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Abstract- We propose a circuit switching Network-on-chip 

with a parallel probe searching setup method, which can search 

the entire network in constant time, only dependent on the 

network size but independent of the network load. Under a 

specific search policy, the setup procedure is guaranteed to 

terminate in time 3D+6 cycles, where D is the geometric distance 

between source and destination. If a path can be found, the 

method succeeds in 3D+6 cycles; if a path cannot be found, it fails 

in maximum 3D+6 cycles. Compared to previous work, our 

method can reduce the setup time and enhance the success rate of 

setups. Our experiments show that compared with a sequential 

probe searching method, this method can reduce the search time 

by up to 20%. Compared with a centralized channel allocator 

method, this method can enhance the success rate by up to 20%. 

1. INTRODUCTION AND RELATED WORK 

Several NoCs offer guaranteed services to meet the QoS 

demand of applications [1][2][3][4][5]. For example, some of 

them utilize packet switching mechanism with time division 

multiplexing channels [2][4][5], while others utilize pure 

circuit switching mechanism [1][3]. They all adopt the idea of 

setting up a dedicated path before data can be transferred.  A 

main challenge is how to efficiently search a path and allocate 

the communication resources for it. 

Some methods try to solve this problem at compilation 

time [6][7]. However, as mentioned in [8], they face the 

difficulty that applications like H.264 [11] and the possibility 

of several applications running in parallel do not allow an 

efficient static policy with task mapping and channel 

allocation.  Thus, dynamic path searching methods are a 

flexible alternative. 

Winter and Fettweis [2][8] developed a centralized way to 

realize dynamic path searching and channel allocation. They 

designed a Network-on-chip Channel Allocator for the 

Aetherial NoC [5]. One of the nodes is designated as the 

“NoCmanager”. Inside this node, a special component called 

Hardware Graph Array (HAGAR) is used. HAGAR stores all 

channel usage information of the network. If other nodes try to 

set up a guaranteed path, they must first send their requests to 

the NoCmanager node via a best effort network, which is the 

Aetherial packet switching network. Then the NoCmanager 

node starts to deal with the request and uses HAGAR to 

compute the path. After computation, the NoC manager will 
send back the routing information in order to set-up the 

guaranteed service path as requested. The NoC Channel 

Allocator is a centralized solution for dynamic path 

configuration. The advantage is that the NoCmanager node 

can work very fast. The disadvantage is that it is not a scalable 

solution. Also, since requests are sent via a best effort network 

to the “NoCmanager”, the delay of setting up a path is neither 

predictable nor guaranteed. 

To overcome such a scalability issue, distributed path 

searching method was developed. Pham et al. [1] designed a 

Backtracking Wave-pipeline circuit switching NoC, which 

supports sequential probe search. During the path searching 

phase, a probe is sent out. As the probe travels from the source 

node towards the destination, it reserves the channels it has 

passed for future data transfer. When this probe encounters 

congestions, it will backtrack one hop, cancel the last channel 

it has booked, and try another way. When this probe finally 

reaches the destination, a path is established and the data 

transfer phase can be launched. If no path can be found, 

eventually the probe will backtrack to the source node. This 

distributed method with circuit switching mechanism has the 

advantage of supporting many nodes searching their path in 

parallel. But the disadvantage is that when the majority of 

circuit links are already in use, the backtracking based search 

may take a long time. 

In this paper, we develop a parallel probe searching 

approach.  Our work has the following properties: 

1) The parallel probing can be combined with several different 

retry policies, that lead to different trade-offs and 

properties. 

2) Under no-retry policy, if a shortest path connection can be 

found, it is guaranteed to be found in exactly 3*D +6 

cycles; if the search fails, it fails  in maximum 3*D+6 

cycles. 

3) Under retry-for-free-path policy, if a free path exists, it will 

always be found in maximum       cycles, with N being 

the number of nodes. 

4) On average our method has shorter setup latency than 

previous methods. 

5) The switch has a simple structure with an inexpensive and 

efficient implementation.  

