
FAST-GP: An RTL Functional Verification
Framework based on Fault Simulation on GP-GPUs

Nicola Bombieri, Franco Fummi and Valerio Guarnieri
Department of Computer Science

University of Verona
{firstname.lastname}@univr.it

Abstract—This paper presents FAST-GP, a framework for
functional verification of RTL designs, which is based on fault
injection and parallel simulation on GP-GPUs. Given a fault
model, the framework translates the RTL code into an injected
C code targeting NVIDIA GPUs, thus allowing a very fast
parallel automatic test pattern generation and fault simulation.
The paper compares different configurations of the framework
to better exploit the architectural characteristics of such GP-
GPUs (such as thread synchronization, branch divergence, etc.)
by considering the architectural characteristics of the RTL design
under verification (i.e., complexity, size, number of injected faults,
etc.). Experimental results have been conducted by applying
the framework to different designs, in order to prove the
methodology effectiveness.

I. INTRODUCTION

Fault injection and fault simulation are among the most
widely adopted techniques for dynamically verifying RTL
designs [1], [2] as they provide a measure of quality of the
used testbenches and test patterns [3]. In the past years, several
methodologies for automatic test pattern generation (ATPG)
have been proposed [4] and different fault models [5] have
been proposed for providing a comprehensive measure of the
RTL test pattern quality.

Different works have shown that RTL fault coverage is
quite close to fault coverage achieved at the gate level when
designs are completed and mapped to a technology library [5].
Experimental results have also shown that the designer effort
to improve the fault coverage at RTL very likely results in
a corresponding improvement of fault coverage at gate level.
All these works have underlined, besides the need of accurate
fault models, the importance of a fast RTL simulation speed
to generate high quality RTL test patterns.

On the other hand, graphics processing units (GPUs) have
recently been explored as a new general purpose computing
paradigm for accelerating computation intensive EDA appli-
cations, such as gate-level fault simulation [6], fault table
computation [7], and logic simulation [8].

This paper presents FAST-GP, an RTL functional verifi-
cation framework for accelerating fault simulation with GP-
GPUs. Given a fault model, the RTL design under verification
is automatically instrumented (i.e., fault injected) and trans-
lated into C code targeting NVIDIA GPUs [9] (see Fig. 1).

The generation process translates the instrumented cycle
accurate RTL code into an equivalent instrumented cycle
accurate C code. The process guarantees that all and only
the faults detectable by the RTL simulation are detectable by

RTL IP
(VHDL, Verilog,

SystemC)

ATPG

Host CPU

Fault injected

C IP
(CUDA)

ATPG

Device GP-GPU

Fault

Coverage

(RTL)

Test

Patterns

Fault

model

Automatic

translation

Automatic

injection and

translation

Fig. 1. RTL fault simulation: from CPUs to many-core GP-GPU devices

the GP-GPU simulation. As a consequence, the fault coverage
obtained by the GP-GPU simulation still refers to the given
RTL fault model, and the test patterns generated by the GP-
GPU simulation (and that detect faults) can be automatically
translated into RTL test patterns. The C code is enriched with
an high level process scheduler to preserve, in the GP-GPU
simulation, the event-driven behavior of the RTL simulation.

The paper also shows how the SIMD characteristics of GP-
GPUs can be exploited for RTL fault simulation, by proposing
different framework configurations. Finally, the paper reports
an analysis of the experimental results to explain how such
different configurations better apply depending on the archi-
tectural characteristics of the RTL IPs.

The rest of the paper is organized as follows. Section
I-A presents the related work. An overview of the FAST-GP
architecture is presented in Section II. Section III presents the
code instrumentation. Section IV presents the main concepts
of the RTL code translation into C CUDA code. Section V
present the configurations of parallel code execution. Section
VI shows the experimental results, while section VII is devoted
to concluding remarks.

A. Related work

Many-core architectures have been applied for accelerating
computation intensive EDA applications and, in particular,
logic simulation [8], [10], [11] and gate-level fault simulation
[6], [12], [13]. In [8], the authors present an event-driven gate-
level simulator that leverages a design to exploit the benefits
of the low switching activity typical of large HW designs. In
[10], the authors present a GPU-accelerated logic simulator
optimized for large structural netlists. [11] presents a different978-3-9810801-8-6/DATE12/ c⃝2012 EDAA

parallel cycle-based logic simulation algorithm that uses And
Inverter Graphs (AIG) as design representations.

