (1). Fig. 7 presents the
details of this comparison. The OpenMSP430 [7], which is an
open-source model of the widely-used MSP430 MCU, is also
included. A single PE outperforms other MCUs by at least 20x
in terms of energy, requiring only 2.4 pJ per cycle or 16.8 pJ
per AU at equal clock speed. This illustrates that, if memory
demands are limited, the single PE or chained PE sequential
solution is still more energy efficient.To correctly compare the
MCUs with the 8 PEs in the folded tree, the parallel aspect of
the latter needs to be taken into account. As derived earlier, a
folded tree of 8 PEs will execute 15 AU’s over 4 time periods
or 3.75 on average. In other words, the folded tree must be
compared to the equivalent of 3.75 MCUs. The folded tree
then outperforms the closest competitor MSP430 by at least
15x in terms of energy.

Finally, despite the lack of standardised benchmark algo-
rithms, a selection of four relevant algorithms (Sect. II-B) is
used to compare the energy requirements against the Open-
MSP430. This closest competitor, as indicated by the previ-
ous experiments, comes with an accurate sign-off simulation
model. It allows to measure the energy consumption of the
MSP430 even more accurately than using the AU metric. The
results are presented in Fig. 8. The folded tree outperforms
the MSP430 by 8-10x in terms of energy and at least 2-3x in
terms of execution time. Note that this speed gain can be traded
for even more energy-efficient execution, by lowering the
supply voltage until an equal throughput is reached. Operating

All-prefix-sums with + Evaluate polynomial
Compare strings Peak detection

Fig. 8: Total energy consumption of example algorithms (20 MHz,1.2V)

at half the frequency (10 MHz) and a minimal supply voltage
of 0.79 V the processor now consumes about half the energy.
A single active PE core will only consume 0.95 uW/MHz
including leakage. Overall, the folded tree processor now
consumes down to 80 uW or 8 pl/cycle and running the
example algorithms it outperforms other MCUs by at least
20x in terms of total energy.

V. CONCLUSION

This paper identified that the data processing algorithms
found in many WSN applications can be solved by using
parallel prefix-sums methods. An architecture was developed,
in order to calculate these in an energy-efficient manner.
Mainly owing to improved data-locality, tree folding and
controlled triggering of the PEs, a low-energy execution of
down to 8 pl/cycle or at least a 20x better energy-efficiency
is realised.

REFERENCES

[1] Atmel Corp. Xmega D4 datasheet, 2010.

[2] J. Backus. Can programming be liberated from the von Neumann style?

In Communications of the ACM, volume 21. ACM, 1978.

G. Blelloch. Scans as grlmmve parallel operations. Computers, IEEE

Trans., 38(11):1526-1538

[4] G. E. Blelloch. Prefix sums and their applications. Technical Report
CMU-CS-90-1990, Carnegie Mellon University, Nov 1990

[5] V. Ekanayake et al. SNAP/LE: An ultra low- power proceqsor for sensor
networks. In ACM SIGOPS OS Rev., volume 38. ACM, 2004.

[6] V. Ekanayake et al. BitSNAP. IEEE Computer Soczety 2005.

[7] O. Glra.r(i, OpenMSP430 processor core, available at opencores.org.

[8] M. Hempstead et al. Tinybench. In IEEE Proc. 29th Local Computer
Networks Conf., pages 585-586. IEEE Computer Society, 2004.

[91 M. Hempstead et al. Survey of hardware systems for wireless sensor
networks. Journal of Low Power Electronics, 4(1):11-20, 2008.

J. Henness%[and D. Patterson. Computer Architecture A Quantitative
roach. Morgan Kaufmann, ISBN 0-1237-0490-1, 4th edition, 2007.

L Nazhandall Sensebench. In IEEE Proc. Workload Characterization

Symposium, Eages 197-203. IEEE, 2005.

V. Raghunathan et al. Energy-aware wireless microsensor networks.

Signal Processing Magazine, IEEE, 19(2):40-50, 2002.

P. Sanders and J. Triff. Parallel prefix (scan) algorithms for MPI. Recent

Adv. in Parallel VM and MPI, pages 49-57, 2006.

ST Microelectronics. STM8L101 datasheet, 2010.

Texas Instruments. MSP430F550x datasheet, 2010.

C. Walravens et al. ActivaSC: a highly efficient and non-intrusive

extension for activity-based analysis of SystemC models. In DAC’09.

B. Warneke et al. An ultra-low energy microcontroller for smart dust

wireless sensor networks. In ISSCC 2004, pages 316-317. IEEE, 2004.

—_
W
=