We have simulated our design and compared it with above 

mentioned work of [1] and [2]. The results show that our work 

has advantages in delay, success rate and area. 

2. DETAILS OF PARALLEL PROBING 

2.1. Intuition 

As shown in Fig. 1, node 1 tries to set-up a path to the 

destination node 16. During the first cycle the source node 

sends out two probes to the neighboring nodes 2 and 5. In the 

second hop each probe splits into two probes and both 

continue to travel towards the destination along all possible 

minimum paths. 

In the third hop node 6 receives two probes from the same 

setup request. One of them is cancelled and all the channels it 

has booked before are released. However, the channel between 

node 1 and node 2 is not released, because it is still needed for 

the probe that has travelled further to node 3. In this way a 



 

wavefront of probes travel through the network and reach the 

destination on a minimal path. The time is exactly 3D, where 

D is the distance in terms of hops, and it takes 3 cycles to 

traverse each hop. When a probe successfully reaches the 

destination, an acknowledgement is sent back to the source 

node. 
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a) In each node a probe may double.  b) When two probes meet, one is 

cancelled. 
Fig. 1 An example of the parallel probe searching method. 

Whenever two probes of the same request meet, one of 

them is regarded as redundant and is canceled, as shown in 

Fig. 1 b), and all channels used only by the canceled probe are 

released. The cancellation process proceeds backwards hop by 

hop. The switch does a cancellation based on the stored 

connectivity information that binds an input port to an output 

port. When a cancel signal appears on an output port from a 

downstream switch, the corresponding input port is looked up, 

the connection is canceled, and the cancel signal is forwarded 

upstream to the input port. Applying this mechanism, if 

several possible paths exist, one and only one of them can be 

finally booked, just as desired.   

2.2. Structure of the switch 

Fig. 2 shows the interface of each switch to the 

neighboring switches and to the local node. In a mesh 

topology, every switch is connected to its four neighbors and 

to the local resource node. Each link has a duplex data 

channel. This data channel is used for carrying the probe 

during setup and for transmitting data when a connection has 

been established. Each probe is one “flit” length.  Every data 

channel is associated with an answer (ANS) signal consisting 

of 2 bit, which goes in the opposite direction to data channel, 

and 1 bit for a Request signal, which travels in the same 

direction as data channel. When the request signal is logic „1‟, 

a probe search is running or data transfer is active. When 

request signal is „0‟, it denotes idle state, and an established 

path will be released. The usage of ANS signal is listed in 

TABLE 1, which will be introduced in the following section. 
TABLE 1 THE USAGE OF ANS (2 BITS) 

Value Usage 

00 Path search continue/Destination is idle 

01 Path cancel due to contention 

10 Path cancel due to blockage 

11 Path established/Busy destination 

2.3. Operation flow 

As shown in Fig. 3, our circuit switching network has six 

operation phases. The details are explained in the following.   

2.3.1. Probe sendout 

In this phase probes are generated and sent out. The 

request signal is set to „1‟. The probe format is shown in 

TABLE 2, which contains source node address, destination 

node address, high level priority and low level priority. As a 

probe travels inside the network, it books the data channels 

together with the associate ANS and request signal. The probe 

itself is forwarded to the next node or nodes towards the 

destination. When a probe can move forward, the ANS to its 

previous node is set to “00”. 
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Fig. 2 Signal connection of a 2*2 mesh 
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Fig. 3 Phases of operation 

TABLE 2 Probe format 

Src.Addr Dest. Addr High Priority Low Priority 

2.3.2. Channel temporally booked 

A channel has 3 states, which are free, booked and 

confirmed. When a probe enters into a node, after winning 

arbitration, then   

1) If the channels demanded by this probe are in free state, 

these channels are booked and switched into booked state. 

2) If the channel demanded by this probe has already been 

booked by another probe, but this probe has a higher 

priority, it can preemptively book this channel. In this case, 

the path booked by the old probe will be cancelled. 

If a probe succeeds in booking one channel, the ANS 

signal will remain “00”. 

