
A Sensor-Assisted Self-Authentication Framework
for Hardware Trojan Detection

Min Li, Azadeh Davoodi, and Mohammad Tehranipoor∗

Department of Electrical and Computer Engineering
University of Wisconsin at Madison, WI 53706 USA

∗University of Connecticut, CT 06269 USA
Email: {adavoodi}@wisc.edu

Abstract—This work offers a framework which does not rely on
a Golden IC (GIC) during hardware Trojan (HT) detection. GIC
is a Trojan-free IC which is required, in all existing HT frame-
works, as a reference point to verify the responses obtained from
an IC under authentication. However, identifying a GIC is not a
trivial task. A GIC may not even exist, since all the fabricated ICs
may be HT-infected. We propose a framework which is based on
adding a set of detection sensors to a design which are integrated
in the free spaces on the layout and fabricated on the same die.
After fabrication, a self-authentication procedure is proposed in
order to determine if a Trojan is inserted in a set of arbitrarily-
selected paths in the design. The detection process uses on-chip
measurements on the sensors and the design paths in order to
evaluate the correlation between a set of actual and predicted
delay ranges. Error in the on-chip measurement infrastructure
is considered. If our framework determines that a Trojan is (or
is not) inserted on a considered path, then it is accurate. In our
computational experiments, conducted for challenging cases of
small Trojan circuits in the presence of die-to-die and within-die
process variations, we report a high detection rate to show its
effectiveness in realizing a self-authentication process which is
independent of a GIC.

I. INTRODUCTION

Hardware Trojan (HT) detection is an increasingly impor-
tant topic within IC security. It can influence the effectiveness
of other security techniques such as IC metering and physically
uncolonable functions [1]. Detecting a HT in a fabricated IC is
particularly challenging due to a combination of the following
factors arising from system complexity and nano-scale non-
idealities [1]: (1) lack of observability and controllability in a
fabricated chip; (2) complexity due to existence of billions of
nano-scale components, and due to the large number of soft,
firm, and hard IP cores that may have been integrated in the
system; (3) high cost and challenges associated with physical
inspection of nanometer feature sizes for reverse engineering
which may yet be intrusive and only applicable to a small
portion of the chip population that are infected by a Trojan;
(4) difficulty to activate a HT since it may only be triggered
by rare events; (5) increasing fabrication and environmental
variations in nanometer technologies which cause deviation in
the expected characteristics of an IC.

The work of Azadeh Davoodi was supported in part by the National Science
Foundation grant CCF-1053496. The work of Mohammad Tehranipoor was
supported in part by the National Science Foundation grant CNS-0844995.

One focus of existing research for HT detection is on
generating rare events or test patterns which result in increased
activity in Trojan-infected ICs [2], [3], [4]. The other set of
HT detection techniques are based on measuring the transient
signals of power delivery network through the power ports
[2], [5], or timing characteristics using on-chip structures or
automatic test equipment (ATE) [6], [7]. The works [8], [9]
focus on HT detection in the presence of process variability.

A fundamental limitation of the above existing HT detection
techniques is relying on a Golden IC (GIC) during the IC au-
thentication. For example, a transient timing or power pattern
of an IC should be compared against the one obtained from
the GIC since it is determined to be Trojan-free. However, the
existence and identification of a GIC can never be guaranteed:
First, if the HT is inserted in the GDSII file, or if the foundry
alters the mask to insert a HT, then all the ICs will be infected.
Second, if an IC passes a testing procedure which is thorough
and more aggressive than traditional testing, it still cannot be
guaranteed to be a GIC because the HT may be triggered by
a rare uncovered event during test. Recently, a self-referring
approach was proposed in [10] which is also GIC-free. It
is based on comparing a “current signature” of the chip in
two different time windows. The idea is to create a variation
in these two signatures if a Trojan is present. However, this
approach is only applicable to large sequential circuit Trojans.

