
Custom On-Chip Sensors for Post-Silicon Failing Path
Isolation in the Presence of Process Variations

Min Li, Azadeh Davoodi, and Lin Xie∗

Department of Electrical and Computer Engineering
University of Wisconsin at Madison, WI 53706 USA
∗Cadence Design Systems, San Jose, CA 95134 USA

Email: {adavoodi}@wisc.edu

Abstract—This work offers a framework for predicting the delays
of individual design paths at the post-silicon stage which is applicable
to post-silicon validation and delay characterization. The prediction
challenge is mainly due to limited access for direct delay measurement
on the design paths after fabrication, combined with the high degree
of variability in the process and environmental factors. Our framework
is based on using on-chip delay sensors to improve timing prediction.
Given a placed netlist at the pre-silicon stage, an optimization procedure
is described which automatically generates the sensors subject to an area
budget and available whitespace on the layout, in the presence of process
variations. Each sensor is then generated as a sequence of logic gates
with an approximate location on the layout at the pre-silicon stage. The
on-chip sensor delay is then measured to predict the delays of individual
design paths with less pessimism. In our experiments, we show that
custom on-chip sensors can significantly increase the rate of predicting
if a specified set of paths are failing their timing requirements.

I. INTRODUCTION

Timing prediction at the post-silicon stage is required for tasks
such as circuit adaptation [8], manufacturing test [4], characterization
of delay models [5], and isolation and diagnosis of failing paths
during post-silicon validation [9], [11]. It is a challenging and time-
consuming task due to limited access to the layout after fabrication.
The increase in within-die and die-to-die process variations as well
as environmental factors also make timing prediction inaccurate. This
inaccuracy is higher when predicting at a finer level of granularity,
i.e., delays of individual paths in the design as opposed to the circuit
timing for one manufactured die.

Previous works have shown that post-silicon measurements can
significantly help reduce the variance in predicting the circuit timing
in the presence of process variations. For example, adding generic
on-chip test structures such as ring-oscillators as well as custom
(referred to as representative) paths have been proposed in [7] and
[8], respectively. In [4] custom test structures are added to the scribe
lines on the wafer to capture die-to-die and wafer-level variations.
The main challenges that are not addressed by the above works for a
comprehensive timing prediction framework are extending the timing
prediction for individual paths and accounting for within-die process
variations.

Timing prediction of individual design paths is an important step
during post-silicon validation [1], [9], since it helps to predict/isolate
the failing paths which violate the timing requirement. However,
failing path isolation is a challenging task; at the post-silicon stage,
the failing paths may not be among the critical paths identified based
on pre-silicon delay models and timing analysis [5].

A number of previous works have focused on path-level timing
prediction at the post-silicon stage in order to isolate the failing paths.

This research was supported by National Science Foundation under Grant
1053496.

(Pre-Silicon Stage) (Post-Silicon Stage)

Custom sensors are generated
by identifying “similar”

sequences of logic gates which
correlate in their delays.

The delay of each sensor is
measured to predict the

changes in the delays of its
similar sequences for a less
pessimistic timing prediction.

On-chip delay
measurement

Fig. 1. Sensor-assisted timing prediction.

The approaches include statistical learning from a set of previously
identified post-silicon failures [3], clock shrinkage to narrow down
the location and cycle of a failure after its observation [6], and
bound-based isolation using parametric static timing analysis based
on post-silicon measurements [9]. Some of these techniques rely
on observing existing timing failures in order to predict the future
ones [3]. Consequently, they require identifying possibly-many failure
cases to collect sufficient number of samples for learning which can
become time-consuming and expensive if it has to be repeated for
each design. On the other hand, the approach in [9] relies on post-
silicon measurements prior to identifying the failures but it does not
elaborate which components on the die should be measured. It also
does not consider within-die process variations. Another previous
work [11] focuses on identifying and measuring representative design
paths to predict the delays of a larger set of potentially-failing paths.
However, designation of potentially-failing paths may not be accurate
at the design stage [5]. In addition, the approach in [11] only handles
a small number of paths because and its runtime complexity is
proportional to the number of designated paths.

This work proposes a framework which generates custom on-chip
sensors for a design at the pre-silicon stage. It then uses post-silicon
delay measurements on these sensors for timing prediction, as shown
in Figure 1. Our framework captures within-die process variations
while allowing timing prediction of arbitrarily-specified paths and
isolating the failing ones with less pessimism. Compared to the path-
based framework of [11], it operates on the entire circuit.

