
978-3-9810801-8-6/DATE12/©2012 EDAA

Parallel Probing: Dynamic and Constant Time Setup

Procedure in Circuit Switching NoC
Shaoteng Liu, Axel Jantsch, Zhonghai Lu

KTH Royal Institute of Technology, Sweden
Abstract- We propose a circuit switching Network-on-chip

with a parallel probe searching setup method, which can search

the entire network in constant time, only dependent on the

network size but independent of the network load. Under a

specific search policy, the setup procedure is guaranteed to

terminate in time 3D+6 cycles, where D is the geometric distance

between source and destination. If a path can be found, the

method succeeds in 3D+6 cycles; if a path cannot be found, it fails

in maximum 3D+6 cycles. Compared to previous work, our

method can reduce the setup time and enhance the success rate of

setups. Our experiments show that compared with a sequential

probe searching method, this method can reduce the search time

by up to 20%. Compared with a centralized channel allocator

method, this method can enhance the success rate by up to 20%.

1. INTRODUCTION AND RELATED WORK

Several NoCs offer guaranteed services to meet the QoS

demand of applications [1][2][3][4][5]. For example, some of

them utilize packet switching mechanism with time division

multiplexing channels [2][4][5], while others utilize pure

circuit switching mechanism [1][3]. They all adopt the idea of

setting up a dedicated path before data can be transferred. A

main challenge is how to efficiently search a path and allocate

the communication resources for it.

Some methods try to solve this problem at compilation

time [6][7]. However, as mentioned in [8], they face the

difficulty that applications like H.264 [11] and the possibility

of several applications running in parallel do not allow an

efficient static policy with task mapping and channel

allocation. Thus, dynamic path searching methods are a

flexible alternative.

Winter and Fettweis [2][8] developed a centralized way to

realize dynamic path searching and channel allocation. They

designed a Network-on-chip Channel Allocator for the

Aetherial NoC [5]. One of the nodes is designated as the

“NoCmanager”. Inside this node, a special component called

Hardware Graph Array (HAGAR) is used. HAGAR stores all

channel usage information of the network. If other nodes try to

set up a guaranteed path, they must first send their requests to

the NoCmanager node via a best effort network, which is the

Aetherial packet switching network. Then the NoCmanager

node starts to deal with the request and uses HAGAR to

compute the path. After computation, the NoC manager will
send back the routing information in order to set-up the

guaranteed service path as requested. The NoC Channel

Allocator is a centralized solution for dynamic path

configuration. The advantage is that the NoCmanager node

can work very fast. The disadvantage is that it is not a scalable

solution. Also, since requests are sent via a best effort network

to the “NoCmanager”, the delay of setting up a path is neither

predictable nor guaranteed.

To overcome such a scalability issue, distributed path

searching method was developed. Pham et al. [1] designed a

Backtracking Wave-pipeline circuit switching NoC, which

supports sequential probe search. During the path searching

phase, a probe is sent out. As the probe travels from the source

node towards the destination, it reserves the channels it has

passed for future data transfer. When this probe encounters

congestions, it will backtrack one hop, cancel the last channel

it has booked, and try another way. When this probe finally

reaches the destination, a path is established and the data

transfer phase can be launched. If no path can be found,

eventually the probe will backtrack to the source node. This

distributed method with circuit switching mechanism has the

advantage of supporting many nodes searching their path in

parallel. But the disadvantage is that when the majority of

circuit links are already in use, the backtracking based search

may take a long time.

In this paper, we develop a parallel probe searching

approach. Our work has the following properties:

1) The parallel probing can be combined with several different

retry policies, that lead to different trade-offs and

properties.

2) Under no-retry policy, if a shortest path connection can be

found, it is guaranteed to be found in exactly 3*D +6

cycles; if the search fails, it fails in maximum 3*D+6

cycles.

3) Under retry-for-free-path policy, if a free path exists, it will

always be found in maximum cycles, with N being

the number of nodes.

4) On average our method has shorter setup latency than

previous methods.

5) The switch has a simple structure with an inexpensive and

efficient implementation.

We have simulated our design and compared it with above

mentioned work of [1] and [2]. The results show that our work

has advantages in delay, success rate and area.