In this work, we propose a new framework for HT detection
which does not require a GIC. It can also handle combi-
national Trojan circuits of small size. The framework relies
on developing on-chip detection sensors prior to fabrication
and integrating them with the layout. The sensors are design-
dependent and are found by an optimization procedure which
decomposes the netlist into a set of “similar” sequences of
logic gates which are frequently-instantiated. After fabrica-
tion, a set of design paths are arbitrarily selected and their
delays are measured, for example using an ATE. The on-
chip delays of the detection sensors are also measured. An
analysis framework is then proposed to detect the presence of
a HT. It is based on computing a sensor-assisted delay range
for each path, and comparing it against the actual (measured)
path delay, while accounting for errors associated with the on-
chip delay measurement infrastructure. The self-authentication
process is entirely independent of using a Golden IC.978-3-9810801-8-6/DATE12/ c⃝2012 EDAA

Design and integration of custom-

generated detection sensors

capturing within-die variability

On-chip delay

fingerprint of

detection

sensors

On-chip delay

fingerprint of

arbitrary

design paths

PASS?

Alert Trojan

Offline analysis

of fingerprint

correlation

NO

Design stage Post-silicon self-authentication process

Fig. 1: Overview of our self-authentication Trojan detection framework

The proposed framework is one of the first towards elim-
inating the GIC; only if the framework fails to determine
the existence of the HT, conventional detection techniques
should be used which require to identify a GIC. By reporting
a high detection ratio in our experiments, we demonstrate
the effectiveness of our self-authentication framework. This is
for many challenging scenarios of randomly inserting HTs in
various regions on the layout, for many chips illustrating die-
to-die and within-die process variations in 90nm technology.

In the remainder of this work, we give an overview of
the framework and sensor generation procedure in Sections
II and III, respectively. Analysis techniques using the on-chip
measurements are discussed Section IV. Simulation results are
presented in Section V followed by conclusions.

II. OVERVIEW OF THE FRAMEWORK

Figure 1 gives an overview of the proposed framework.
There are two stages in the framework: 1) identification of
detection sensors and their layout integration at the design
stage; 2) self-authentication of a chip using a sensor-assisted
analysis which incorporates on-chip delay measurements.

First, at the design stage, a set of detection sensors are
identified and integrated with the layout. These sensors are
custom-generated using an optimization procedure which de-
composes the timing graph representing the design’s netlist
into a set of frequently-instantiated “delay features”. Each
delay feature is essentially a variation-aware expression with
known sensitivities to unknown parameters such as process
variations at the die-to-die and within-die levels. Such a
variation-aware representation is commonly used in parametric
statistical static timing analysis [11]. Each instantiation of a
delay feature corresponds to an identified sequence of gates
and interconnects in the netlist which have similar sensitivities
to parameter variations. Therefore, the sensor generation pro-
cedure essentially decomposes the netlist into a set of “similar”
sequences in which two sequences are similar if the changes in
their delays are very close (i.e., less than a specified and small
error tolerance). An graphical example of similar sequences is
illustrated on the left-hand-side of Figure 1.

Each sensor is then physically implemented and integrated
with the layout such that it has the same delay feature as
the sequences that it represents. For example it could have
an identical layout as one of the sequences that it represents
and be placed in the same neighborhood of that sequence to
be subject to the same degree of variations. The optimization
procedure identifies the sensors subject to an allowable area
overhead and the available whitespace on the layout. This work
uses a variation of an existing framework for sensor generation
which will be briefly explained in Section III.

At the post-silicon stage, a sensor-assisted self-
authentication process is applied for each chip. Two
“delay fingerprints” are generated. One corresponds to the on-
chip delays of the integrated sensors. The other corresponds
to the on-chip delays of a set of arbitrary-selected design
paths. The delay fingerprint of the sensors are used to
predict a delay range for each considered path. An actual
on-chip delay range is also obtained for each path, using an
on-chip delay measurement mechanism. For each considered
path, a correlation analysis is then conducted between its
predicted delay range and its actual delay range. If a hardware
Trojan is inserted (in either the sensors or the design path),
then its presence can get detected by observing a poor
correlation between these two delay ranges. This post-silicon
self-authentication process is shown on the right-hand-side of
Figure 1 and will be explained in detail in Section IV.

The set of authenticated design paths can be pre-specified at
the design stage or can be randomly selected after fabrication.
Our framework has the flexibility to consider both cases. In
this work, we consider the case when the layout is decomposed
into many regions and the design paths are randomly selected
from each region to capture within-die delay variations. More
details are explained in Section V.