The main focus in our framework is design of on-chip sensors.
First, at the post-placement stage, the layout is partitioned into
several regions. For a given netlist which falls within a region,
the optimization procedure generates custom sensors in that region
in the presence of process variations. This is subject to an area
budget specified by the user and available white space in the region.
Each sensor is a sequence of logic gates and is generated to highly
correlate in its delay with other “similar” sequences in the netlist. Two
sequences are represented by the same sensor, if their sensitivities978-3-9810801-8-6/DATE12/ c⃝2012 EDAA

to process variations are less than a small error tolerance which
define the “similarity constraints” during optimization. Two similar
sequences could be made of different logic gates but the idea is
that the change in the delays of the two sequences are almost
identical. Therefore, measuring the delay of a sensor at the post-
silicon stage allows making timing prediction for all the sequences
which are represented by it. For example in Figure 1 (left), the path
shown in bold contains two sequences which highly correlate in their
delays with an identified sensor. Using post-silicon measurements, the
uncertainty in the path delay is reduced to only those portions which
are not covered by the sensor.

Our optimization framework forms the sequences such that the cov-
erage of the timing graph corresponding to the netlist is maximized.
Each edge in the timing graph can also be assigned an arbitrary
weight, reflecting its criticality. The optimization is independently
solved for each region which makes the framework scalable with
the design size. Within-die process variations are accounted for: The
gates of different regions have a lower correlation in their delays than
the gates within a region. Furthermore, the gates within a region are
not assumed to be fully correlated.

There are many options for on-chip delay measurement (of ei-
ther design paths or sensors) such as [5], [10]. For a choice of
measurement infrastructure, an associated measurement error can be
considered in our framework during post-silicon analysis. However,
design and integration of the measurement infrastructure is beyond
the scope of this paper.

The contributions of this work are summarized below:
• A scalable optimization framework which generates custom on-

chip sensors for a placed netlist subject to an area budget and
available white space;

• Post-silicon sensor-assisted prediction of failing paths consider-
ing within-die and die-to-die process variations.

In our experiments we use Monte Carlo simulation to model post-
silicon process variations of many dies in 45nm technology with up
to 682 independent random variables. For the ISCAS89 circuits and
a budget of 15% of the core area, we show sensor-assisted prediction
increases the rate of determining if a set of paths identified to be
statistically-critical at the design stage are failing post-silicon. This
is compared to the case when the prediction is made without using the
sensors. To show the effectiveness of our sensor generation, we also
compare to an alternative procedure which generates custom sensors
by matching the netlist against a set of pre-specified logic sequences
and ignores within-die variations.

In the remainder of the presentation, Section II gives an overview
of our framework. The details of our sensor generation procedure are
presented in Section III. Simulation results are presented in Section
IV, followed by conclusions.

II. OVERVIEW OF THE FRAMEWORK

For a given netlist at the post-placement stage, first, rectangular
regions are created on the layout. Smaller-sized and local netlists
are then defined based on the regions and an optimization procedure
is applied to find custom sensors for each case independently. For
example, as shown in Figure 2, each region may contain a few custom
sensors based on the timing characteristics of the local netlist and
of process variations. Also, it is possible that some regions do not
contain any sensors because no white space is available or because
the area limit has been reached. Two sensors at two different regions
may be made of identical gates and interconnects, however they
are considered different due to different process variations in their
corresponding regions.

Fig. 2. Identifying sensor(s) at each region allows capturing delay sensitivity
to within-die process variations.

To form the rectangular regions, we apply recursive bi-partitioning
of the layout in horizontal and vertical directions. At each step, a
region is partitioned into two smaller ones such that the number
of cells are as close as possible among them. The bi-partitioning
of a region terminates when the number of cells within a region is
less than 100 and when each region contains at least 50 nets. This
termination condition is defined regardless of the benchmark instance,
based on our experimental observations. The goal is to form a small-
sized yet meaningful optimization problem and ensure a relatively
fast solution procedure while still capturing enough information about
the local netlist. Furthermore, the gates inside the region may have
different sensitivities to process variations and may not be fully
correlated. However, the small size of the region allows modeling
the correlation among these gates with fewer number of random
variables which also contributes to reducing the size of the regional
optimization problem as we explain later.

