
Exploiting Binary Translation for Fast ASIP Design

Space Exploration on FPGAs

Sebastiano Pomata, Paolo Meloni, Giuseppe Tuveri, Luigi Raffo

Department of Electrical and Electronic Engineering

University of Cagliari

email: {sebastiano.pomata, paolo.meloni, giuseppe.tuveri, luigi}@diee.unica.it

Menno Lindwer

Intel Corp.

Eindhoven

email: menno.lindwer@intel.com

Abstract—Complex Application Specific Instruction-set Pro-
cessors (ASIPs) expose to the designer a large number of
degrees of freedom, posing the need for highly accurate and
rapid simulation environments. FPGA-based emulators represent
an alternative to software cycle-accurate simulators, preserving
maximum accuracy and reasonable simulation times. The work
presented in this paper aims at exploiting FPGA emulation
within technology aware design space exploration of ASIPs. The
potential speedup provided by reconfigurable logic is reduced by
the overhead of RTL synthesis/implementation. This overhead
can be mitigated by reducing the number of FPGA implementa-
tion processes, through the adoption of binary-level translation.
Hereby we present a prototyping method that, given a set of
candidate ASIP configurations, defines an overdimensioned ASIP
architecture, capable of emulating all the design space points
under evaluation. This approach is then evaluated with a design
space exploration case study. Along with execution time, by
coupling FPGA emulation with activity-based physical modeling,
we can extract area/power/energy figures.

I. INTRODUCTION

A common feature of modern embedded systems is the

need for highly optimized application-specific processing ele-

ments, such as Application Specific Instruction-set Processors

(ASIPs). To efficiently explore the hardware-software cus-

tomization of such systems, appropriate emulation techniques

are required to provide fast but accurate performance esti-

mates. For the purpose of architectural exploration, software

based simulators, such as those presented in [1] and [2],

do not providecycle-accuracy or require unaffordable simu-

lation times for complex designs. To efficiently explore the

hardware-software customization of such systems, appropriate

emulation techniques are required to provide fast but accurate

performance estimates. Approaches relying on FPGA-based

emulation techniques have been proposed in the recent past as

alternative solutions, such as the RAMP project ([3]), [4], and

[5].

However, some further steps are needed before they can be

effectively exploited within architectural design space explo-

ration. Firstly, some kind of technology-awareness must be

The research leading to these results has received funding from the Eu-
ropean Community Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. 248424, MADNESS Project, from ARTEMIS JU -
ASAM Project, and by the Region of Sardinia, Young Researchers Grant, PO
Sardegna FSE 2007-2013, L.R.7/2007 “Promotion of the scientific research
and technological innovation in Sardinia”.

introduced, to enable the translation of the emulation results

into a pre-estimation of a prospective ASIC implementation

of the design. Moreover, countermeasures are needed to

counterbalance the time needed to go through the physical

synthesis and implementation flow. As major contribution of

our work, we propose a design methodology overcoming such

limitations, enabling the use of FPGA-based prototyping for

micro-architectural design space exploration of ASIP proces-

sors. In our approach, to increase the emulation speed-up, we

exploit translation of application binary code, compiled for a

custom VLIW ASIP architecture, into code executable on a

different configuration. This allows to prototype a whole set

of ASIP solutions after one single FPGA implementation flow,

mitigating the afore-mentioned overhead. We automatically

identify what we call a worst case configuration (WCC), i.e.

a processor configuration over-dimensioned with the hardware

resources necessary to emulate all the configurations included

in the predefined set of candidates.

To evaluate different design points, we run on the WCC

implemented on FPGA the binaries obtained compiling the

target application for each candidate configuration and adapted

by means of a custom-defined manipulation algorithm. During

the execution, we obtain, by means of dedicated counters

automatically instantiated inside the HDL code before synthe-

sis, performance and switching activity metrics, assuring the

obtained results to be perfectly equivalent to those obtainable

from its “single-configuration” prototyping.