2.3.3.  Channel cancelled 

Since a probe can have up to two desired channels in 

different directions when it enters a node, if and only if the 

probe is unable to book any channels, then we regard this 

probe as “failed”. When a probe fails, the channel between the 

previous node and the current node is cancelled. Several 

factors can cause a probe to fail: 

1) Its priority is lower than the probes which are demanding 

the same channel. This situation is caused by either the 



 

probe loosing arbitration, or the channel booked by this 

probe is preempted by others. 

2) Two probes carrying the same set-up request meet at the 

same node. One of them succeeds and the other fails.  

3) All desired channels are used up by other connections and 

are in confirmed state. 

If the failure is caused by the case 1), the ANS signal will 

be set to “01”. If the failure is due to case 2) or 3), the ANS 

signal will be set to “10”. Both “01” and “10” ANS will 

inform the previous node to release the channel. 

Since a probe may have two desired directions, it is 

possible that a probe has case 1) failure in one direction, and 

case 2) or 3) failure in the other. In this situation case 1) 

always has higher priority. 

2.3.4. Channel confirmed 

When a probe reaches its destination, the ANS signal is set 

to “11” and transferred back. Channels along this probe‟s path 

will turn into “confirmed” state after receiving ANS “11”.  

Confirmed channels can no longer be preempted. 

2.3.5. Path established 

Finally, when a source node receives a “11” ANS signal, 

then a connection is established and data transfer can 

commence. 

2.3.6. Path search fail 

When the source node receives a “01” or “10” ANS signal, 

the path search request has failed, and the reasons are 

distinguished as follows: 

1) If the ANS is “01”, it means that one of its probes has once 

contended with other active probes, and lost because of its 

low priority.  

2) If the ANS is “10”, it means that the probe has searched the 

entire network, but no minimum path is currently available. 

Using this distinction, different policies can be applied to 

achieve different effects, e.g. see Fig. 11. 

2.4. Detailed switch structure 

According to the operation flow, the internal structure of a 

switch is shown in Fig. 4. It is divided into two parts: control 

path and data path. The data path transfers data through the 

configured data path crossbar. The control path is used to set 

up or tear-down a data path. The control path and data path 

share the same input and output wires.  

In the control path, there are two crossbars, internal probe 

crossbar and control signal crossbar. Besides the crossbars, 

there is one arbiter, 5 input and 5 output controllers.  

The probe crossbar is used to transfer a probe from one 

input to one output. The control signal crossbar is used to 

transfer requests and the ANS signal to the corresponding 

output. 

The arbiter is used to solve contention between input 

probes and probes that already book a channel. The arbiter 

compares their priority and decides which probe wins. 

Inside the input controller there is a channel monitor, a 

failure type monitor and an FSM. The channel monitor records 

the channels booked by the current probe. If the number of 

channels booked by the current probe becomes zero, then the 

probe is regarded as “failed”. Whether the ANS signal 

transfers back a “01” or a “10” is decided by the failure type 

monitor. The failure type monitor remembers the cause of a 

failure, as described in section 2.3.3.  The possible FSM states 

are idle, prepare, booked, cancellation and fixed. Its state 

transition graph is shown in Fig. 5 a). For example, when the 

ANS signal “11” is received, the input controller changes its 

state to “fixed” and transfers the “11” ANS signal to the 

previous node. 

The output controller monitors and changes the states of 

the corresponding channel. An FSM is used inside the output 

controller; its states are shown in Fig. 5 b). 

A probe needs two clock cycles to travel through the entire 

control path. 

2.5. Priority strategy 

As we mentioned above, contention between probes 

carrying different requests is a key point in this parallel 

probing method. Therefore, we have to wisely design our 

priority policy to solve contention. 
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Fig. 4 Internal structure of a switch 

We propose the following priority strategy:  

1) The older the “age”, the higher the priority. The “age” here 

can be understood as the time (in number of clock cycles) 

between current time and the first sent-out time of the 

request. The two level priorities are used to represent age. 

2) Probes with higher priority can preempt channels booked 

by lower priority probes, if channels are in booked state. 

