
Hybrid Simulation for Extensible Processor Cores
Jovana Jovic∗, Sergey Yakoushkin∗, Luis Murillo∗, Juan Eusse∗, Rainer Leupers∗ and Gerd Ascheid∗

∗Institute for Communication Technologies and Embedded Systems
RWTH Aachen University, Aachen, Germany

Email: jovic,yakoushkin,murillo,eusse,leupers@ice.rwth-aachen.de

Abstract—Due to their good flexibility-performance trade-off,
Application Specific Instruction-set Processors (ASIPs) have been
identified as a valuable component in modern embedded systems,
especially the extensible ones, achieving good cost-efficiency
trade-offs. Since the generation of the described hardware is
usually automated to a high extent, in order to deliver an
ASIP-based design in due time, developers are limited by the
performance of the underlying simulation techniques for software
development. On the other hand, the Hybrid Processor simulation
technology (HySim), which enables dynamic run-time switching
between native and instruction-accurate simulation, has reported
high speed-up values for some fixed architectures. This paper
presents enhanced HySim technology for extensible cores, based
on a layered simulation infrastructure. This technology has shown
a speed-up on a per-function basis of two orders of magnitude for
a realistic MIMO OFDM benchmark on a multi-core platform
with customized Xtensa cores by Tensilica.

I. INTRODUCTION

Over the last decade, the high demand for multimedia and
telecommunication products has caused a surge in interest for
embedded systems. To keep up with the pace, vendors are
seeking ever-increasing performance of such devices, that are
to be released within shrinking time windows. This puts high
expectations on productivity of designers. Application Specific
Instruction-set Processors (ASIPs) have offered a good solu-
tion to these conflicting goals, providing both efficiency of
dedicated solutions and flexibility of programmable devices.
The usual practice assumes usage of simulation models of
processors - Instruction Set Simulators (ISS) for complex
software development, whose speed consequently determines
the overall design time. There have been several proposals
on how to overcome this speed issue. One of the notable
techniques is HySim - Hybrid Processor Simulation [1], a dual
mode simulation that allows switching between ISS and native
execution at run time, thus providing to the SW developer a
trade-off between timing accuracy and speed.

So far, HySim has been successfully applied to fixed archi-
tectures (RISC and VLIW) [2]. In order to extend its range of
support to modern multimedia and wireless designs, we have
looked into ways to enable the HySim technique to cover a
conceptually different set of architectures, the customizable
ASIPs, consisting of a pre-verified base core that can be
enhanced in a number of ways to make the final design
most efficient, according to its application domain. Hence, the
HySim technology needs to account for late changes in the
processor architecture. Several things need to be addressed:
configurability - register file sizing, memory order or pres-
ence of a floating point unit; extensibility - special registers,
instructions or functional units; synchronization - any changes
on the global system view or processor state need to be visible
in both simulators. As the trend in embedded system design is
drifting towards multi-core solutions, the need for an upgrade

978-3-9810801-8-6/DATE12/ c©2012 EDAA

in the available simulation techniques is becoming even more
evident. Our proposal is the support for hybrid simulation
of extensible cores, which gives the designer the freedom of
selecting parts of simulation to be accelerated when exploring
possible implementations for the system and consequently
helps boosting his productivity.

The rest of the paper is organized as follows. Section II
looks into some of the techniques proposed for accelerating
the embedded system simulation. Section III gives an overview
of the HySim technology and commercial extensible cores.
Section IV outlines the challenges and proposed solutions
for the application of HySim to extensible cores. Section V
introduces the modifications to the instrumentation phase of
HySim, which facilitate fast simulation of custom features
of extensible cores. Section VI discusses the processor state
synchronization on the example of Tensilica processors, and
shows speed-up values on a realistic benchmark and platform,
advocating for this technique. Finally, Section VII concludes
our work and outlines some envisioned future improvements.