Several approaches aim at increasing the speed-up reducing

the number of necessary synthesis/implementations, by look-

ing at FPGA reconfiguration and programmability capabilities

([6], [7]). Other works [8] [9] [10] exploit binary translation to

convert sequential code compiled for single-issue processors

into code executable on VLIW architectures. However, we are

not aware of any previous work combining binary manipula-

tion and FPGAs for providing support in the design of com-

pletely configurable application-specific processing elements.

In order to provide technology-awareness, we also pro-

pose the possibility of back-annotating the emulation results

with technology-dependent energy, power and area models, to

translate the activity figures into a pre-estimation of the area-

obstruction and power contribution of each functional block

of the architecture implemented on ASIC.

978-3-9810801-8-6/DATE12/ c© 2012 EDAA

In this work we refer to an industrial ASIP design and

programming flow [11]. It includes a cycle-accurate simulation

tool that is used for evaluating the execution of an applica-

tion on the considered ASIP architecture. We compare our

approach with such baseline flow structure in order to assess

the benefits that can be achieved by means of the proposed

techniques.

II. REFERENCE ARCHITECTURAL TEMPLATE AND

EXPLORATION STRATEGY

This work targets in general VLIW ASIPs, which are

instances of industrial IPs, based on a flexible Processor

Architecture Template and providing an automatically retar-

geting compiler (see Fig. 1). According to the template, every

processor consists of a composition of processor slices (PS).

PS are complete vertical datapaths through the Processor

Architecture Template, composed of elementary functional

elements called Template Building Blocks, such as:

• register files: holding intermediary data in between pro-

cessing operations, configurable in terms of width, depth,

number of read and write ports;

• issue slots: basic unit of operation within processor; every

issue slot includes a set of function units (FUs), that

implement the operations actually executable;

• logical memories: container for hardware implementing

memory functionality;

• interconnect: automatically instantiated and configured,

implementing the required connectivity within the pro-

cessor.

!"#!"#

$%&'()*%%')&#

+,,-'#./*&#

.!#

"0# "0#

!"#$%&'"()*+,-'*

.)."(/*-,')(0#1)*

12#

3#3#

3444#

+.#+.# 3#

!"#$%&'"()*+,-'*

.)."(/*-,')(0#1)*

$%&'()*%%')&#

!"#$%&'"()*+,-'*

.)."(/*-,')(0#1)*

!"#$%"&'(&)*+',%"*+--)#.'(&)*+-'

Fig. 1. Reference VLIW ASIP template

In this work, we enable a design space exploration that

covers the most important degrees of freedom exposed by

the Processor Architecture Template. The only assertion we

impose is every candidate processor configuration to be com-

posed of one control PS (in charge of managing the program

flow and interacting with the program memory) plus a variable

number of additional processing PS providing computational

capabilities to the processor.

The design space under consideration is thus determined by

the following degrees of freedom:

• NIS(c): the number of slices in configuration c;

• FU set(x, c): the set of function units in issue slot x, in

configuration c;

• RF size(x, c): the size (depth) of the register file asso-

ciated with issue slot x, in configuration c;

• n mem(c): number of memories in configuration c.

III. THE REFERENCE DESIGN FLOW

The overview of the baseline flow, employed in a prospec-

tive evaluation cycle, is depicted in Fig. 2. Every configuration

to be evaluated during the Design Space Exploration (DSE)

process is described using a proprietary description format.

Each configuration description is passed to an RTL construc-

tor, that analyzes it and provides as output the VHDL descrip-

tion of the whole architecture. This HDL code is used as input

for the FPGA implementation phase, that can be performed

with standard commercial tools. On the software side, the

target application code is compiled by means of an adequate

compiler, retargeting itself according to the instruction set and

the architectural features of the processor under prototyping.

After compilation, the program can be executed on the ASIP

implemented on FPGA.

Fig. 2. Reference flow and extended flow with binary translation capabilities.
Reference flow steps are marked with dashed arrows, while extended flow
ones are denoted with solid arrows. With extended flow, evaluation time for
N candidate architectures is approximately 1 hour and N × 20 seconds.