This policy is used to avoid live lock cause by mutual 

blockage. Consider four requests A:13, B: 42, C: 24, 

D: 31 (Fig. 6). If these four requests are sent out at the same 

time, then they will block each other. Request A booked 

channel 14 and 12, then attempts to take channel 43 

and 23. However, channel 43 has been booked by request 

B, and 23 by request C. Thus A is blocked by requests C 

and B. The situation is similar for requests B, C, and D. 

Without preemption, none of these probes can proceed, and 

retrying in a deterministic manner will not help. Thus, we use 



 

preemption to ensure at least one of them can preempt the 

channels booked by the others and proceed to its destination.  
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Fig. 5   a) FSM of input controller         b) FSM of output controller 

3) The source node id is used to avoid the stalemate when 

two different probes have the same priority. Rather than 

randomly selecting, the winner will be the one with the largest 

node id. This determinism leads to a winner-gets-all 

arbitration, which is required by retry-for-free-path policy 

(introduced in next section). Winner-gets-all arbitration is 

depicted in Fig. 6 b), suppose probe A and B with the same 

priority are contending for both channels 1 and 2. In winner-

gets-all arbitration, one of them will win both channels, 

avoiding the situation that A gets channel 1 and B gets channel 

2 which may for instance happen under random selection.  
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Fig. 6 a) live lock of probes                      b) Winner-gets-all  

2.6. Time consumed in parallel probe search. 

For every switch, it takes two cycles for a probe to traverse 

a switch, and it takes 1 cycle for the ANS signal to transfer 

back. So, it takes at most 3*D+6 cycles for a probe to travel 

from source to destination and send back the ANS signal (D is 

the hop distance between source and destination). 6 cycles is 

the overhead consumed in the source and destination nodes. 

Therefore, in an n*n mesh the worst case for a single search 

takes 3*(2*n-2)+6 cycles, no matter if the result is a success or 

a fail. In other words, it means the time for every single search 

is predictable and bounded, and has a complexity of O(n). 

We have studied several policies.  

1) No-retry. If a source node receives ANS “01” or “10”, 

it will mark the request as “failed”, then pick new request 

from the queue and send it out.  Since every request just takes 

one single search, the maximum set-up time for a request in a 

n*n mesh is 3*(2*n-2)+6 cycles.  

2) Retry-for-free-path.  If the source node receives ANS 

“01”, the probe failed due to contention with other active 

probes. This means there might be a free path but the probe 

failed to find it. After some delay, the source will retry the 

request until the ANS becomes “10” or “11”, see Fig. 7Fig. 6. 

In experiments the retry interval is fixed to 3*(2*n-2)+6 

cycles. 
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Fig. 7 Retry-for-free-path policy 

The maximum number of retries required for a single 

search using retry-for-free-path policy can be calculated. Since 

the priority is increasing with the “age” of a probe, as the 

number of retries increases, the priority will also increase. 

Besides, one source node can only send out one request at a 

time, thus during every retry interval, there must be a node 

with the highest priority which never loses arbitration. 

Suppose at time t, α*n
2
 nodes are sending out requests, where 

α is the percentage of nodes which enabled to send out set-up 

requests (called master percentage). So the max retry times 

for a request to finish a retry-for-free-path search is α*n
2
, 

because during previous α*n
2
 -1 retry intervals, α*n

2
-1 other 

requests have finished their search, and this one has become 

the “oldest” one with the highest priority. It will finish a retry-

for-free-path search without failure due to contention. In this 

case the set-up time spent for a single search using this policy 

is α*n
2
 *[3(2n-2)+6] cycles. And the time complexity is O(n

3
). 

3) Retry-until-success. In this policy, the source node 

keeps retrying a request until it successfully sets up a 

connection. In this case the worst search time is unbounded, 

because it is unknown when a free path becomes available. 