2. DETAILS OF PARALLEL PROBING

2.1. Intuition

As shown in Fig. 1, node 1 tries to set-up a path to the

destination node 16. During the first cycle the source node

sends out two probes to the neighboring nodes 2 and 5. In the

second hop each probe splits into two probes and both

continue to travel towards the destination along all possible

minimum paths.

In the third hop node 6 receives two probes from the same

setup request. One of them is cancelled and all the channels it

has booked before are released. However, the channel between

node 1 and node 2 is not released, because it is still needed for

the probe that has travelled further to node 3. In this way a

wavefront of probes travel through the network and reach the

destination on a minimal path. The time is exactly 3D, where

D is the distance in terms of hops, and it takes 3 cycles to

traverse each hop. When a probe successfully reaches the

destination, an acknowledgement is sent back to the source

node.

1 2

5 6

3 4

7 8

9 10

13 14

11 12

15 16

1 2

5 6

3 4

7 8

9 10

13 14

11 12

15 16

a) In each node a probe may double. b) When two probes meet, one is

cancelled.
Fig. 1 An example of the parallel probe searching method.

Whenever two probes of the same request meet, one of

them is regarded as redundant and is canceled, as shown in

Fig. 1 b), and all channels used only by the canceled probe are

released. The cancellation process proceeds backwards hop by

hop. The switch does a cancellation based on the stored

connectivity information that binds an input port to an output

port. When a cancel signal appears on an output port from a

downstream switch, the corresponding input port is looked up,

the connection is canceled, and the cancel signal is forwarded

upstream to the input port. Applying this mechanism, if

several possible paths exist, one and only one of them can be

finally booked, just as desired.

2.2. Structure of the switch

Fig. 2 shows the interface of each switch to the

neighboring switches and to the local node. In a mesh

topology, every switch is connected to its four neighbors and

to the local resource node. Each link has a duplex data

channel. This data channel is used for carrying the probe

during setup and for transmitting data when a connection has

been established. Each probe is one “flit” length. Every data

channel is associated with an answer (ANS) signal consisting

of 2 bit, which goes in the opposite direction to data channel,

and 1 bit for a Request signal, which travels in the same

direction as data channel. When the request signal is logic „1‟,

a probe search is running or data transfer is active. When

request signal is „0‟, it denotes idle state, and an established

path will be released. The usage of ANS signal is listed in

TABLE 1, which will be introduced in the following section.
TABLE 1 THE USAGE OF ANS (2 BITS)

Value Usage

00 Path search continue/Destination is idle

01 Path cancel due to contention

10 Path cancel due to blockage

11 Path established/Busy destination

2.3. Operation flow

As shown in Fig. 3, our circuit switching network has six

operation phases. The details are explained in the following.

2.3.1. Probe sendout

In this phase probes are generated and sent out. The

request signal is set to „1‟. The probe format is shown in

TABLE 2, which contains source node address, destination

node address, high level priority and low level priority. As a

probe travels inside the network, it books the data channels

together with the associate ANS and request signal. The probe

itself is forwarded to the next node or nodes towards the

destination. When a probe can move forward, the ANS to its

previous node is set to “00”.

A
N

S

D
a

ta
 p

a
th

R
e

q
u

e
st A

N
S

D
a

ta
 p

a
th

R
e

q
u

e
st

ANS

Data path

Request

ANS

Data path

Request

AN
S

D
at

a
pa

th

R
eq

ue
st

AN
S

D
at

a
pa

th

R
eq

ue
st

ANS

Data path

Request

ANS

Data path

Request

A
N

S

D
a

ta
 p

a
th

R
e

q
u

e
st A

N
S

D
a

ta
 p

a
th

R
e

q
u

e
st

Arbitrator

Crossbar

Fig. 2 Signal connection of a 2*2 mesh

Probe

sendout

Channel

confirmed

Channel

temporally

booked

Path

established

Channel

cancelled

Preempted by other

probe

Path search

failed

Fail to book a channel

S
ucceed in booking

a channel

Channels receive

ANS = “11”

All p
robes fa

il t
o

fin
d a path

ANS = “11” comes

back to source node

Fig. 3 Phases of operation

TABLE 2 Probe format

Src.Addr Dest. Addr High Priority Low Priority

2.3.2. Channel temporally booked

A channel has 3 states, which are free, booked and

confirmed. When a probe enters into a node, after winning

arbitration, then

1) If the channels demanded by this probe are in free state,

these channels are booked and switched into booked state.