IV. THE EXTENDED PROTOTYPING FLOW

Within this work, the baseline flow has been extended

to enable FPGA-based evaluation of a set of design points.

Firstly, the hardware structures of the template building blocks

have been instrumented with dedicated activity probes and

counters. Secondly, to introduce technology awareness, the

collected emulation data and the processor description are

translated to physical metrics by means of dedicated area,

power and energy models, to be fed back to the optimization

algorithm. The translation is performed by means of a set

of analytical expressions and tables that allow the evaluation

of the energy and area contributions of the functional blocks

inside the library, on the basis of their parameterization and

switching activity. The models refer to a target technology

library. In a third place, in order to achieve faster prototyping

of multiple candidate configurations on one single overdimen-

sioned platform, the baseline flow is extended with additional

features provided by a in-house developed utility, in charge of

identifying and synthesizing the WCC, and able to adapt the

binaries compiled for each configuration to allow execution

on WCC.

A. The WCC synthesis algorithm

In the extended flow, all the design points under test are

provided to the flow at the beginning of the iterative process.

The WCC is defined by updating it at each iteration according

to the design point under analysis. At iteration N (i.e. parsing

the N − th candidate configuration under test c)

• The number of issue slots inside c is identified and

compared with previous iterations. A maximum search

is performed, then, if needed, the WCC is modified to

instantiate NIS(WCC) issue slots, where

NIS(WCC) = max{NIS(i)} for i = 1, ..., N ;

• For every issue slot x inside c, the size of the associated

register file is identified and compared with previous

iterations. A maximum search is performed, then, if

needed, the register file related to the issue slot x inside

the WCC is resized to have RF s(x,WCC) locations,

where

RF s(x,WCC) = max{RF s(x, i)} for i = 1, ..., N ;

• For every issue slot x inside c, the set of FUs is identified

and compared with previous iterations. The issue slot x

inside the WCC is modified, if needed, to instantiate a

set of FUs being the minimum superset of FUs used in

previous configurations:

FU set(x,WCC) =

FU set(x, c) ∪ FU set(x, i) for i = 1, ..., N ;

B. The binary manipulation algorithm

For each candidate architecture, knowing the architectural

parameters, the instruction bits can be partitioned in sub-ranges

that identify specific control directives to the datapath. The

width and the position of each range are statically dependent

on the architectural configuration that must execute the in-

struction. For each field, a disabling configuration is defined,

able to determine a no-operation for the related datapath part.

The general idea is then to manipulate each single instruction

field of a candidate configuration, in order to fit it (modified in

position, size and value) in the WCC instruction format. First,

each parsed candidate architectural description is analyzed by

the tool, and compared to the WCC description, to identify:

the position and the size of the field inside the candidate

instruction word, the position and the size of the field in

the WCC, and an “offset” indication to be considered during

adaptation.

A strict one-to-one relationship is thus established between

each processor slice (and the related instruction fields) in the

candidate architecture and a corresponding processor slice

miming it in the WCC. The information contained inside

the “offset” structure indicates how the value in the related

candidate instruction must be modified, taking into account

hardware structures instantiated in the WCC but not involved

in the prototyping of the considered design point.

For every instruction in the candidate binary, a WCC in-

struction word is then populated according to this information.

An example is depicted in Figure 3.

!!"!# !!!# "!"#

$%&'#()$*+,-./)$#0$1&-,(/)$#*2341#

!!!!"!# """!!!# !!"!"#

567# 867#

567#

9)-1&#(.12#()$*+,-./)$#0$1&-,(/)$#*2341#

*
2
34
#:
.
3,
2
#01#2

;
&2
$
4
2
4
#.
$
4
#$
)
&#<

)
4
0*
2
4
#

=# !># ?!#

@# AB# >># 867#

Fig. 3. Example of manipulation of an instruction word. First field is left-
extended to obtain the same length of corresponding field on the WCC; second
field represents a disabling configuration adapted for WCC; third field is left-
extended and modified, due to the presence of an offset value.