II. RELATED WORK

The research in the domain of fast simulation techniques
for complex embedded systems has been very lively. However,
unlike HySim, most of the techniques target fast simulation of
a known set of benchmarks for the purpose of architectural
exploration. An example is SMARTS [3], which relies on
statistical sampling in an attempt to estimate a cumulative
performance metric (most relevantly Instruction Per Cycle
(IPC)). Similarly, SimPoint [4] is a simulation framework
which allows simulation of only the representative samples of
the code. They are selected such to cover all the application
phases exactly once. Phases are determined by basic block
characterization, through profiling for execution frequency.
Finally, Muttreja et.al. [5] proposed a hybrid single-core
simulation technique for SW energy estimation, but the pro-
posed implementation is intrusive, assuming some source code
modifications for support of simulation mode switching.

III. BACKGROUND

This section gives a brief overview of the two domains
which our approach of hybrid simulation for extensible cores
tries to bring together.

A. The HySim Concept
Being at a level high enough to provide high simulation

speeds, yet capturing the features of the target architecture,
the solution proposed by Kraemer et. al. [1] is designed to
assist embedded SW simulation and debugging. The key idea
behind is partial execution of code on the host, while keeping
the simulation model updated at all times of interest. The
switching is enabled by a central control module, and is open
to user’s interaction. The rationale is that the designer will



Fig. 1: HySim infrastructure.
typically know which parts of the code do not need to be
observed in detail, and can be executed as fast as possible.
The switching between the ISS, named Target Simulator (TS)
and the Abstract Simulator (AS) is done at function borders.

One of the key premises of a simulator is consistency. In
order to keep the processor state valid in both simulators,
certain communication between them is needed, mainly for
synchronization between the registers or global variables, i.e.
updates of correct memory locations. To make it possible, a
preparatory phase has to be gone through, before the actual
simulation. The phase is called application virtualization, and
is conducted by exposing the application source code to a tool
called HySim Instrumenter. Fig. 1 outlines the components of
the HySim simulation framework and their connections.

B. Extensible Processors
In response to the restricted usability of full custom design

due to the high costs of silicon production and increasing
significance of product differentiation in the expanding embed-
ded market, a whole range of extensible processor solutions
have emerged. One of them was proposed by Tensilica. The
base technology of all Tensilica processors is the 32-bit RISC
Xtensa architecture, customizable by a large set of features.
In addition, leveraging the Verilog-based Tensilica Instruction
Extension (TIE) language, the designers can introduce new
instructions, by adding reusable high-level descriptions of
datapaths, execution units, and register files. Furthermore,
designers can specify new processor states, accessible by
TIE instructions [6]. Tensilica provides an automated way
for obtaining two flavors of simulation models, cycle- and
instruction-accurate. At the other extreme, Tensilica tools
automatically translate the TIE description into a native C
implementation, thus enabling a fast functional simulation, for
checking the functional correctness of the software relying
on the custom instructions. The HySim technology targets
bridging exactly this gap, between detailed simulation for HW
verification and purely functional simulation.

Further examples include DesignWare ARC IP [7], but as
opposed to the solution of Tensilica, integration of custom
instructions happens on a much lower level. The designer has
to write Verilog or SystemC description of the new instruc-
tion, which is integrated into the main processor pipeline.
Silicon Hive offers a template-based technology, with the
ultra-long instruction-word (ULIW) architecture as the base
[8], configurable at a finer granularity of logic blocks called
processing and storage elements (PSEs). Finally, in contrast

to ARC and Tensilica, customization of MIPS cores allows no
configurability of the base core, but only extensions by User
Defined Instructions (UDIs) which execute in parallel with the
MIPS integer pipeline [9].

IV. PROCESSOR EXTENSIBILITY AND HYSIM

This section describes the HySim infrastructure, which has
been designed to cope with the challenges of fast simulation
of extensible cores. Two aspects of the HySim functionality
can be clearly distinguished. On one hand, there must be a
central switching control logic. On the other, the presence of
a communication link between the target and the abstract sim-
ulators is needed. The major conceptual difference observed
between the two is the target-architecture independence of the
former one, as opposed to the architecture dependence of the
latter. Therefore, we propose a layered simulation infrastruc-
ture, to ease the retargetability of the HySim technology for
customizable architectures.