Boundary cases are properly handled. After the partitioning is
terminated, the following procedure is applied to extract a netlist
for a region: The cells in the netlist are those which fully or partially
fall inside the region, as well as those that fall outside the region but
connect to the interior ones directly. All the nets that connect these
cells to each other are also included. This strategy ensures each cell
in the original netlist maps to at least one region. It is possible that
the cells which are close to the boundary of multiple regions map to
all of them. So a boundary cell may be included in the optimization
problem of more than one region and thus be captured by more than
one sensor in the end for a more accurate timing prediction. The local
netlist in each region is then used to solve smaller-sized problems
independently and achieve a scalable optimization framework.

III. SENSOR GENERATION PROCEDURE

In this section we explain an optimization procedure to generate
custom sensors for a netlist. All referrals to netlist reflect the local
netlist corresponding to a single region.

A. Problem Statement

We model a given netlist as a directed acyclic timing graph
G = (V, E). The gates are modeled by the nodes and their
interconnections are modeled by directed edges. We define a sequence
to be the nodes identified by a set of consecutive directed edges in
the graph. E.g., a sequence may be portion of a combinational path.
Our optimization is formulated to identify “similar” sequences which
have almost-identical sensitivities to process variations and thus are
highly correlated in their variation-aware delay expressions. These
sequences may have different delays but their sensitivities to delay
variations are similar. The objective is to maximize the coverage of
the edges in the timing graph, assuming each edge is associated with
a weight reflecting its criticality. Each group of similar sequences

(a)

S1

S2

S3

T1

T2

T3

(b)

v2

v1

v3
v4

v2

v1

v3
v4

e1

e3

e2

S1

S2

S3

T1

T2

T3

(c)

v2

v3
v4

e4

e1

e2

e3

e6

e7e8

e9

e5

e10

e11

v1

Fig. 3. (a) The graph corresponding to the original (local) netlist (b) The extended graph after modification (c) The simplified version of (b) for illustrations

is represented by one sensor which will get added to a region on
the layout. The optimization further constrains the sensor area to be
the minimum of a provided budget and the available white space of
the corresponding region. Next, we provide an Integer Programming
formulation of this optimization problem.

B. Notations and Variable Definitions

For each edge ei we associate an area Ae
i which is the area of the

gate at the starting node of the edge given by s(ei). In the presence
of process variations, we assume X to be a column vector. Each
element in X lies in the category of die-to-die, within-die and random
variations in physical parameters. We also assume that all elements in
X are independent from each other and have mean 0 and variance 1
(after decorrelation). Similar to [2], we describe the variation-aware
delay of edge ei (representing delay of s(ei) and its interconnect)
using the following linear expression:

Dei = µei + aT
eiX (1)

where µei is the nominal delay of ei and aei is its sensitivity vector
corresponding to X after characterization. Note, the above expression
already accounts for interconnect delay variations and the delay of an
edge already accounts for factors such as loading. This is because the
edge represents the path connecting the output of a gate to another.

We define a sequence si as a set of consecutive directed edges in
G. Our goal is to form sequences to maximize the coverage of edges
ei ∈ E , when edge ei is associated with a weight wei reflecting
its criticality which is provided as a parameter. To simplify the
problem, we assume an upper bound, denoted by NS , on the number
of sequences that can be formed. (We later define NS optimization
variables which can reflect if sequence sj is formed). While forming
sequences, the optimization framework simultaneously groups “sim-
ilar” sequences to be represented by one sensor. We refer to sensor
k by fk and assume the number of formed sensors is upper-bounded
by parameter Nf . In our framework, we set NS = 10 and Nf = 5
based on empirical observations.

We define the following optimization variables (assuming i =
1, 2, . . . , |E|; j = 1, 2, . . . , NS ; k = 1, 2, . . . , Nf):

• Let binary variable me:s
i,j be equal to 1 if edge ei is covered by

sequence sj , and 0 otherwise.
• Let binary variable ms:f

j,k be equal to 1 if sequence sj is
represented by sensor fk, and 0 otherwise.

• Let binary variable yj be equal to 1 if sequence sj is formed
and 0 otherwise.

• Let As
j and Af

k denote the areas of sequence sj , and of sensor
fk respectively. Also, let Ds

j denote the variation-aware delay
expression of sequence sj .

Using these variables, the constraints ensure that if an edge is covered,
then it is included in exactly one sequence which is ensured to
be made of consecutive edges. The sequence is also ensured to be
represented by exactly one sensor.