V. POWER AND AREA MODELS

The pre-estimation of a prospective ASIC implementation of

a prototyped design point is done according to a pre-built table

of “normalized values”. The area and the power contribution

of every functional block in the processor has been analyzed

and its dependency on the architectural parameters and on

the activity rate has been studied. The identified expressions

are the actual models to be used. Normalized values are the

coefficients of the models, while architectural parameters and

activity rate are variables. While area is activity-independent,

power and energy dissipation depend on the number of cycles

when the considered functional block was accessed. Such

activity trace is obtained from the counters connected in

FPGA prototype to the relevant signals. Normalized values

are derived from results of conventional post-layout power

simulation through the usage of PrimeTime PX. Proposed

results were obtained referring to a 40 nm low power TSMC

technology. Despite all the possible factors introducing unpre-

dictability, according to the experiments that were performed,

power and area estimation shows an accuracy of 90%. The

details about the model expression and the considered depen-

dencies are not reported in this paper for the sake of brevity.

VI. USE CASE

In this section we present a use case of the previously

described binary manipulation techniques. We plot the results

obtained while performing the architecture selection process

over a set of 30 different ASIP configurations. The explored

design points were identified considering different permuta-

tions of the following parameter values:

• NIS(c): 2 or 3 or 4 or 5;

• FU set(x, c): from 3 to 10 FUs per issue slot;

• RF size(x, c): 8 or 16 or 32 entries, each 32-bits wide;

• n mem(c): 2 or 3 or 4 or 5.

A filtering kernel was compiled for every candidate configu-

ration and the resulting binaries were executed on the WCC

prototype. In order to execute the chosen application and

obtain relevant metrics, a system with a host processor and one

ASIP core was designed. The host processor is in charge of

reading the adapted binary from its local memory and upload it

to ASIP program memory, triggering the execution on ASIP

core and then fetching from it the results of the execution.

The adopted hardware FPGA-based platform features a Xilinx

Virtex5 XC5VLX330 device, counting over 2M equivalent

gates. In Fig. 4 we show the results of the evaluation obtained

with respect to total execution time, to total latency, and to

total energy and power dissipation. Multi-constraint optimiza-

tion can be effectively performed. For example, imposing a

constraint on maximum execution time (e.g. 200K cycles), the

user could identify a subset of candidates that do not satisfy the

constraint (gray bullets). Then, among the remaining design

points, one could choose the best configuration with respect

to power or area (white bullet).

1.5
2

2.5
3

3.5
4

x 10
5

500
1000

1500
2000

2500
3000

3500
0.005

0.01

0.015

0.02

CyclesArea [um
2
]

P
o

w
e

r
[W

]

Fig. 4. Use case results. Every configuration could be represented by a
different 4-tuple, whose elements represent total number of issue slots, register
file capacity (in 32-bit words), number of fully-featured issue slots, number of
data memories. Execution cycles, modeled power consumption and modeled
area occupation are evaluated for the different configurations under emulation.

All the presented data are obtained after traversing only

one synthesis/implementation flow. In order to evaluate the

accuracy of the proposed approach and the achievable speed-

up, we compared the emulation results obtained by means of

our prototyping strategy with those obtained using a cycle-

accurate software-based simulator referring to the same image-

filtering kernel. Both the functional results and the cycle

counts (Fig. 4) obtained with the two methods were completely

equivalent. But, while cycle-accurate simulation required few

minutes (roughly five on average per configuration), onboard

execution on the FPGA prototype required only few seconds

(roughly two) to emulate each candidate architecture. A syn-

thesis/implementation flow, performed on an Intel Quad-Core

machine with commercial tools, required less than half an hour

to complete. Such time obviously depends on the size of the

system, but can be estimated in the order of one hour for

moderately complex systems. Binary translation was also per-

formed on the same machine, but the related overhead in terms

of emulation time is negligible (less than a second). According

to the mentioned numbers, as depicted in Fig. 2, the presented

approach allows a time saving that increases with the number

of candidate topologies under prototyping, outperforming soon

(for approximately ten candidate design points involved in the

design process) software-based simulation.