2) If the channel demanded by this probe has already been

booked by another probe, but this probe has a higher

priority, it can preemptively book this channel. In this case,

the path booked by the old probe will be cancelled.

If a probe succeeds in booking one channel, the ANS

signal will remain “00”.

2.3.3. Channel cancelled

Since a probe can have up to two desired channels in

different directions when it enters a node, if and only if the

probe is unable to book any channels, then we regard this

probe as “failed”. When a probe fails, the channel between the

previous node and the current node is cancelled. Several

factors can cause a probe to fail:

1) Its priority is lower than the probes which are demanding

the same channel. This situation is caused by either the

probe loosing arbitration, or the channel booked by this

probe is preempted by others.

2) Two probes carrying the same set-up request meet at the

same node. One of them succeeds and the other fails.

3) All desired channels are used up by other connections and

are in confirmed state.

If the failure is caused by the case 1), the ANS signal will

be set to “01”. If the failure is due to case 2) or 3), the ANS

signal will be set to “10”. Both “01” and “10” ANS will

inform the previous node to release the channel.

Since a probe may have two desired directions, it is

possible that a probe has case 1) failure in one direction, and

case 2) or 3) failure in the other. In this situation case 1)

always has higher priority.

2.3.4. Channel confirmed

When a probe reaches its destination, the ANS signal is set

to “11” and transferred back. Channels along this probe‟s path

will turn into “confirmed” state after receiving ANS “11”.

Confirmed channels can no longer be preempted.

2.3.5. Path established

Finally, when a source node receives a “11” ANS signal,

then a connection is established and data transfer can

commence.

2.3.6. Path search fail

When the source node receives a “01” or “10” ANS signal,

the path search request has failed, and the reasons are

distinguished as follows:

1) If the ANS is “01”, it means that one of its probes has once

contended with other active probes, and lost because of its

low priority.

2) If the ANS is “10”, it means that the probe has searched the

entire network, but no minimum path is currently available.

Using this distinction, different policies can be applied to

achieve different effects, e.g. see Fig. 11.

2.4. Detailed switch structure

According to the operation flow, the internal structure of a

switch is shown in Fig. 4. It is divided into two parts: control

path and data path. The data path transfers data through the

configured data path crossbar. The control path is used to set

up or tear-down a data path. The control path and data path

share the same input and output wires.

In the control path, there are two crossbars, internal probe

crossbar and control signal crossbar. Besides the crossbars,

there is one arbiter, 5 input and 5 output controllers.

The probe crossbar is used to transfer a probe from one

input to one output. The control signal crossbar is used to

transfer requests and the ANS signal to the corresponding

output.

The arbiter is used to solve contention between input

probes and probes that already book a channel. The arbiter

compares their priority and decides which probe wins.

Inside the input controller there is a channel monitor, a

failure type monitor and an FSM. The channel monitor records

the channels booked by the current probe. If the number of

channels booked by the current probe becomes zero, then the

probe is regarded as “failed”. Whether the ANS signal

transfers back a “01” or a “10” is decided by the failure type

monitor. The failure type monitor remembers the cause of a

failure, as described in section 2.3.3. The possible FSM states

are idle, prepare, booked, cancellation and fixed. Its state

transition graph is shown in Fig. 5 a). For example, when the

ANS signal “11” is received, the input controller changes its

state to “fixed” and transfers the “11” ANS signal to the

previous node.

The output controller monitors and changes the states of

the corresponding channel. An FSM is used inside the output

controller; its states are shown in Fig. 5 b).

A probe needs two clock cycles to travel through the entire

control path.

2.5. Priority strategy

As we mentioned above, contention between probes

carrying different requests is a key point in this parallel

probing method. Therefore, we have to wisely design our

priority policy to solve contention.