To describe such constraints, it is helpful to consider the following
modification of the original graph: we augment G by additional
vertices and edges as shown in Figure 3. We first add NS source
vertices S1, S2, . . . , SNS and NS sink vertices T1, T2, . . . , TNS . For
example, in Figure 3 we assume NS = 3. From each source node
Si ∈ S, we add |E| edges connected to all s(ej) where ej ∈ E ,
where s(ej) are the starting vertices of ej ∈ E . Similarly, for each
sink node Ti ∈ T , we add |E| edges connecting from all t(ej), which
are the ending vertices of edge ej ∈ E .

The above graph modification facilitates our problem definition:
each sequence sj can be described as a “single” path in the modified
graph between nodes Sj and Tj which includes a subset of edges in
the original graph. Next, we describe the objective expression and
different types of constraints.

C. Objective Expression

We maximize an objective expression which is a weighted summa-
tion of the edges that will be covered by the sequences. This objective
is given by

max
∑NS

j=1

∑|E|
i=1 weim

e:s
i,j (2)

If edge ei is covered by sequence sj , then me:s
ij = 1 and edge ei

will be contributing to the objective with the constant weight wei .
If wei = 1 then the objective is to maximize the coverage of all
edges in the graph. In this work, we also consider the case when
an edge weight corresponds to its statistical criticality, reflecting the
likelihood that it belongs to a path which fails the timing constraint
post-silicon. We denote the statistical criticality of edge ei by cei as
[12]:

cei , Pr(ATs(ei) +Dei +RATt(ei) > T0), (3)

where ATvk is arrival time (RATvk is the required arrival time), and
reflects the maximum delay from any primary input (output) to node
vk ∈ V . Both ATvk and RATvk are random variables. In [12] the
authors show how these quantities and the criticality probability can
be computed efficiently as a pre-processing step. In this work we
study two cases of wei = 1 and wei = cei .

D. Constraints

We identify and discuss the following types of constraints:
• Sequence constraints: each sequence should be made of con-

secutive edges, and each edge can be covered by at most one
sequence;

• Similarity constraints: the sequences which are correlated
in their variation-aware delay expressions should be grouped
together and represented by one sensor;

• Area constraint: within a region, the summation of the sensor
areas is bounded by the minimum of a specified area budget and
the available whitespace.

1) Sequence Constraints: The sequence forming constraints are
listed below:

NS∑
j=1

me:s
i,j ≤ 1, ∀i = 1, . . . , |E| (4)

yj =
∑

i|ei∈E′,s(ei)=Sj

me:s
i,j , ∀j = 1, . . . , NS (5)

yj =
∑

i|ei∈E′,t(ei)=Tj

me:s
i,j , ∀j = 1, . . . , NS (6)

∑
i1|ei1∈E′,t(ei)=vn

me:s
i1,j =

∑
i2|ei2∈E′,s(ei)=vn

me:s
i2,j (7)

∀vn ∈ V,∀j = 1, . . . , NS

yj =

Nf∑
k=1

ms:f
j,k , ∀j = 1, . . . , NS (8)

We explain the above constraints using a simple example.
Example: Here, we take Figure 3(b) as an example and assume NS =
Nf = 3, which are equal to |E|. For better illustration, we simplify
Figure 3(b) to (c) by removing additional edges.

For edge e3, Equation 4 guarantees that this edge can only belong
to at most one sequence. Specifically, we have

me:s
3,1 +me:s

3,2 +me:s
3,3 ≤ 1. (9)

Let us consider sequence s3. If y3 = 0, then s3 is not formed.
Otherwise, s3 can be formed by some edges in E . For s3, we specify
constraints in Equations 5, 6, 8 as follows:

y3 = me:s
4,3 +me:s

5,3 +me:s
6,3, (10)

y3 = me:s
7,3 +me:s

8,3 +me:s
9,3, (11)

y3 = ms:f
3,1 +ms:f

3,2 +ms:f
3,3 , (12)

To explain Equation 7, we only consider v4 ∈ V due to lack of space
but similar derivations can be obtained for the other nodes in V . In
this case, we can have

me:s
3,3 = me:s

10,3 +me:s
11,3 +me:s

7,3 (13)