Different fault simulation techniques with GP-GPUs have
been proposed [6], [12], [13]. In [6], the framework fault sim-
ulates all the gates in a particular level of a circuit, including
good and faulty circuit simulations, for all patterns, in parallel.
Each of the fault simulation threads uses memory lookup. In
[12], the authors propose to map a fault simulation algorithm
based on the parallel-pattern single-fault propagation (PPSFP)
paradigm to many-core architectures. [13] presents a GPU-
based fault simulator for stuck-at faults which can report the
fault coverage of one to n-detection for any specified integer
n using only a single run of fault simulation. All approaches
are implemented for NVIDIA CUDA devices (GTX 8800,
GT200, and GTX9800, respectively) and achieve speed-up
around 30x compared to existing fault simulation engines
based on conventional CPUs. Although all these techniques
meaningfully apply to fault simulation of gate-level circuits,
they do not apply to RTL fault simulation. What is missing,
and what is proposed in this paper, is a technique that (i) given
a high level (i.e., RTL) fault model which can be represented
by code instrumentation, automatically injects faults, and (ii)
automatically translates the injected RTL to injected C code
targeting GP-GPU architectures (i.e., CUDA) by preserving
the fault testability in the GP-GPU simulation.

II. FAST-GP ARCHITECTURE: AN OVERVIEW

FAST-GP addresses the following main issues:
• Given any high level (i.e., RTL) fault model, the faults

should be automatically injected, and the injected RTL
code should be automatically translated into injected C
code targeting GP-GPU architectures.

• The translation technique should guarantee that all and
only the faults detectable by the RTL simulation are
detectable by the GP-GPU simulation.

• The fault coverage obtained by the GP-GPU simulation
should still refers to the given RTL fault model, and the
test patterns generated by the GP-GPU simulation (and
that detect faults) should be automatically translated into
RTL test patterns.

The main flow (illustrated in Figure 1) consists of the
following steps:

1) Given any RTL fault model that can be represented by
a code instrumentation, the RTL faults are injected into
the starting RTL model, as described in Section III.

2) The injected RTL model is translated into a correspond-
ing C description, in order to be compiled and executed
within the CUDA framework. This step is detailed in
Section IV.

3) The simulation of the injected RTL design is executed
in parallel on GPUs through the CUDA framework.
This involves selecting a configuration in order to or-
ganize parallel execution, as deepened in Section V.
The corresponding fault coverage is achieved by parallel
simulation of the C description.

III. FAULT INJECTION

The fault injection technique proposed in this paper relies
on injection functions added to the RTL code. Faults are enu-

merated, i.e., each fault is associated with a number belonging
to the range [1, N]. Fault number 0 is used as special value to
simulate the fault-free description, (i.e., no fault is activated).
During simulation, an integer-type port (i.e., fault_port)
is used to activate each fault by driving the number associated
with it. According to the adopted fault model, for each type
of object that can be injected in the description, an injection
function is defined. An example of such a function is as
follows:

i n t i n j e c t f a u l t t y p e (i n t obj , i n t s t a r t r a n g e
, i n t end range) ;

Parameter obj provides the object to be injected. Parameters
start_range and end_range define the range of values
to be driven on fault_port to activate the associated faults
injected into the object. Such functions are implemented so
that they check whether the value of fault_port belongs to
the range [start_range, end_range]. They then provide
the correct or faulty value of the target object accordingly.

The proposed methodology is independent from the spe-
cific implementation of these functions. Their complexity can
greatly vary according to the fault model being implemented.

IV. TRANSLATION FROM RTL TO C CUDA

FAST-GP generates CUDA C code similarly to [14], [15]. It
translates one injected RTL IP into one injected CUDA kernel
(called main_IP()), which can be executed by thousands of
threads in different configurations (see Section V).

There is a one-to-one mapping of each RTL concurrent
statement (i.e., processes, global action) into C procedures.
Each synchronous process spi is translated into a C proce-
dure pspi(). There is a one-to-one mapping of each RTL
sequential statement (i.e., statements inside a process) into C
sequential statements. Thus, the C procedure body contains
the set of sequential statements of spi. In the same way, each
asynchronous process api is translated into a C procedure
papi(). The procedure body contains the set of sequential
statements of api.

The RTL interface is translated into a C data structure
(io_struct). There is a one-to-one mapping of each I/O
port composing the RTL interface and the fields of such an
I/O data structure. Input test patterns are written to the fields
corresponding to input ports. The results of the IP simulations
are read from the fields corresponding to output ports.