There are many options for on-chip delay measurement of
either design paths or detection sensors. For example, the
work [12] proposes a circuit for measuring the delays of a
set of designated paths on the layout. To measure the on-
chip delay of one designated path, the path is excited and
the measurement circuitry is calibrated to transform the path

into a ring oscillator. A counter then measures the number of
oscillations within a time window. In [13], measurement of the
delay of a path is with the aid of a debug tester and tunable
buffers. The tester is used to generate failures by gradually
varying the clock period, each time by decreasing with a small
time-step. For each new clock period, a new set of “failing”
paths in the design are identified with the aid of tunable
buffers. The on-chip delays of these paths are determined from
the considered clock period.

Arbitrary path delays can also be measured using an auto-
matic test equipment (ATE), by generating test patterns which
excite the desired path(s), assuming they are testable, and then
sweeping the clock period in a similar way until failure occurs.

In all the above cases, the on-chip path delay measurement
is subject to a measurement error. For example using debug
tester or ATE, the measurement error is the time-step by
which the clock period is decreased. Our work assumes an
infrastructure for on-chip path delay measurement is available.
If the paths are pre-specified, then an infrastructure such as
[12], or an ATE-based measurement procedure can be used.
Otherwise, the technique in [13] can be used to determine
the delays of arbitrarily-selected design paths by sweeping the
applied clock period. The above procedures also have different
associated error in path delay measurement.

Our framework is independent of the type of measurement
infrastructure; for a choice of the measurement infrastructure,
an associated error is accounted for in our framework to
capture the on-chip measurement inaccuracy. This error will
be incorporated in the predicted and actual delay ranges of
each design path. Moreover, the possible area overhead of the
measurement infrastructure can also be accounted for in our
sensor generation procedure.

III. SENSOR GENERATION PROCEDURE

Our sensor generation procedure is a variation of an existing
optimization framework. In [14], custom test structures are
proposed to isolate the paths that fail their delay constraints
during post-silicon validation. Here we use this framework to
identify detection sensors.

For a given netlist, first a timing graph is extracted which is
a directed acyclic graph (DAG) denoted by G = (V, E). Each
node corresponds to the output of a gate. An edge between two
nodes represents the delay of the path between two gates so it
includes factors such as loading capacitance and interconnect
delay on this path. We refer to a sequence to be a (directed)
path between two arbitrary nodes in this DAG. Therefore a
sequence corresponds to a set of consecutively connected gates
and interconnects.

We denote X to be a column vector representing the
parameter variations. Each entry in X lies in the category
of die-to-die, within-die and random variations in physical
parameters. All the entries in X are assumed to be independent
from each other. This modeling procedure is identical to the
previous works in statistical static timing analysis which are
summarized in [11]. Similar to [11], we describe the variation-

aware delay of edge ei using the following linear expression:

Dei = µei + aTeiX (1)

where µei is the nominal delay of ei and aei is the sensi-
tivity vector corresponding to X which is accurately known
after design-time characterization. Note, the above expression
already accounts for interconnect delay variations.

A sequence si is a set of consecutive edges in G. The
variation-aware delay expression of si is found by adding the
corresponding delay expressions of the edges that are included
in it. It is given by Dsi =

∑
∀j|ej∈si

Dej which can be further
expressed in a form similar to the above equation as follows:
Dsj = µsj + aTsjX.

The optimization procedure forms a set of non-overlapping
sequences such that “similar” sequences are assigned to one
group and represented by one sensor. Two sequences si and
sj are similar if their sensitivities to parameter variations X is
less than a small error tolerance denoted by ϵ. This condition
is given by the following inequality:∥∥∥aTsi − aTsj

∥∥∥
1
≤ ϵ (2)

Each group of similar sequences will be represented by a
sensor. The physical implementation of the sensor is also a
sequence with a (similar) variation-aware delay expression
that satisfies the above condition. In this work, the sensor is
implemented to be identical to the smallest-area sequence that
it represents in a neighborhood close to it in order to satisfy
the above similarity constraint. If whitespace is available, then
the addition of the sensor does not result in any additional area
overhead. Otherwise, the sequences are formed such that the
sensor area overheads do not exceed a specified threshold.