Illustrations: Now, we specifically explain the constraints in Equa-
tions 4-7. Equation 4 is for each edge ei ∈ E . It ensures that each
edge can only belong to at most one sequence. Equation 5 is for each
node Sj ∈ E ′ in the modified graph. For node Sj (considered to be
the start point of sequence sj), we consider all outgoing edges ei.
(See Equation 10 for s3). If sequence sj is formed, then yj = 1 and
exactly one of the binary variables me:s

i,j corresponding to one of the
outgoing edges of Sj will be equal to 1. Equation 6 is written for each
node Tj ∈ E ′ in the modified graph. For Tj , we consider all incoming
edges ei. (See Equation 11 for s3). If sequence sj is formed, then
yj = 1 and exactly one of the binary variables me:s

i,j corresponding
to one of the incoming edges of Tj will be 1. Equation 7 guarantees
that sequence sj will form by consecutive edges ei1 and ei2 which
share node vn∈V . (See Equation 13 for node v4 and sequence s3).

Equations 5-7 can guarantee that sequence sj is formed by a set
of edges initiating from a node Sj and ending at node Tj in the
modified graph while covering a subset of consecutive edges in the
original graph. If a sequence sj is not formed, all me:s

i,j variables and
yj are equal to 0.

Equation 8 helps group similar sequences and will be explained
more with the constraints in the next subsection.

2) Similarity Constraints: Our goal is to group “similar” se-
quences to be represented by one sensor. Specifically, in the presence
of process variations, two sequences are similar if they have a similar
sensitivities in their variation-aware delay expression. This implies
that the changes in the delays of the two sequences (and not their
delays) are similar. So the similar sequences can be represented by
one sensor and the sensor can predict the delays of the sequences.

Let us first express the delay of a sequence sj as the summation
of edge delays Dei (given in Equation 1) corresponding to edges ei
which are included in sequence sj :

Dsj =

|E|∑
i=1

me:s
i,jDei =

|E|∑
i=1

(
me:s

i,j (µei + aT
eiX)

)
=

|E|∑
i=1

me:s
i,jµei +

|E|∑
i=1

me:s
i,j a

T
eiX (14)

For any two sequences sj1 and sj2 , we can express their variation-
aware delay difference as

Dsj1
−Dsj2

=

|E|∑
i=1

(me:s
i,j1 −me:s

i,j2)µei

+

|E|∑
i=1

(me:s
i,j1 −me:s

i,j2)a
T
eiX (15)

where the first term on its right-hand side (RHS) denotes the differ-
ence in nominal values and the second term represents the difference
resulted from process variations. Once the sequence formation is
determined (i.e., the values of me:s

i,j1 and me:s
i,j2 are known), we

can directly compute the first term on the RHS of Equation 15.
Therefore, in order to represent the sequences sj1 and sj2 by one
sensor, we only need to pay attention to the second term on the
RHS of Equation 15 which we enforce by introducing the following
similarity (or sequence grouping) constraint:∥∥∥∥∥∥

|E|∑
i=1

(me:s
i,j1 −me:s

i,j2)a
T
ei

∥∥∥∥∥∥
1

≤ ϵ ·ms:f
j1,k

ms:f
j2,k

(16)

where ϵ is a pre-specified control parameter (as we discuss in our
simulations) and ∥t∥1 denotes L1 norm of vector t.

The constraint in Equation 16 is written for each combination of
sequences and sensors (∀j1 = 1, . . . , NS −1, ∀j2 = j1+1, . . . , NS ,
k = 1, . . . , Nf). It represents that if the delay difference between
Dsj1

and Dsj2
caused by process variation is negligible, we force

ms:e
j1,k

and ms:e
j1,k

to be equal to 1 simultaneously. Otherwise, at least
one of these two binary variables should be equal to 0. Note that the
total number of constraints here is O(N2

SNf).
Linearization: The constraint in Equation 16 is nonlinear. Here, we
discuss its linearization without approximations.

• Since ms:f
j1,k

and ms:f
j1,k

are binary variables, we can linearize
the RHS of Equation 16 by replacing ms:f

j1,k
ms:f

j2,k
using new

auxiliary binary variable z and adding constraints z ≤ ms:f
j1,k

and z ≤ ms:f
j1,k

.
• For the left hand side of Equation 16, we can introduce |X|

auxiliary variables and |X| constraints to linearize it without
approximations. We skip it due to the simplicity and lack of
space.

In addition, Eq. 8 guarantees that if sequence sj is formed (yj = 1),
then sj is represented by exactly one sensor.