The generated CUDA C code includes a dynamic sched-
uler.1 We adopted dynamic scheduling since it allows an
immediate proof of functional equivalence between the starting
and the generated description. Static scheduling, which will
make the C code smaller and faster, is part of our future
work. In order to preserve the event-driven behavior of the
RTL design in the C code, each RTL signal sig is translated
into two C variables (sig and sig new). This allows to
implement RTL events (due to the changing value of the
signals) and to mimic the deferred assignment of RTL signals
also in the C description. The dynamic scheduler, which is
implemented with a C procedure, calls the C procedures

1With dynamic scheduling, the set and the order of processes to wake up
is scheduled at run time at the beginning of each simulated clock cycle. In
contrast, static scheduling resolves the process scheduling before simulation.

clk

data_IN

data_en_IN

result_OUT

result_en_OUT

= main_IP(io_struct);

io_struct{

data_IN;

data_en_IN;

result_OUT;

result_en_OUT;

}

Cycle-accurate

RTL simulation

Cycle-accurate

C simulation

Fig. 2. Cycle-accurate simulation: RTL vs. C

pspi() and papi() in the same sequential order as the
corresponding RTL processes were sequentially executed by
the HDL scheduler.

The comparison of the cycle accurate execution of the C
kernel code and the RTL code is illustrated in Figure 2. For
each clock cycle, main_IP() is executed, which reads the
input test sequences (data_IN and data_en_IN in the
example) provided by the ATPG and returns the resulting out-
puts (data_OUT and data_en_OUT) for the fault testability
check through the io_struct payload. The cycle accurate
execution of the C code and the proposed structure of the I/O
guarantee an immediate translation of the ”useful” test patterns
generated in the C simulation into RTL test patterns.

A simulation run that detects a given fault using a given
test sequence has no dependencies with other simulation runs.
Therefore, fault simulation can be accelerated by executing
simulation runs in parallel along two basic dimensions (i.e.,
faults and test sequences), as explained in the next Section.

V. CONFIGURATIONS FOR PARALLEL KERNEL EXECUTION

The kernel configuration plays a pivotal role in parallelizing
the simulation, since it specifies the dimensions of the grid and
thread blocks. Five different kernel configurations have been
analyzed, each one providing advantages and drawbacks.
Configuration #1. It arranges faults and test sequences along
the two dimensions of the grid. This leads to the creation of
thread blocks consisting of only a single thread, which per-
forms the simulation of a given fault on a given input sequence.
This configuration is not affected by the problem of branch
divergence. However, it results in a significant waste of the
computational resources made available by the GPU device.
CUDA threads are partitioned for execution into 32-thread
warps, and all threads in a warp are executed concurrently.
This configuration leads to executing warps consisting of a
single thread only, instead of 32. Thus, an exceedingly large
number of cores in the GPU device will remain idle during
the execution of a warp.
Configuration #2. It creates as many thread blocks as injected
faults. Each thread block is responsible for simulating a given
fault on an array of test sequences. This configuration yields a
much higher utilization range of the computational resources
of the GPU device with respect to configuration #1. It also
allows to optimize the simulation of a fault by stopping

the simulation as soon as a test sequence detects the fault.
However, it is affected by branch divergence within the same
warp, since different test sequences may lead to different
branches taken in the control flow of the C description. It
is particularly fitting for designs with few branch conditions.
Configuration #3. It extends simulation capabilities by ar-
ranging test sequences along two dimensions, one in the
grid and one in the thread blocks. This enables simulation
of an extremely large set of parallel test sequences. The
major drawback is that it does not allow the aforementioned
optimization on fault detection. Once a test sequence detects
a fault, all threads within the same block may stop, but this
does not apply to other thread blocks simulating the same
fault on different test sequences, as CUDA does not allow
synchronization between threads in different blocks.
Configuration #4. It creates as many thread blocks as test
sequences, so that each block is responsible for simulating
a given set of test sequences on all injected faults. This
configuration is affected by branch divergence within the
same warp, since different faults are activated, thus leading to
different branches in the control flow. Such divergence pertains
only to the execution of the injection function implementing
a fault. Since all threads in the block are associated to the
same test sequence, there is no branch divergence caused by
different inputs. Configuration #4 suits designs with many
conditional instructions. This configuration cannot be applied
when the number of injected faults exceeds the constraint on
the size of a thread block.
Configuration #5. It allows for an extensive set of test
sequences and, together with #3, is the configuration that
yields the best utilization range of the HW resources provided
by the GPU device. Nevertheless, this configuration is the
most prone to branch divergence. In fact, different faults being
activated in the same warp introduce branch divergence, as
well as different test sequences being simulated in the same
warp do. Just like the previous one, this configuration cannot
be applied when the number of injected faults exceeds the
constraint on the size of a thread block.