3. EXPERIMENT AND SIMULATION RESULTS 

3.1. Simulation method 

As in Fig. 8, in each node a request generator generates 

set-up requests according to certain probability and pushes 

them into a queue.  A FSM take a request out of the queue and 

send it out when the previous request has been accomplished 

or abandoned. After sending out a request, the FSM waits for 

the ANS signal to decide what to do next. In our experiment, 

we have studied the three kind of policies mentioned above. 
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Fig. 8 experiment setup 

3.2. Experiment result 

In order to compare with the single probe searching 

technique with backtracking, we simulated an 8*8 mesh 

network. The simulation was performed under uniform 

random traffic of requests. The duration of data transmission 

(lifetime) was 400 probe cycles after the path had been 

established. The inter-arrival times of requests obey a Poisson 



 

distribution. We used the retry-until-success policy. Each 

source sends out 3000 set-up requests, and first 300 and last 

300 are discarded because of warm-up and tail phases.  The 

total delay includes the waiting time for a request in the queue 

and the setup delay for a request, which extends from first 

time sending until the final success. 

The average total delay versus offered load is shown in 

Fig. 9. The delay data for sequential probe is extracted from 

[1]. Here offered load refers to the duration of a path times 

injection rate. Suppose injection rate of requests is 1/2000 

cycles, and the duration (lifetime) of a path is 400 cycles, then 

the offered load is 400/2000=0.2.  

As shown in Fig. 9, our parallel probing outperforms 

sequential probe searching with backtracking. For example, 

the turning point in our case is delayed until offered load is 

0.25, and the delay at 0.2 load is 21% reduced. 

In order to compare with the centralized HAGAR solution 

[2], we use request success rate versus route rate. The request 

success rate denotes the ratio between established and desired 

paths and indicates how many of the requested paths could be 

established. Route rate refers to the portion of clock cycles in 

which a node is used for transferring data [2]. And master 

percentage means the percentage of nodes which can send out 

set-up requests. They are uniformly randomly distributed in 

the system. 

           
                       

                 
 

We simulated 5,000,000 cycles, of which the first 

1,000,000 cycles were discarded as warm up. 

However, the success rate should be related to the setup 

delay to make it a useful metric. In [2][8] setup delay data is 

not reported. In Fig. 10, we use the retry-for-free-path policy 

to compare with HAGAR[2]. Our method has a better success 

rate when route rate is between 0.1 and 0.8. In the range 0.1-

0.2 parallel probing has a 20% higher success rate. 

We also compared a 6*6 network with 200 cycle lifetime. 

In this case, parallel probing outperforms HAGAR at every 

point. Our method has around 50% improvement over 

HAGAR in terms of success rate at route rates 0.8-1.0. Also, 

in a 16*16 network with 1000 cycles lifetime parallel probing 

is superior by 50% for route rates 0.8-1.0. Due to page 

limitation, figures are not listed here. 

In addition, we compared the three mentioned policies of 

our parallel probe searching method. Here we define send-out 

success rate as the ratio between succeeded requests and the 

requests sent out from the queue. It indicates the success 

probability of a single request after sending it out. The 

relationships between route rate and send-out success rate and 

delay are shown in Fig. 11 and Fig. 12, respectively. Fig. 12 

shows the delays only up to the saturation point. We find that, 

1) retry-until-success policy has a 100% send-out success rate, 

at the expense of long latency at high network loads. Even in a 

saturated network every request eventually gets served, but the 

delay is unbounded. 2) The send-out success rate of retry-for-

free-path policy stays around 0.54 when route rate is greater 

than 0.3. This is because the maximum speed of sending out 

requests becomes less than the speed of generating requests. 

The average delay of a request waiting in the queue keeps 

increasing. Although more requests are generated, a limitation 

exits for the requests that can be sent out during a fixed time 

interval. Therefore, the send-out success rate stabilizes even if 

the route rate still grows. 3) No-retry policy has the worst 

send-out success rate but the best delay performance. In our 

experiments the requests generation rate never exceeds the 

requests are sent out rate, even as route rate reaches 1.0. 