TABLE I
RESULTS FROM OUR OPTIMIZATION FRAMEWORK

Bench #E #Regions #Sensors % Area Ave. T(min)

S1488 1277 33 54 13.4 0.26
S1494 1287 34 45 10.2 0.05
S5378 3130 123 149 10.4 0.49
S9234 2853 113 42 3.4 0.36
S13207 3433 94 84 4.6 0.53
S15850 1572 56 43 4.9 0.42
S35932 25622 1014 1457 12.0 2.79
S38417 24848 981 928 9.1 4.07
S38584 20996 548 445 5.6 0.72

3) Area Constraint: Each sensor is implemented on-chip as a
sequence of gates within a specific region. The logical and layout
implementation of the sensor which determines its area is identical
to one of the sequences which is covered by it. Once an area is
computed for each sensor, then the summation of the sensor areas
should also be bounded by an area threshold Ath in each region.
For example, we set this threshold to be minimum of a 15% budget
of the core area as well as the available whitespace in the region
in this work. The area budget allows controlling the whitespace for
other purposes such as adding spare cells as well as the overhead for
possibly adding on-chip delay measurement infrastructure.

More specifically, given constant area of edge Ae
i , we can express

the area constraints as follows:

As
j =

|E|∑
i=1

me:s
i,jA

e
i ∀j = 1, . . . , NS (17)

Af
k ≥ ms:f

j,kA
s
j ∀k = 1, . . . , Nf ,∀j = 1, . . . , NS (18)

NS∑
k=1

Af
k ≤ Ath (19)

Equation 17 expresses the area of sequence sj in terms of the areas of
the edges that are included in it. Equation 18 computes the area of the
sensor as the maximum area of the sequences which are represented
by it. Equation 19 computes the total sensor areas to be less than the
given area threshold Ath. We observe that Equation 18 is nonlinear
since non-integer variable As

j is multiplied by binary variable ms:f
j,k .

We use similar approaches illustrated in Section III-D2 to linearize
it without approximations.

Overall, the IP is described by objective (Eq 2), sequence forming
constraints (Eqs 4-7), similarity constraints (Eqs 8 and 16), and area
constraints (Eqs 17-19).

Each instance of the described optimization formulation will be
small in size and can be solved fast because of two reasons: 1) the
small size of netlist as well as controlling the number of sensors
and sequences inside each region; 2) small number of sensitivity
parameters in Equation 16 arising from the decrease in the number
of independent variations in a local neighborhood on the layout. We
report a small average runtime in our simulations to solve each region.

IV. SIMULATION RESULTS

We experimented with the ISCAS89 benchmark circuits. Each
instance is synthesized using a 90nm TSMC technology library and
Synopsys Design Compiler for minimum area under a stringent
timing constraint to ensure having many critical paths. The timing
constraint is set to the case when process variations are at their
nominal values. Each benchmark is placed in the timing-driven mode
using Cadence.

To model post-silicon process variations, we assume variations in
the Leff and Vt0 parameters of each gate, with a Gaussian distribution
and standard deviations of 10% of their mean values. To capture
spatial correlations, we use the multi-level hierarchical model of [2].
The gates in the same region or in neighboring regions will share
all or some of the random variables in their delay expressions and
thus will be correlated to each other. This results in 42 variables
for smaller benchmarks (S1488 to S9234) for a 3-level hierarchical
model, and 682 variables for the larger benchmarks for a 5-level
hierarchical model which is consistent with [8].

Using the above setup, we implemented our optimization frame-
work using C++ and used CPLEX 12.0 to solve the formulation for
each region. We set the parameter ϵ in Equation 16 to be 0.05 of
the average gate delay in our standard cell library. We first consider
the case when the edge weight wei = cei , reflecting its statistical
criticality for each edge ei ∈ E . The area budget is set to 15% of the
core area.

Table I shows the results in this case. For each benchmark we report
the number of edges (#E), number of formed regions (#Regions), total
number of sensors (#Sensors), sensor area usage (% Area) which
could be completely within the available whitespace, and average
runtime to solve a region. The runtime numbers are generated on a
machine with a 2.8GHz Intel CPU and 12GB of memory. The average
runtimes are found by dividing the total runtime by the number of
partitions. This could be an indication of the wall time in the presence
of more processing elements. The average number of sensors per
region ranges between 0.09 and 2.02 among the benchmarks. In some
regions no sensors could be inserted due to lack of space. In other
regions the number of sensors was higher than this reported average.