The objective of the optimization is to form groups of
similar sequences in order to maximize the coverage of edges
ei ∈ E subject to the sensor area constraint which was
described above. Maximizing the edge coverage increases
the likelihood of Trojan detection while not making any
assumptions about the potential locations in the netlist that
the Trojan may be inserted. In contrast, the work [14] further
associates a statistical-criticality weight with each edge in the
graph based on the knowledge of potentially-critical paths in
order to better isolate the failing paths after fabrication.

The work [14] presents an exact Integer Linear Program-
ming (ILP) formulation of the above optimization problem.
It also presents a set of decomposition techniques to solve
the formulation within a reasonable runtime using the solver
CPLEX 12.0. For details about extracting the ILP formulation
and solving it, please refer to [14].

IV. POST-SILICON SELF-AUTHENTICATION PROCESS

After the sensors are added to the die, the Trojan detec-
tion procedure is based on self-authentication at the post-
fabrication stage. For each chip, we consider an arbitrary set of
paths and explore the existence of the Trojan. In this section,
we explain the procedure for three cases, when the Trojan is
inserted in the design paths, in the sensors, and in both.

Fig. 2: Different scenarios of Trojan insertion: (a) Trojan-infected path; (b) Trojan-infected sensor; (c) Both (a) and (b).

A. Trojan Inserted in the Design Paths
We assume the Trojan is inserted in an arbitrary location in

the design’s netlist. As a result, one or more paths are infected
by the Trojan. So in our analysis, we arbitrarily select a set of
design paths and evaluate if each one is infected by a Trojan,
with the assistance of the detection sensors. This case is shown
in Figure 2(a). The affected path is shown with a bold arrow
and the Trojan is shown as an extra chain of inverters. The
sensor is shown on the right corner and its matched sequences
in the netlist are circled. Note, the sequences may not be
identical and their similarity is defined according to Eq. 2.

To detect the Trojan, we first compute an actual and a pre-
dicted delay range for each path and analyze their correlations.

First, the actual delay range of path p is computed by mea-
suring its delay using an on-chip measurement infrastructure.
The range is due to a measurement error associated with the
used infrastructure.

Next, a sensor-assisted predicted delay range is found for
path p. We first compute an actual delay corresponding to one
or more sequences on p which are matched by one or more
sensors. For each sequence, its delay is determined using on-
chip delay measurement on its corresponding sensor. Recall,
the sequence and its sensor are formed to have the same on-
chip change in their delays. So the change in the delay of
the sensor can be computed (by comparing against its pre-
silicon delay estimate) in order to find the on-chip delay of the
sequence which it represents. We denote the aggregate delay
of the matched sequences with µmatch ± γ, where γ is the
error associated with the on-chip measurement infrastructure.

For path p, we then consider its remaining portion which
is not matched by any sensors. It is denoted by prmn and
identified by a set of edges on p which are not formed into
sequences during the sensor generation process. We denote the
delay corresponding to prmn by Drmn which has a variation-
aware delay expression obtained by adding the expressions
of the edges that are included in it, similar to Eq. 1. We
express Drmn =

∑
∀i|ei∈Prmn

(µei+aTeiX) = µrmn+aTrmnX.
We then compute worst-case and best-case values of Drmn,
denoted by D

(WC)
rmn and D

(BC)
rmn . This is by assuming the

varying parameters x ∈ X are simultaneously in their extreme
values in the Drmn expression. The predicted delay range of
path p is then given by µmatch+µrmn±(γ+D

(WC)
rmn −D

(BC)
rmn).

Before discussing the range-based analysis for Trojan de-
tection, we also introduce computing another delay range
representing the case when the sensors are not used, to clarify
the discussions. In this case the delay of the entire path denoted
by Dp is unknown. Therefore Dp = Drmn. The predicted
path delay range is given by µp ± (D

(WC)
p − D

(BC)
p). This

delay range is larger than the sensor-assisted one because the
uncertain part of the path (the major contributor to its range)
decreases with matching of its sequences with the sensors.

Figure 2(a) shows the Trojan detection analysis in this case.
On the left-hand-side two predicted delay ranges are drawn,
corresponding to with and without sensor matching. The actual
delay range always falls on the right-hand-side of the predicted
delay ranges. This is due to the insertion of the Trojan on the
path which shifts its measured delay range to the higher values.
We make the following observations:

• If a predicted delay range has no overlap with the actual
delay range, then we conclude that a Trojan is inserted.
The observation that the actual delay range is higher also
prompts that the Trojan is inserted on the path.