The architecture-independent layer, called HySim Device,
performs processing of user commands, such as loading ex-
ecutables for abstract and target simulator, mapping/unmap-
ping certain functions for fast execution and sensing when a
switching point is triggered in order to pass the control to
the abstract simulator. The architecture-dependent component
is called the HySim Wrapper. It contains the implementation
of a set of HySim API functions used for interfacing HySim
with the ISS, responsible for preparing the input for the ab-
stract simulator, i.e. reading and properly interpreting function
arguments, updating of global variable changes, writing back
the return values or fetching and resetting the return address to
proceed with ISS execution on completion of the function in
the abstract mode. These functions leverage the API functions
of the processor simulation model for accessing the registers
and memories and provide the functionality needed for the
abstract simulator. Pseudo-code for a subset of the HySim API
functions is to be found on the right-hand side of Fig. 2.

V. FUNCTION VIRTUALIZATION FOR EXTENSIBLE CORES

As outlined in Fig. 1, the HySim framework implies two
different compilation flows. The application code usually has
a subset of functions which have strictly target-dependent
behavior and are therefore not suited for native simulation,
like those including inline assembly. Therefore, we can define
two function domains, those suitable for virtualization and
those that are not. Since the HySim technology provides run-
time switching between them, the domains have to be kept
synchronized at all times. Functions in the first domain are
compiled by the unmodified toolchain of the target processor.
For the second domain, in order to ensure data consistency
between the ISS and the host, HySim assumes a two-level
approach: application transformation at compile time and
interfacing to the ISS through the HySim Wrapper. The trans-
formation process is called virtualization and is performed
by the HySim Instrumenter. The Instrumenter virtualizes all
suitable functions at compile-time, but this only means there is
a possibility of fast execution of a certain function. The actual
mapping of functions to abstract or target mode is defined
through user-interface.

The HySim Instrumenter relies on the Low Level Virtual
Machine (LLVM) compiler [10], whose modular design al-
lows easy plugging of external IR(intermediate representation)
transformations. The major advantage of the instrumentation
on IR level lies in drastic reduction in instrumentation over-
head, by avoiding unnecessary memory accesses, which affect



Fig. 2: HySim Instrumenter.

simulation performance greatly. For example, constant prop-
agation and dead code elimination remove redundant HySim
API calls for memory reads and writes. Function virtualization
for HySim comprises several passes, which are sketched in
Fig. 2. During virtualization the spots where synchronization
is needed are detected, and links to the matching HySim API
functions are inserted. The actual realization of the resource
updates is performed by the HySim Wrapper.

A major challenge for the virtualization is the emulation
of the functionality imposed by the processor extensions. The
custom instructions are usually exposed to the C language as
intrinsic functions to the target compiler. In order to simulate
them natively, a matching implementation of intrinsics is also
needed for the host compiler. Xtensa tools can automatically
generate the so called c-stubs, a C implementation of the TIE
intrinsics. If the toolsuite does not provide them automatically,
the emulation functions have to be written manually. In order
to illustrate the virtualization process of code which uses
custom extensions, TIE code of a complex addition imple-

operation ADD_SCPLX32 { in AR op2_real, in AR op2_imag}
{inout op1_real, inout op1_imag}

{
//Declare wires to hold results
wire [32:0] sum_real, sum_imag;
//Do the actual addition
assign sum_real = TIEadd(op1_real, op2_real, 1’b0);
assign sum_imag = TIEadd(op1_imag, op2_imag, 1’b0);
//Detect overflow, truncate accordingly and assign the

output
assign op1_real =

((op1_real[31])&(op2_real[31])&(˜sum_real[31]))?
{1’b1,sum_real[31:1]} :
((˜op1_real[31])&(˜op2_real[31])&(sum_real[31])) ?

{1’b0,sum_real[31:1]} :
sum_real[31:0];

assign op1_imag = ...
}

Listing 1: TIE language implementation of complex addition
operation.