Using these generated sensors, we then verify the post-silicon
failure of a set of statistically-critical paths which are extracted
following the procedure in [12]. The number of extracted paths is
given in Table II (#Paths). We define a “golden model” capturing
post-silicon behavior by assuming the instance of parameter variation
is known and experiment by analyzing many such instances generated
using Monte Carlo (MC) simulation with 50K samples reflecting
various post-silicon cases. For one post-silicon case, we assume delay
of a sensor is measured by plugging in the MC sample in its variation-
aware delay expression, given by Eq. 1.

For each considered path pi, we replace the delays of all the
correlated sequences represented by one (or more) sensor(s) on pi
with the post-silicon sensor delays. For the remainder of the path,
we compute worst-case (WC) and best-case (BC) delays when the
process variables are at µ + 3σ and µ − 3σ respectively, in the
variation-aware delay expression of path pi. Error in measurement
infrastructure can also be added at this point to compute the WC and
BC delays.

These WC and BC delay values of the path are then used to predict
if it is failing the timing constraint (T0). For path pi we also consider
its actual post-silicon delay by plugging in the MC sample in the full
variation-aware delay expression of the path. Using the predicted
and actual delays of a path pi on chip k, we predict that it fails
the timing constraint, if its BC delay is higher than T0 (denoted by
d
(BC)
pi (k) > T0). Similarly, we predict that the path does not fail

the timing constraint, if its WC delay is at most T0 (denoted by
d
(WC)
pi (k) ≤ T0). We evaluate the rate of correctly predicting the

failing and non-failing paths by reporting these metrics:

mrf =

50K∑
k=1

#P∑
i=1

I
d
(BC)
pi

(k)>T0

50K∑
k=1

#P∑
i=1

Idpi (k)>T0

mrnf =

50K∑
k=1

#P∑
i=1

I
d
(WC)
pi

(k)≤T0

50K∑
k=1

#P∑
i=1

Idpi (k)≤T0

TABLE II
COMPARISON OF FAILING AND NON-FAILING MATCH RATIOS FOR FOUR DIFFERENT CASES

Bench #Paths 1) Without Sensors 2) Custom (wei
=cei) 3) Custom (wei

=1) 4) Pre-Specified Sequence Matching
mrnf mrf % Ecover mrnf mrf % Ecover mrnf mrf % Ecover mrnf mrf

S1488 22 0.64 0.00 0.06 0.97 0.62 0.14 0.82 0.00 0.13 0.94 0.05
S1494 20 0.69 0.00 0.05 0.99 0.70 0.15 0.79 0.32 0.08 0.91 0.36
S5378 1203 0.91 0.00 0.07 1.00 0.52 0.19 0.91 0.00 0.14 0.89 0.10
S9234 1305 0.58 0.00 0.02 0.98 0.96 0.16 0.86 0.86 0.03 0.63 0.08

S13207 1123 0.67 0.00 0.04 1.00 0.89 0.11 0.90 0.00 0.10 0.88 0.00
S15850 1007 0.83 0.00 0.05 0.98 0.87 0.21 0.92 0.16 0.21 0.92 0.07
S35932 1278 0.56 0.00 0.08 1.00 0.76 0.28 0.81 0.34 0.13 0.67 0.11
S38417 1105 0.51 0.00 0.05 0.92 0.92 0.17 0.71 0.48 0.09 0.80 0.05
S38584 1371 0.81 0.00 0.03 0.96 0.65 0.17 0.81 0.46 0.05 0.81 0.03

where IE is an indicator function. If the event E holds, then IE is
equal to 1. Otherwise, it is equal to 0. The failing match ratio (mrf)
reflects the number of times that the paths are predicted as failing
(numerator) divided by the number of times that they are actually
failing (denominator), over the range of 50K MC samples and the
extracted paths. Similarly, the non-failing match ratio (mrnf) reflects
the ratio of correct predictions when the paths are non-failing.

We report these match ratios for four cases in Table II: 1) when
no sensors are used in which the WC and BC predicted delays of
the paths are the most pessimistic and therefore the match ratios are
the lowest; 2) when generating custom sensors using our framework
by setting wei = cei which is the case studied in the previous
experiment; 3) same as case 2 except we use wei = 1 in order
to select the sensors to maximize the coverage of the edges with
equal criticality; 4) custom sensors using an alternative approach by
matching the entire netlist against a set of pre-specified sequences.