• Recall the sensor-assisted prediction results in a smaller
delay interval compared to the one without sensor match-
ing. This reduction in interval increases the likelihood that
the predicted and the actual delay ranges do not overlap
if a Trojan is present.

• The decrease in the Trojan delay results in the predicted
and actual delay ranges to be closer to each other and
makes the detection more challenging.

B. Trojan Inserted in the Detection Sensors
Figure 2(b) shows this case. The insertion of the Trojan

(shown by an inverter chain) increases the on-chip measured
sensor delay. Since the Trojan does not impact the path, the
actual delay range of the path and the predicted one without
sensors will both be accurate and computed similar to the
previous case. These two ranges likely overlap with each other.
So by comparing them the existence of the Trojan may not
be identified. However, the sensor-assisted delay range will
be inaccurate, and shifted to the right-hand-side of the actual
delay range. Therefore the two intervals are more likely not
to overlap, increasing the chances of Trojan detection. Since
the predicted interval is on the right-hand-side of the actual,
we also conclude that the Trojan is inserted in the sensor.

TABLE I: Comparison of detection rate (DR) of different Trojan insertion cases

Sensor and path generation information DR (Trojan in design) DR (Trojan in sensor)

Bench |P | |R| (%AP) %Asensor T(min) MR sensor-assisted w/o sensor sensor-assisted w/o sensor

S1423 92 59 (64%) 13 92 1 0.68 0.58 0.67 0.03
S1488 16 33 (21%) 12 20 1 0.67 0.60 0.69 0.04
S1494 16 34 (15%) 12 5 1 0.50 0.48 0.60 0.04
S5378 201 123 (58%) 12 31 0.84 0.66 0.62 0.58 0.03
S9234 169 113 (62%) 10 24 1 0.71 0.69 0.75 0.03
S13207 331 94 (69%) 12 35 1 0.73 0.67 0.77 0.01
S15850 136 56 (86%) 15 29 0.97 0.85 0.75 0.70 0.01
S35932 1765 1014 (78%) 13 170 0.96 0.73 0.70 0.93 0.01
S38417 1587 981 (66%) 12 250 0.99 0.77 0.72 0.78 0.02
S38584 1112 548 (68%) 14 49 1 0.80 0.64 0.97 0.00

C. Trojan Inserted in the Paths and Sensors

As shown in Figure 2(c), the sensor-assisted predicted range
and the actual one are more likely to overlap with each other in
this case, because the insertion of the Trojan shifts both of the
intervals to the right-hand-side. The predicted delay without
sensors may still overlap due to its larger interval.

V. SIMULATION RESULTS

A. Simulation Configuration
We synthesized ISCAS89 benchmark circuits using Synop-

sys Design Compiler and a 90nm TSMC technology library.
We assume variations in the effective channel length and
zero-bias threshold voltage parameters of each gate, with
a Gaussian distribution and standard deviations of 10% of
their mean values. To capture spatial correlations, we use
the multi-level hierarchical model of [11] which divides the
chip into a set of rectangular regions. The gates in the same
region or in neighboring regions will share all or some of the
random variables in their delay expressions and thus will be
correlated to each other. This results in 42 variables for smaller
benchmarks (S1488 to S9234) for a 3-level hierarchical model,
and 682 variables for the larger benchmarks for a 5-level
hierarchical model which is consistent with [11].

For each benchmark, we generate sensors as described
in Section III. The parameter ϵ in defining the similarity
constraint between two sequences (Eq. 2) was set to be 0.05
of the average gate delay in the library. The allowable area
overhead of the sensors was set to 15% of the areas of the
logic cells. We also randomly select a set of design paths
in our setup which will be used for Trojan insertion in our
experiments. To select the paths, for each primary input (PI)
or flipflop (FF) in the circuit, we randomly select one path that
initiates from it. This is done by randomly selecting fanout
gates starting from the PI or FF node, until reaching another
FF or a primary output (PO). Therefore the number of paths is
proportional with the number of FF and PI nodes in the netlist.
This strategy ensures a fair and unbiased coverage of the
netlist, as well as the layout. Furthermore, the selected paths
may be timing critical or non-critical. These attributes make
the set of selected paths a challenging one for inserting Trojan
and evaluating our detection mechanism. In Table I, columns
2 to 6 report the path and sensor generation information. The
number of selected paths is reported in column 2.