Data_West_in

Data_East_in

Data_Resource_in

Data_North_in

Data_South_in

Data_West_out

Data_East_out

Data_Resource_out

Data_North_out

Data_South_out

ANS

Request

failure1 failure

probe

ANS2
ANS1

failure2

Data Path Cross Bar

Control

Signal

Cross bar

Internal

probe

Cross bar

aribitor

select

select

North input controller

ANS

Request
FS

M

failure type

monitor

Channel

monitor

Probe

buffer

Booked

probe

North output controller

ANS

Request

FSM

East input controller

ANS

Request
FS

M

failure type

monitor

Channel

monitor

South input controller

ANS

Request FS

M

failure type

monitor

Channel

monitor

West input controller

ANS

Request FS

M

failure type

monitor

Channel

monitor

Resource input controller

ANS

Request FS

M

failure type

monitor

Channel

monitor

Probe

buffer

Booked

probe

East output controller

ANS

Request

FSM

Probe

buffer

Booked

probe

South output controller

ANS

Request

FSM

Probe

buffer

Booked

probe

West output controller

ANS

Request

FSM

Probe

buffer

Booked

probe

Resouce output controller

ANS

Request

FSM

Fig. 4 Internal structure of a switch

We propose the following priority strategy:

1) The older the “age”, the higher the priority. The “age” here

can be understood as the time (in number of clock cycles)

between current time and the first sent-out time of the

request. The two level priorities are used to represent age.

2) Probes with higher priority can preempt channels booked

by lower priority probes, if channels are in booked state.

This policy is used to avoid live lock cause by mutual

blockage. Consider four requests A:13, B: 42, C: 24,

D: 31 (Fig. 6). If these four requests are sent out at the same

time, then they will block each other. Request A booked

channel 14 and 12, then attempts to take channel 43

and 23. However, channel 43 has been booked by request

B, and 23 by request C. Thus A is blocked by requests C

and B. The situation is similar for requests B, C, and D.

Without preemption, none of these probes can proceed, and

retrying in a deterministic manner will not help. Thus, we use

preemption to ensure at least one of them can preempt the

channels booked by the others and proceed to its destination.

Fixed

Idle

cancel

Booke

d

R
equest ==0

Booked

channel != 0
B

o
o
ke

d
 c

h
a
n
n
e
l=

=
0

N
e
x
t
c
y
c
le

Ans ==11

prepar

e

Request == 1

L
o
o
s
e
 a

ll a
rb

itra
tio

n

Idle

Booked

Replace

&

configureFixed

H
ig

h p
rio

rit
y

pro
be

Ans == 11

Request=
=0

New probe

N
ex

t c
yc

le

R
e
q
u
e
s
t=

=
0

Fig. 5 a) FSM of input controller b) FSM of output controller

3) The source node id is used to avoid the stalemate when

two different probes have the same priority. Rather than

randomly selecting, the winner will be the one with the largest

node id. This determinism leads to a winner-gets-all

arbitration, which is required by retry-for-free-path policy

(introduced in next section). Winner-gets-all arbitration is

depicted in Fig. 6 b), suppose probe A and B with the same

priority are contending for both channels 1 and 2. In winner-

gets-all arbitration, one of them will win both channels,

avoiding the situation that A gets channel 1 and B gets channel

2 which may for instance happen under random selection.

Node 1

(A src)

Node 2

(C src)

Node 4

(B src)

Node 3

(D src)

A

B

B

A

C

D

D C

1

2

2

1

Probe A

Probe A

Probe A

Probe B

Probe B

Probe A

Probe A

Probe B

Not

winner

get all

winner

get all

Fig. 6 a) live lock of probes b) Winner-gets-all

2.6. Time consumed in parallel probe search.

For every switch, it takes two cycles for a probe to traverse

a switch, and it takes 1 cycle for the ANS signal to transfer

back. So, it takes at most 3*D+6 cycles for a probe to travel

from source to destination and send back the ANS signal (D is

the hop distance between source and destination). 6 cycles is

the overhead consumed in the source and destination nodes.

Therefore, in an n*n mesh the worst case for a single search

takes 3*(2*n-2)+6 cycles, no matter if the result is a success or

a fail. In other words, it means the time for every single search

is predictable and bounded, and has a complexity of O(n).

We have studied several policies.

1) No-retry. If a source node receives ANS “01” or “10”,

it will mark the request as “failed”, then pick new request

from the queue and send it out. Since every request just takes

one single search, the maximum set-up time for a request in a

n*n mesh is 3*(2*n-2)+6 cycles.

2) Retry-for-free-path. If the source node receives ANS

“01”, the probe failed due to contention with other active

probes. This means there might be a free path but the probe

failed to find it. After some delay, the source will retry the

request until the ANS becomes “10” or “11”, see Fig. 7Fig. 6.

In experiments the retry interval is fixed to 3*(2*n-2)+6

cycles.