In case 4, we consider all the possible sequences of two logic
gates in the library as potential sensors. We then traverse the netlist
and apply sequence matching at each gate. We rank these potential
sensors based on the number of times that they are instantiated as a
sequence in the netlist and select as many top-ranked sensors, until
the 15% area budget is used. Note, we do not apply layout partitioning
and ignore within-die variations. The assumption of considering two
gates is consistent with the average length of a sensor observed from
our optimization framework in case 2.

In Table II, in addition to the match ratios, we also report the
percentage of edges in the timing graph which are covered by a
sensor in cases 2, 3 and 4. The failing match ratio mrf is 0 in case
1 for all the benchmarks, indicating that the none of the failing paths
can be isolated without the aid of the sensors. However, some of
the non-failing paths could be accurately identified as given by the
mrnf column. We note that isolating the failing paths is of higher
significance during post-silicon validation [1], [9].

From the table we observe case 2 offers the highest mrf and
mrnf match ratios compared to the other cases. It outperforms case
3, indicating that maximizing the coverage of the graph edges with
equal weights may not be the best strategy to isolate the failing and
non-failing paths. The higher coverage of the graph edges in case 3
can be seen by comparing columns 5 and 8. Case 2 also consistently
outperforms case 4 by offering higher match ratios, demonstrating
the strength of our optimization procedure compared to using pre-
specified sequences for custom sensor generation. Furthermore, the
percentage of covered edges in case 3 is also always higher than
case 4 (given in columns 8 and 11), reflecting the strength of our
optimization framework when the goal is covering the graph edges
with equal weights.

V. CONCLUSIONS AND FUTURE WORKS

We proposed a scalable optimization framework which generates
custom on-chip sensors for a given netlist. It simultaneously identifies
and groups sequences of logic gates in the netlist which illustrate a
high correlation in their delays in the presence of within-die process
variations. The on-chip sensor delays, measured at the post-silicon
stage, help to predict if a set of specified paths fail the timing
constraint with less pessimism. Our future plans include focusing
on the physical design issues of the framework.

REFERENCES

[1] Pouria Bastani, Kip Killpack, Li-C. Wang, Eli Chiprout, Speedpath
prediction based on learning from a small set of examples. In DAC,
2008.

[2] David Blaauw, Kaviraj Chopra, Ashish Srivastava, Louis Scheffer, Sta-
tistical timing analysis: From basic principles to state of the art. IEEE
TCAD, 27(4), 2008.

[3] Nicholas Callegari, Dragoljub Gagi Drmanac, Li-C. Wang, Magdy S.
Abadir, Classification rule learning using subgroup discovery of cross-
domain attributes responsible for design-silicon mismatch. In DAC,
2010.

[4] Tuck-Boon Chan, Aashish Pant, Lerong Cheng, Puneet Gupta, Design
dependent process monitoring for back-end manufacturing cost reduc-
tion. In ICCAD, 2010.

[5] Kip Killpack, Chandramouli V. Kashyap, Eli Chiprout, Silicon speedpath
measurement and feedback into EDA flows. In DAC, 2007.

[6] Kip Killpack, Suriyaprakash Natarajan, Arun Krishnamachary, Pouria
Bastani, Case study on speed failure causes in a microprocessor. IEEE
DAT, 25(3):224–230, 2008.

[7] Qunzeng Liu, Sachin S. Sapatnekar, A framework for scalable postsil-
icon statistical delay prediction under process variations. IEEE TCAD,
28(8):1201–1212, 2009.

[8] Qunzeng Liu, Sachin S. Sapatnekar, Capturing post-silicon variations
using a representative critical path. IEEE TCAD, 29(2):211–222, 2010.

[9] Sari Onaissi, Khaled R. Heloue, Farid N. Najm, PSTA-based branch and
bound approach to the silicon speedpath isolation problem. In ICCAD,
2009.

[10] Xiaoxiao Wang, Mohammad Tehranipoor, Ramyanshu Datta, Path-RO: a
novel on-chip critical path delay measurement under process variations.
In ICCAD, 2008.

[11] Lin Xie, Azadeh Davoodi, Representative path selection for post-silicon
timing prediction under variability. In DAC, 2010.

[12] Lin Xie, Azadeh Davoodi, Bound-based statistically-critical path extrac-
tion under process variations. IEEE TCAD, 30(1):59–71, 2011.