To get an idea about the spatial coverage of the paths, we
divide the layout into rectangular regions. If the initiating
PI or FF of the path falls within the region, then the area
of the region is represented by at least one path. We report
the number of regions (|R|) and the areas of the represented
regions as a percentage of the overall layout area (%AP) in
column 3. The layout area coverage ranges from 15% to 86%.

In our experiments, the sensors all fit within the existing
whitespaces of the layout. This is because in the physical
implementation, the benchmarks had available whitespace
which ranged between 10 to 20% of the layout. However, the
details of the physical implementation is not discussed in this
work due to lack of space. Therefore, for each benchmark,
we also report the area usage of the sensors compared to
the core area consumed by the logic cells. This overhead
is reported as a percentage in column 4 (%Asensor). Please
note, in practice there may be an overhead associated with
on-chip measurement circuitry for the sensors, which we plan
to present as part of our future work regarding the details of
the physical implementation of the framework. The runtime
of the sensor generation procedure is given in column 5. For
each designated path, we also report the fraction of the paths
which are matched with at least one sensor as a match ratio
(MR) in column 6. The MR is high, ranging from 0.84 to 1.
B. Trojan Insertion in the Design Netlist

In this experiment, we insert a Trojan in each designated
path and use the analysis technique described in Section IV-A
to evaluate the rate of detecting the presence of the Trojan.
First, for each path, we insert the Trojan on a random location
on the path. Then, we model the Trojan as a chain of (even-
sized) inverters. We experiment with different lengths of the
inverter chain such that the Trojan delay varies from 3% to
10% of the circuit delay with a uniform step of 0.9%, to
obtain an overall number of 30 different Trojan delays on
that path. This scale of delay range is categorized as a small
Trojan circuit. In addition, we consider the same path on many
different chips that are subject to die-to-die and within-die
process variations. To model the post-silicon path delays on
different chips, we use Monte Carlo (MC) simulation with 10K
samples for the varying parameters. Each sample, represents
one assignment to the random variables in vector X in Eq.
1. Overall, for a designated path, we consider 300K cases of
Trojan insertion and process-induced delay variations.

For each variation sample, we compute the actual delay of
the path (µactual) by plugging in the MC sample value into its
variation-aware delay expression (after Trojan insertion). This
expression is obtained by adding the variation-aware delay
expressions of the individual edges on the path given by Eq.
1. The contribution of the Trojan delay is a fixed value which
only depends on the circuit delay and is computed for each
chip. Next, we compute an actual delay range of the path.
We assume a tester is used to measure the on-chip path delay
which has a measurement error of 5% of the path delay. This
assumption is consistent with [12]. Therefore, the range is
given by 95% to 105% of µactual.

We also compute a predicted delay range for the path as
follows: For the sequences on the path which are matched
by a sensor, we compute their on-chip delays by plugging in
the corresponding MC sample into the variation-aware delay
expression of each sequence. For the remainder of the path,
we compute a variation-aware delay expression by adding
the expressions of the edges which are not matched with a
sensor and denote its delay by Drmn. Note Drmn is a random
variable given in the form of Eq. 1. We then compute the best-
case and worst-case delays of Drmn by setting each entry x
in vector X to µx ± 3σx where µx and σx are the mean and
standard deviation of x, respectively and were explained in
our simulation setup. The predicted delay range of the path is
then given by µrmn + µmatch ± (D

(WC)
rmn −D

(BC)
rmn).

We also make comparison with the case when sensors are
not used. In this case, the delay of the unknown portion will
be the same as of the entire path. A predicted delay range is
computed similar to the previous case.

Using this predicted and actual delay ranges, we then use the
analysis method in Section IV-A to detect if the path includes
the Trojan. We report the fraction of cases that the Trojan was
detected in our framework as a detection rate, DR, in Table I.
This is for 300K cases for each of the designated paths. (See
column 2 for the number of designated paths.) Columns 7 and
8 report the DRs for the sensor-assisted case, and prediction
without sensor, respectively. The sensor-assisted case is higher
than without sensor, in all the benchmarks consistently. The
rate of improvement varies among the benchmarks and is high-
est in s1488 and s38584 which have a balanced structure.
In all the cases, we verified that our framework either detects
the Trojan or states that a conclusion cannot be made. So it
never incorrectly states that path does not include a Trojan.