VI. EXPERIMENTAL RESULTS

We present the results obtained by applying the proposed
framework to different RTL models. The model features are
reported in Table II. The last three columns of the Table
indicate the lines of code of the fault-free and the injected
CUDA C description, and the size of the compiled CUDA C
kernel object file, respectively.

The adopted fault model relies on the injection of mutants
that alter the design functionality. These mutants operate on
operators, assignments and constants in the description. They
mimic the introduction of design errors, thus modeling a
permanent fault.

Experiments have been performed on a 64-bit Linux server
with six 2.8 GHz CPU cores and equipped with a NVIDIA
GeForce GTX 460 device.

The left part of Table I reports the results in terms of
simulation time speedup. Column Faults lists the number of
injected faults. Column Sequences indicates the number of test
sequences. Column Cov provides the fault coverage achieved.
Columns RTL time and C serial time indicate the simulation

Model Faults Sequences Cov RTL C serial CUDA C Speed-up RTL Speed-up C serial Cfg #1 Cfg #2 Cfg #3 Cfg #4 Cfg #5
(#) (#) (%) time (s) time (s) time (s) vs CUDA C (x) vs CUDA C (x) (s) (s) (s) (s) (s)

8b10b 475 131K 94.8 567.9 63.7 1.1 516x 58x 97.15 2.6 1.1 9.3 24.3
adpcm 176 8M 98.1 12,609 617.7 8.8 1,436x 70x 290.9 8.8 8.8 11.3 10.6

dist 142 512K 91.0 8,598 2,087 9.9 867x 210x 290.0 9.9 21.9 35.8 39.7
qnt 477 1M 92.6 13,341 466.0 10.2 1,302x 45x 320.1 10.2 12.5 34.6 41.6
rle 321 4M 94.9 7,297 328.5 3.7 1,956x 88x 133.2 3.7 4.1 9.3 13.3

root 54 845K 92.2 3,364 1,503 10.8 312x 139x 614.0 12.8 10.8 48.4 43.5

TABLE I
EXPERIMENTAL RESULTS.

Model
LoC

PIs POs Gates
LoC LoC Kernel

VHDL CUDA CUDA size
ff inj (KB)

8b10b 277 9 10 503 1,006 1,986 7,653
adpcm 284 66 35 24,412 297 652 773

dist 325 130 64 40,663 726 1,052 2,891
qnt 358 24 16 17,645 311 728 1,253
rle 519 16 19 2,493 472 923 1,432

root 192 66 64 7,802 210 394 717

TABLE II
FEATURES OF RTL MODELS.

time of the SystemC RTL description and the C description
executed serially (i.e., by a single CPU), respectively. Column
CUDA C time shows the simulation time with CUDA by
employing the most efficient kernel configuration. The fol-
lowing two columns provide the speed-up between the RTL
and the CUDA C and between the C serial and the CUDA C
simulation, respectively.

The achieved speed-up with respect to the SystemC RTL
simulation ranges from two to three orders of magnitude. This
is due to the great CUDA architecture performance as well
as to the low efficiency of SystemC RTL simulation [16].
On the other hand, the speed-up remains within two orders
of magnitude with respect to the C serial simulation. The
great variety between the simulation speed-up depends on the
architectural characteristics of the models. For example, the
high amount of computation performed by dist makes it an
ideal candidate for a greater speed-up. The lower amount of
computation and granularity of operations performed (single
bit level) in 8b10b give a lower speed-up.

The right part of Table I reports the simulation time for each
kernel configuration on each model description. Configuration
#1 is consistently the slowest, since it creates too few threads,
thus exploiting only a minimal part of the available computa-
tional resources of the GPU device. Configurations #2 and #3
prove to be the most efficient. #2 achieves best results when
its optimization prevents the simulation of a large number of
test sequences as soon as a fault is detected. Conversely, #3
performs better when a large number of test sequences are
simulated before detecting a fault, thus rendering the previous
optimization ineffective. Configurations #4 and #5 follow right
behind, hampered by a greater influence of branch divergence.