VII. CONCLUSIONS

In this work, an approach to ASIP configuration selection,

based on FPGA-based emulation platforms, is presented and

evaluated. To reduce the amount of time needed for standard

FPGA exploration flows, we exploited manipulation of the

application binaries to show that different VLIW ASIP archi-

tectures can be emulated on-hardware by mapping them via

software on a larger worst case configuration.

The presented use case validates the usefulness of the frame-

work as an effective support to quantitative design space

exploration or simply as an environment for rapid prototyping

of complex ASIP-based platforms. Future developments of this

work will extend the presented binary manipulation tool to

support for adaptiveness and fault tolerance in ASIP single-

and multi-core platforms.

REFERENCES

[1] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and
M. Olivieri, “Mparm: Exploring the multi-processor soc
design space with systemc,” J. VLSI Signal Process. Syst.,
vol. 41, pp. 169–182, September 2005. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1072958.1072962

[2] G. Ascia, V. Catania, M. Palesi, and D. Patti, “A system-level framework
for evaluating area/performance/power trade-offs of vliw-based embed-
ded systems,” in Design Automation Conference, 2005. Proceedings of

the ASP-DAC 2005. Asia and South Pacific, vol. 2, jan. 2005, pp. 940
– 943 Vol. 2.

[3] J. Wawrzynek, M. Oskin, C. Kozyrakis, D. Chiou, D. A. Patterson,
S. lien Lu, J. C. Hoe, and K. Asanovic, “Ramp: Research accelerator
for multiple processors,” 2006.

[4] P. Del Valle, D. Atienza, I. Magan, J. Flores, E. Perez, J. Mendias,
L. Benini, and G. De Micheli, “Architectural exploration of mpsoc
designs based on an fpga emulation framework,” 2006. [Online].
Available: http://infoscience.epfl.ch/record/100054

[5] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. H. Reinhart, D. E. Johnson,
J. Keefe, and H. Angepat, “Fpga-accelerated simulation technologies
(fast): Fast, full-system, cycle-accurate simulators,” in MICRO, 2007,
pp. 249–261.

[6] Y. E. Krasteva, F. Criado, E. d. l. Torre, and T. Riesgo, “A fast emulation-
based NoC prototyping framework,” in RECONFIG ’08: Proceedings of

the 2008 International Conference on Reconfigurable Computing and

FPGAs. Washington, DC, USA: IEEE Computer Society, 2008, pp.
211–216.

[7] S. Wong, F. Anjam, and F. Nadeem, “Dynamically reconfigurable
register file for a softcore vliw processor,” in Design, Automation Test

in Europe Conference Exhibition (DATE), 2010, march 2010, pp. 969
–972.

[8] K. Ebcioglu, E. Altman, M. Gschwind, and S. Sathaye, “Dynamic binary
translation and optimization,” Computers, IEEE Transactions on, vol. 50,
no. 6, pp. 529 –548, jun 2001.

[9] J. Dehnert, B. Grant, J. Banning, R. Johnson, T. Kistler, A. Klaiber,
and J. Mattson, “The transmeta code morphing trade; software: using
speculation, recovery, and adaptive retranslation to address real-life
challenges,” in Code Generation and Optimization, 2003. CGO 2003.

International Symposium on, march 2003, pp. 15 – 24.
[10] M. Gschwind, E. Altman, S. Sathaye, P. Ledak, and D. Appenzeller,

“Dynamic and transparent binary translation,” Computer, vol. 33, no. 3,
pp. 54 –59, mar 2000.

[11] SiliconHive. (2010) Hivelogic configurable par-
allel processing platform. [Online]. Available:
http://www.siliconhive.com/flex/site/Page.aspx?PageID=17604