Fig. 3: Virtualization of custom extensions.

mentation is used, which can be found in Listing 1. In this
example custom registers (op1_real and op1_imag) were
used to pass one of the complex arguments and store the result.
The pseudo code of the original application fragment, C-stub
for the complex addition operation and the final virtualized
function are outlined in Fig. 3. Processor resources can be
separately modeled in abstract and in target mode. In abstract
mode, emulation functions model processor state as a global
variable. Since an equivalent variable does not exist in target
mode, as it is an actual physical resource in the ISS, HySim
does not replace this variable by the link to the target memory.
This difference can be observed in the example: X is a global
variable with a link to the target memory, hence in order
to access it, the Instrumenter always generates appropriate
HySim API calls; variable op2_imag exists only as a field
in the structure used for the emulation of custom registers.
As such, it will be treated as a private variable in the abstract
simulator, therefore no synchronization with the ISS is needed.

VI. CASE STUDY

The HySim for extensible processor cores has been evalu-
ated on the example of Xtensa processor cores of Tensilica.
This section presents several interesting characteristics of this
implementation and the obtained speed-up results.

A. Processor State Synchronization for Xtensa Cores
Since control switching points are always at function bor-

ders, the architectural properties of interest for HySim are
those that affect a C function call. All Xtensa-based processors
support feature called Windowed Registers. This option enables
general purpose register reuse, and hence reduces code size
and increases performance due to a reduced number of register
saves and restores. The register window is rotated on a
subroutine call, by an index increment defined by the type of
call instruction. This means that the location of the function
arguments and return value has to be computed accordingly
in the HySim Wrapper. If the word count exceeds 6, the value
must be popped from the stack. Moreover, a set of HySim API
functions for memory interfacing is foreseen for manipulation
of the global variables and local pointers. For each data type
there is a separate API function, so that the bits are interpreted
properly and data of the correct size is read or written.

By using the TIE language, the designer can define addi-
tional register files and use them as operands of TIE instruc-
tions. The TIE compiler automatically generates a new data
type. This data type has can be used in C/C++ programs as the



type of variables that reside in the register file. On top of that,
further data types, associated with the same custom register
file, can be defined. This feature is very common in data
processing, for definition of domain specific data types, like
24-bits for audio applications. If a function in the application
code has parameters of a custom type, the HySim Wrapper
has to retrieve them from a different location (standard types
go to the basic register file). The TIE register file name can
be retrieved during instrumentation by parsing the TIE file.

B. Experimental Results
This section presents results of HySim for extensible cores

deployed on MIMO-OFDM transceiver application. Block
diagrams representing the transmitter and receiver application
stages can be seen in Fig. 4. The boxes represent tasks,
which are communicating through buffers. In order to achieve
realistic speed-up measurements, the experimental framework
was based on a full system simulation. To that end we used
the Synopsys Platform Architect for building a clustered multi-
core platfrom, comprising one control core which schedules
tasks between two further DSP cores, used for offloading the
intensive computations. The baseline processor was Xtensa
XRC D2MR. Experiments were conducted on a PC with In-
tel(R) Core2 Quad CPU Q6700 processor, running at 2.66GHz
with 4096 KB of cache and 16 GB of RAM memory.

The software stack of the described application comprises
several layers. The bottom layer provides low-level drivers
through Xtensa Hardware Abstraction Layer, managed by
intermediate one comprising the Xtensa operating system
(xtos) running on the control core and a simplified in-house
OS running on the DSPs, responsible for task scheduling
and inter-core communication. Finally, the top application
layer is reserved for computational task execution in case
of DSPs, and global interrupt-based scheduling and traffic
management in case of the control core. Analysis of the
described application has shown that significant speed-up gains
can be obtained by accelerating the FFT/IFFT calculations,
that perform complex arithmetic operations. Therefore, those
operations were described by the TIE language.