Figure 3 shows the detection rate in S13207 in terms of the
Trojan delay normalized to the circuit delay. With increase in
the Trojan delay, the curves corresponding to sensor-assisted
and without sensor cases converge to each other.

C. Trojan Insertion in the Detection Sensor
Here we assume Trojan is only inserted in the sensors. We

consider 10K different chips using MC simulation and for each
chip compute the actual path delay (which is now Trojan-free),
similar to the previous experiment. The predicted delay range
of the path is computed as follows: First, a Trojan-infected
on-chip sensor delay is computed. Specifically, we assume

0

0.2

0.4

0.6

0.8

3.00% 5.00% 7.00% 9.00%

w/o sensor

sensor-assisted

Fig. 3: Detection rate as a function of normalized Trojan delay

the Trojan is only inserted in one of the sensors (randomly
selected) that cover each path. We consider many cases when
the inserted Trojan delay varies from 3% to 10% of the circuit
delay. The Trojan-infected on-chip sensor delay is computed
from the corresponding MC sample, similar to the previous
experiment. The predicted delay range of the path is also
computed from the remaining portion of the path, just like the
previous experiment. However, this time, the predicted delay
range will be shifted to the higher delay values because of
the incorrect calculation of the path delay using the Trojan-
infected sensor. Similarly, we compute a detection rate for
two cases of sensor-assisted and without sensor in columns 9
and 10 of Table I. Note, the detection rate without sensors is
always 0 since sensors are not used in this case and the two
ranges of actual and predicted delays overlap almost all the
times. The sensor-assisted detection rates are typically higher
compared to the previous experiment, since a Trojan-infected
sensor may represent multiple sequences on a path.

VI. CONCLUSIONS

This work offers a hardware Trojan detection framework
which is based on self-authentication of each chip. It does
not require a golden IC. The process uses on-chip delay
measurements on the design paths and custom sensors which
are added on the same die and comparing (only) a set of actual
and predicted delay ranges against each other. Error in the
measurement infrastructure is also accounted for. Simulation
results show a high detection rate for small Trojan circuits.

REFERENCES
[1] M. Tehranipoor, et. al, “A survey of hardware trojan taxonomy and

detection,” IEEE DAT, vol. 27, no. 1, 2010.
[2] M. Banga, et. al, “A novel sustained vector technique for the detection

of hardware trojans,” in VLSI Design, 2009.
[3] S. Jha, et. al, “Randomization based probabilistic approach to detect

trojan circuits,” in HASE, 2008.
[4] H. Salmani, et. al, “New design strategy for improving hardware trojan

detection and reducing trojan activation time,” in HOST, 2009.
[5] R. M. Rad, et. al, “Sensitivity analysis to hardware trojans using power

supply transient signals,” in HOST, 2008.
[6] Y. Jin, et. al, “Hardware trojan detection using path delay fingerprint,”

in HOST, 2008.
[7] J. Li, et. al, “At-speed delay characterization for IC authentication and

trojan horse detection,” in HOST, 2008.
[8] Y. Alkabani, et. al, “Designer’s hardware trojan horse,” in HOST, 2008.
[9] M. Potkonjak, et. al, “Hardware trojan horse detection using gate-level

characterization,” in DAC, 2009.
[10] S. Narasimhan, et. al, “TeSR: A robust temporal self-referencing ap-

proach for hardware trojan detection,” in HOST, 2011.
[11] D. Blaauw, et. al, “Statistical timing analysis: From basic principles to

state of the art,” IEEE TCAD, vol. 27, no. 4, 2008.
[12] X. Wang, et. al, “Path-RO: a novel on-chip critical path delay measure-

ment under process variations,” in ICCAD, 2008.
[13] K. Killpack, et. al, “Silicon speedpath measurement and feedback into

EDA flows,” in DAC, 2007.
[14] M. Li, et. al, “Custom test structures for post-silicon diagnosis of failing

paths,” ECE Technical Report, University of Wisconsin - Madison, 2011.