First type

of fail

(ANS=01)

Second

type of fail

(ANS=10)

Succeed

(ANS=11)

Retry

Retry

R
e

tr
y

Fig. 7 Retry-for-free-path policy

The maximum number of retries required for a single

search using retry-for-free-path policy can be calculated. Since

the priority is increasing with the “age” of a probe, as the

number of retries increases, the priority will also increase.

Besides, one source node can only send out one request at a

time, thus during every retry interval, there must be a node

with the highest priority which never loses arbitration.

Suppose at time t, α*n
2
 nodes are sending out requests, where

α is the percentage of nodes which enabled to send out set-up

requests (called master percentage). So the max retry times

for a request to finish a retry-for-free-path search is α*n
2
,

because during previous α*n
2
 -1 retry intervals, α*n

2
-1 other

requests have finished their search, and this one has become

the “oldest” one with the highest priority. It will finish a retry-

for-free-path search without failure due to contention. In this

case the set-up time spent for a single search using this policy

is α*n
2
 *[3(2n-2)+6] cycles. And the time complexity is O(n

3
).

3) Retry-until-success. In this policy, the source node

keeps retrying a request until it successfully sets up a

connection. In this case the worst search time is unbounded,

because it is unknown when a free path becomes available.

3. EXPERIMENT AND SIMULATION RESULTS

3.1. Simulation method

As in Fig. 8, in each node a request generator generates

set-up requests according to certain probability and pushes

them into a queue. A FSM take a request out of the queue and

send it out when the previous request has been accomplished

or abandoned. After sending out a request, the FSM waits for

the ANS signal to decide what to do next. In our experiment,

we have studied the three kind of policies mentioned above.

C
rossbar

A
rbitrator

A
N
S

D
ata path

R
equest

A
N
S

D
ata pathR

equestA
N
S

D
at

a
pa

th

R
eq

ue
st

A
N

S

D
ata path

R
equestSetup

5

Setup

3

Request

out

Setup

request

Send out queue

ANS

Probability

2

Transfer data for a

number of cycles, then

tear down the path

Data_path

request

Setup

2
Setup

4

Fig. 8 experiment setup

3.2. Experiment result

In order to compare with the single probe searching

technique with backtracking, we simulated an 8*8 mesh

network. The simulation was performed under uniform

random traffic of requests. The duration of data transmission

(lifetime) was 400 probe cycles after the path had been

established. The inter-arrival times of requests obey a Poisson

distribution. We used the retry-until-success policy. Each

source sends out 3000 set-up requests, and first 300 and last

300 are discarded because of warm-up and tail phases. The

total delay includes the waiting time for a request in the queue

and the setup delay for a request, which extends from first

time sending until the final success.

The average total delay versus offered load is shown in

Fig. 9. The delay data for sequential probe is extracted from

[1]. Here offered load refers to the duration of a path times

injection rate. Suppose injection rate of requests is 1/2000

cycles, and the duration (lifetime) of a path is 400 cycles, then

the offered load is 400/2000=0.2.

As shown in Fig. 9, our parallel probing outperforms

sequential probe searching with backtracking. For example,

the turning point in our case is delayed until offered load is

0.25, and the delay at 0.2 load is 21% reduced.

In order to compare with the centralized HAGAR solution

[2], we use request success rate versus route rate. The request

success rate denotes the ratio between established and desired

paths and indicates how many of the requested paths could be

established. Route rate refers to the portion of clock cycles in

which a node is used for transferring data [2]. And master

percentage means the percentage of nodes which can send out

set-up requests. They are uniformly randomly distributed in

the system.

We simulated 5,000,000 cycles, of which the first

1,000,000 cycles were discarded as warm up.

However, the success rate should be related to the setup

delay to make it a useful metric. In [2][8] setup delay data is

not reported. In Fig. 10, we use the retry-for-free-path policy

to compare with HAGAR[2]. Our method has a better success

rate when route rate is between 0.1 and 0.8. In the range 0.1-

0.2 parallel probing has a 20% higher success rate.

We also compared a 6*6 network with 200 cycle lifetime.

In this case, parallel probing outperforms HAGAR at every

point. Our method has around 50% improvement over

HAGAR in terms of success rate at route rates 0.8-1.0. Also,

in a 16*16 network with 1000 cycles lifetime parallel probing

is superior by 50% for route rates 0.8-1.0. Due to page

limitation, figures are not listed here.