The main limitation to the proposed methodology lies in
the limit to the maximum number of instructions per kernel
function, which amounts around to 2 million [17]. This is
a limit imposed by the CUDA framework which affects the
complexity of the instrumented C code representing the be-
havior of the injected design. In case of complex descriptions,
where a very high number of faults are injected, the solution
we propose is to perform partial instrumentations at a time,
in order to keep size of the kernel function within the limit.
This issue will be addressed in our future work.

VII. CONCLUDING REMARKS

In this paper we presented FAST-GP, an RTL functional
verification framework for accelerating fault simulation with
GP-GPUs. Given an RTL fault model, the framework automat-
ically injects faults in the RTL design under verification and
translates the RTL code into C code targeting NVIDIA GPUs.
The translation mechanism guarantees that the RTL fault
testability is preserved in the GP-GPU simulation, and that
the useful test patterns generated in such a parallel simulation
can be directly translated into RTL test patterns. Finally, the
paper shows and discusses different framework configurations
and the corresponding results.

REFERENCES

[1] L. Dongwoo and N. Jongwhoa, “A novel simulation fault injection
method for dependability analysis,” IEEE Design and Test of Computer,
vol. 26, no. 6, pp. 50–61, 2009.

[2] N. Bombieri, F. Fummi, and V. Guarnieri, “Accelerating RTL fault
simulation through RTL-to-TLM abstraction,” in Proc. of IEEE ETS,
2011, pp. 117–122.

[3] S. Park, L. Chen, P. K. Parvathala, S. Patil, and I. Pomeranz, “A
functional coverage metric for estimating the gate-level fault coverage
of functional tests,” in Proc. of IEEE ITC, 2006, pp. 1–10.

[4] Z. Liang, I. Ghosh, and M. Hsiao, “A framework for automatic design
validation of RTL circuits using ATPG and observability-enhanced tag
coverage,” IEEE Trans. on CAD, vol. 25, no. 11, pp. 2526–2538, 2006.

[5] P. Thaker, V. Agrawal, and M. Zaghloul, “A test evaluation technique for
VLSI circuits using register-transfer level fault modeling,” IEEE Trans.
on CAD, vol. 22, no. 8, pp. 1104–1113, 2003.

[6] K. Gulati and S. P. Khatri, “Towards acceleration of fault simulation
using graphics processing units,” in Proc. of ACM/IEEE DAC, 2008,
pp. 822–827.

[7] ——, “Fault table computation on GPUs,” J. Electron. Test., vol. 26, pp.
195–209, April 2010.

[8] D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-driven gate-level
simulation with GP-GPUs,” in Proc. of ACM/IEEE DAC, 2009, pp. 557–
562.

[9] NVIDIA, “Cuda home page,” http://www.nvidia.com/object/cuda
home new.html.

[10] D. Chatterjee, A. DeOrio, and V. Bertacco, “GCS: high-performance
gate-level simulation with GP-GPUs,” in Proc. of ACM/IEEE DATE,
2009, pp. 1332–1337.

[11] A. Sen, B. Aksanli, M. Bozkurt, and M. Mert, “Parallel cycle based logic
simulation using graphics processing units,” in Proc. of IEEE ISPDC,
2010, pp. 71–78.

[12] M. A. Kochte, M. Schaal, H.-J. Wunderlich, and C. G. Zoellin, “Efficient
fault simulation on many-core processors,” in Proc. of ACM/IEEE DAC,
2010, pp. 380–385.

[13] H. Li, D. Xu, Y. Han, K. Cheng, and X. Li, “nGFSIM: A GPU-based
fault simulator for 1-to-n detection and its applications,” in Proc. of
IEEE ITC, 2010, pp. 1–10.

[14] N. Bombieri, F. Fummi, and G. Pravadelli, “Abstraction of RTL IPs into
embedded software,” in Proc. of ACM/IEEE DAC, 2010, pp. 24–29.

[15] M. Nanjundappa, H. D. Patel, B. A. Jose, and S. K. Shukla, “SCGPSim:
a fast SystemC simulator on GPUs,” in Proc. of ACM/IEEE DAC, 2010,
pp. 149–154.

[16] W. Ecker, V. Esen, L. Schonberg, T. Steininger, M. Velten, and M. Hull,
“Impact of description languages, abstraction layer, and value represen-
tation on simulation performance,” in Proc. of ACM/IEEE DATE, 2007,
pp. 767–772.

[17] CUDA C Programming Guide, NVIDIA, http://developer.download.
nvidia.com/compute/cuda/4 0/toolkit/docs/CUDA C Programming
Guide.pdf.