Irrespective of the simulation technology, the maximal speed
is limited by the percentage of accelerated hot-spots. The
FFT/IFFT computations consumed approximately one third
of the total execution time. The total application speed-up
measured was up to 7 times. In our experiments we measured
maximal achievable simulation speed-up stemming from the
custom blocks. The baseline is pure instruction-accurate ISS
simulation. The speed-up number is given in two flavors: for
the basic and customized implementation of the OFDM appli-
cation with TIE instructions. The observed speed-up values are
listed in Table I. The simulation times and speed-up numbers
are given on a function basis, and include also the switching

(a) Transmitter application block diagram.

(b) Receiver application block diagram.

Fig. 4: OFDM modulation phases.

TABLE I: Simulation speed up results
Function ISS Time [s] HySim time [s] Speed up [x]

FFT 2.584 0.024 107.67
IFFT 2.665 0.023 115.87

FFT-TIE 0.485 0.0012 404.2
IFFT-TIE 0.573 0.0013 440.8

overhead of the HySim control. We observed a speed-up of
two orders of magnitude when applying HySim technology
for extensible cores. A point worth noticing is the difference
in the native execution time of the FFT/IFFT functions in base
and customized case. The intrinsics generated by Tensilica
tools are more efficient than the original implementation and
therefore yield an even higher speed-up with HySim. When
evaluating the HySim speed-up values it is worth emphasizing
that Tensilica’s simulation models use advanced techniques
like just-in-time compiled-code simulation [11], hence the
baseline simulator is in effect already optimized.

VII. CONCLUSION

In this paper we have presented a hybrid simulation frame-
work for extensible cores, which offers the SW developers the
possibility of run-time accuracy-speed trade-off. The proposed
modifications in the HySim Instrumenter enable fast simula-
tion of custom instructions, and, in the case of Xtensa cores,
without any additional effort from the designer required. The
speed-up values achieved for the base technology are reaching
two orders of magnitude, on per function scale. As a next step,
it would be interesting to look into support for some more
advanced features of extensible processors, such as extensions
for VLIW architectures, and a form of automatic generation of
HySim Wrappers based on a description of custom features.

ACKNOWLEDGMENT

This work has been supported by the UMIC Research Cen-
ter and Huawei Technologies. The authors would especially
like to thank Yao Zhiliang and Guo Can from Huawei for the
valuable discussions that guided this project.

REFERENCES

[1] S. Kraemer, L. Gao, J. Weinstock, R. Leupers, G. Ascheid, and H. Meyr,
“HySim: a fast simulation framework for embedded software develop-
ment,” in Proc. of CODES+ISSS, 2007.

[2] L. Gao, S. Kraemer, R. Leupers, G. Ascheid, and H. Meyr, “A fast and
generic hybrid simulation approach using C virtual machine,” in Proc.
of CASES, 2007.

[3] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Statistical
sampling of microarchitecture simulation,” ACM Trans. Model. Comput.
Simul., vol. 16, pp. 197–224, July 2006.

[4] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proc. of ASPLOS-X ’02.

[5] A. Muttreja, A. Raghunathan, S. Ravi, and N. Jha, “Hybrid simulation
for energy estimation of embedded software,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 26, no. 10,
pp. 1843 –1854, oct. 2007.

[6] R. Gonzalez, “Xtensa: a configurable and extensible processor,” Micro,
IEEE, vol. 20, no. 2, pp. 60 –70, mar/apr 2000.

[7] DesignWare ARC Configurable Cores. [Online]. Available:
http://www.synopsys.com/IP/ConfigurableCores

[8] T. Halfhill, “Silicon Hive breaks out,” Microprocessor Report, Dec. ’03.
[9] Extensible MIPS cores. [Online]. Available:

http://www.mips.com/products/cores/32-64-bit-cores/pro-series-family
[10] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation,” in Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

[11] G. Martin, N. Nedeljkovic, and D. Heine, “Configurable, extensible pro-
cessor system simulation,” in Processor and System-on-Chip Simulation,
R. Leupers and O. Temam, Eds. Springer US, 2010, pp. 293–308.