In addition, we compared the three mentioned policies of

our parallel probe searching method. Here we define send-out

success rate as the ratio between succeeded requests and the

requests sent out from the queue. It indicates the success

probability of a single request after sending it out. The

relationships between route rate and send-out success rate and

delay are shown in Fig. 11 and Fig. 12, respectively. Fig. 12

shows the delays only up to the saturation point. We find that,

1) retry-until-success policy has a 100% send-out success rate,

at the expense of long latency at high network loads. Even in a

saturated network every request eventually gets served, but the

delay is unbounded. 2) The send-out success rate of retry-for-

free-path policy stays around 0.54 when route rate is greater

than 0.3. This is because the maximum speed of sending out

requests becomes less than the speed of generating requests.

The average delay of a request waiting in the queue keeps

increasing. Although more requests are generated, a limitation

exits for the requests that can be sent out during a fixed time

interval. Therefore, the send-out success rate stabilizes even if

the route rate still grows. 3) No-retry policy has the worst

send-out success rate but the best delay performance. In our

experiments the requests generation rate never exceeds the

requests are sent out rate, even as route rate reaches 1.0.

Fig. 9 Path set-up latency performance (8*8 mesh, lifetime 400)

Fig. 10 Comparison of the different Path searching method, for lifetime 200

cycles at 16*16 mesh and master percentage 20% and %50

 Fig. 11 success rate of the 3 policies of parallel probe searching method for a

lifetime of 200 cycles with a 16*16 mesh and master percentage 50%

As mentioned, the total delay of a request is composed of

delay of waiting in the queue and the setup delay, which

extends from the first the time a request is sent out until the

time the request is completed.

For retry-until-success policy, all delay types increase with

the route rate without upper bounds. Some part of the average

total delay and worst total delay curve is not shown in Fig. 12

when the delay was unbounded at that point. The delay in the

queue keeps increasing and dominates at route rates above 0.2.

For the retry-for-free-path policy the average total delay

and worst total delay also goes up with the route rates, and

become unbounded above a route rate of 0.3. But the worst

0

500

1000

1500

2000

0
.1

3

0
.1

4

0
.1

7

0
.2

0

0
.2

5

0
.2

9

0
.3

3

0
.4

0

0
.5

0

0
.6

7

1
.0

0

parallel probe delay

single probe delay

Offered load

A
ve

ra
ge

 t
o

ta
l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

50% ma, Parrallel probe
50% ma, HAGAR
20% ma, Parallel probe
20% ma, HAGAR

route rate

re
q

u
es

t
 s

u
cc

es
s

ra
te

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

retry until success
retry for free path
no retry

route rate

se
n

d
-o

u
t

su
cc

es
s

ra
te

setup delay is bounded, which is α*n
2
*[3(2n-2)+6]=

 with N=n
2
 being the number of nodes. For a 16*16

mesh with (master percentage) %50, it is 12288 cycles. As

shown in Fig. 12, the worst setup delay observed in our

simulations is 2200 cycles. According to our experience, the

theoretical worst case has a very low probability to occur.

Fig. 12 Delay of the 3 policies of parallel probe searching method for lifetime

200 cycles at 16*16 mesh and master percentage 50%.

For the no-retry policy, the average total delay is around

36 cycles, and goes up slowly with the route rate. The worst

case setup delay is also bounded. In theory it is 3*(2*n-

2)+6=6n=96 cycles in a 16*16 mesh. In our simulations the

worst case observed is exactly 96 cycles.

3.3. Synthesis results

Our switch has been synthesized by using Synopsys

Design compiler with SMIC 90 nm library. The maximum

clock frequency (probe clock) for the control path is 570MHz,

the maximum clock frequency for data path is 1.8 GHz. This

dual-clocking scheme has been well described and

implemented in the work of Pham et al. [1]. It means that the

switch operates at most at 570MHz during probe search stage.

When the path has been established, it can use 1.8 GHz clock

frequency to transfer source synchronized data [1]. In

comparison, the sequential probe of [1] uses 0.18 um process

and can work at 345MHz control path frequency and 923

MHz data path frequency. HAGAR [2] has been synthesized

with FARADAY‟s 130nm UMC library and work at 200 MHz

in an 8*8 mesh and at 50 MHz in a 16*16 mesh.

The area consumption for each switch node is 18733

NAND gates for a data path width of 64bits. Of that the

control path consumes 10,364 NAND gates, and the data path

consumes 8369 NAND gates. Hence, the per-bit area is

18733/64=292 gates. In comparison the sequential probe

switch of [2] uses 12460/16=778 gates per bit.

Compared with the centralized solution with HAGAR,

which has a payload of 68bit (32bit for address, 32 bit for

data. 4bit for read/write/ mode), our solution is also better in

terms of area, see Fig. 13.

4. CONCLUSION

We have proposed a circuit switched NoC with parallel

probing, a parallel method for connection setup. Our

simulation results demonstrate improvements in terms of setup

delay, and success rate compared to previous work at

comparable or reduced area.

Fig. 13 Area consumption of all combined switches.

 The special property of our switch is that the path search

results can be acknowledged within a predictable, very low

time limit under certain policies like retry-for-free-path or no-

retry. In other words, worst case delay can be bounded in

those policies. This property is important for real-time based

applications. Hence, we have shown that parallel probing is an

efficient and cost effective set-up procedure for circuit

switched NoCs that can be used for dynamic circuit

configuration in real-time and high performance applications.

However, due to the relative long setup time and the high

resource usage during setup, it is only suitable for certain

applications. For example, when life time of a path is short, a

packet switching network will outperform our circuit

switching. In future, we will do a comparison to identify the

suitable application domain for circuit switched networks.

Furthermore, we plan to expand the flexibility of our

method. . Currently entire links are reserved for a connection

even if only a fraction of the link bandwidth is required. In

future work we will consider the support for multiple sub-

networks, which allows a connection to use only a fraction of

a link.

5. REFERENCE
[1] P.-H. Pham, J. Park, P. Mau, C. Kim."Design and Implementation of

Backtracking Wave-Pipeline Switch to Support Guaranteed Throughput
in Network-on-Chip.” IEEE Trans. VLSI, vol. 99, 2010.

[2] M. Winter and G.P. Fettweis "Guaranteed service virtual channel

allocation in NoCs for run-time task scheduling." Design, Automation &
Test in Europe Conference & Exhibition (DATE), Page 1-6, March

2011.

[3] D. Wiklund and L. Dake, “SoCBUS: Switched network on chip for hard
real time embedded systems.” In Proc. Int. Parallel Distrib.

Process.Symp., 2003, p. 8.

[4] M. Millberg et al. “Guaranteed Bandwidth using Looped Containers in
Temporally Disjoint Networks within the Nostrum Network on Chip.”

In Proc. of DATE, pages 890–895, February 2004.

[5] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal network on
chip: Concepts, architectures, and implementations.” IEEE Des. Test.

Comput., vol. 22, no. 5, pp. 414–421, 2005.

[6] A. Hansson, K. Goossens, and A. Radulescu. “A Unified Approach to
Constrained Mapping and Routing on Network-on-Chip Architectures”.

In Proc. of 3rd Int. Conf. on HW/SW Codesign and System Synthesis,

pages 75–80, 2005.
[7] J. Hu and R. Marculescu. “Energy-Aware Communication and Task

Scheduling for Network-on-Chip Architectures under Real-Time

Constraints.” In Proc. of DATE, pages 234–239, February 2004.
[8] M. Winter and G. Fettweis. “A Network-on-Chip Channel Allocator

for Run-Time Task Scheduling in Multi-Processor System-on-Chips.” In

Proc. of 11th Euromicro Conference on Digital System Design (DSD),
pages 133–140, September 2008.

[9] N. Ma, Z. Lu, L. Zheng "System design of full HD MVC decoding on

mesh-based multicore NoCs." Journal Microprocessors & Microsystems
Volume 35 Issue 2, March, 2011

1

10

100

1000

10000

100000

1000000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
average total delay, retry until success
wrost total delay, retry until success
worst setup delay, retry until success
average total delay, retry for free path
wrost total delay, retry for free path
worst setup delay, retry for free path
average total delay,no retry
worst total delay, noretry
worst setup delay, no retry

D
el

ay
 in

 c
yc

le
s

route rate

0

2000

4000

6000

0 50 100 150 200 250

comb. HAGAR
parallel probe

K
N

A
N

D

Number of routers (nodes)