 
Fig. 9 Path set-up latency performance (8*8 mesh, lifetime 400) 

 
Fig. 10 Comparison of the different Path searching method, for lifetime 200 

cycles at 16*16 mesh and master percentage 20% and %50

 
 Fig. 11 success rate of the 3 policies of parallel probe searching method for a 

lifetime of 200 cycles with a 16*16 mesh and master percentage 50% 

As mentioned, the total delay of a request is composed of 

delay of waiting in the queue and the setup delay, which 

extends from the first the time a request is sent out until the 

time the request is completed.  

For retry-until-success policy, all delay types increase with 

the route rate without upper bounds. Some part of the average 

total delay and worst total delay curve is not shown in Fig. 12 

when the delay was unbounded at that point. The delay in the 

queue keeps increasing and dominates at route rates above 0.2. 

For the retry-for-free-path policy the average total delay 

and worst total delay also goes up with the route rates, and 

become unbounded above a route rate of 0.3. But the worst 
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setup delay is bounded, which is α*n
2
*[3(2n-2)+6]=   

      with N=n
2
 being the number of nodes. For a 16*16 

mesh with   (master percentage) %50, it is 12288 cycles. As 

shown in Fig. 12, the worst setup delay observed in our 

simulations is 2200 cycles. According to our experience, the 

theoretical worst case has a very low probability to occur. 

  
Fig. 12 Delay of the 3 policies of parallel probe searching method for lifetime 

200 cycles at 16*16 mesh and master percentage 50%. 

For the no-retry policy, the average total delay is around 

36 cycles, and goes up slowly with the route rate.  The worst 

case setup delay is also bounded. In theory it is 3*(2*n-

2)+6=6n=96 cycles in a 16*16 mesh. In our simulations the 

worst case observed is exactly 96 cycles. 

3.3. Synthesis results 

Our switch has been synthesized by using Synopsys 

Design compiler with SMIC 90 nm library. The maximum 

clock frequency (probe clock) for the control path is 570MHz, 

the maximum clock frequency for data path is 1.8 GHz. This 

dual-clocking scheme has been well described and 

implemented in the work of Pham et al. [1].  It means that the 

switch operates at most at 570MHz during probe search stage. 

When the path has been established, it can use 1.8 GHz clock 

frequency to transfer source synchronized data [1]. In 

comparison, the sequential probe of [1] uses 0.18 um process 

and can work at 345MHz control path frequency and 923 

MHz data path frequency. HAGAR [2] has been synthesized 

with FARADAY‟s 130nm UMC library and work at 200 MHz 

in an 8*8 mesh and at 50 MHz in a 16*16 mesh.  

The area consumption for each switch node is 18733 

NAND gates for a data path width of 64bits. Of that the 

control path consumes 10,364 NAND gates, and the data path 

consumes 8369 NAND gates. Hence, the per-bit area is 

18733/64=292 gates. In comparison the sequential probe 

switch of [2] uses 12460/16=778 gates per bit. 

Compared with the centralized solution with HAGAR, 

which has a payload of 68bit (32bit for address, 32 bit for 

data. 4bit for read/write/ mode), our solution is also better in 

terms of area, see Fig. 13. 

4. CONCLUSION 

We have proposed a circuit switched NoC with parallel 

probing, a parallel method for connection setup. Our 

simulation results demonstrate improvements in terms of setup 

delay, and success rate compared to previous work at 

comparable or reduced area.    

 
Fig. 13 Area consumption of all combined switches. 

 The special property of our switch is that the path search 

results can be acknowledged within a predictable, very low 

time limit under certain policies like retry-for-free-path or no-

retry. In other words, worst case delay can be bounded in 

those policies. This property is important for real-time based 

applications. Hence, we have shown that parallel probing is an 

efficient and cost effective set-up procedure for circuit 

switched NoCs that can be used for dynamic circuit 

configuration in real-time and high performance applications. 

However, due to the relative long setup time and the high 

resource usage during setup, it is only suitable for certain 

applications. For example, when life time of a path is short, a 

packet switching network will outperform our circuit 

switching. In future, we will do a comparison to identify the 

suitable application domain for circuit switched networks. 

Furthermore, we plan to expand the flexibility of our 

method. . Currently entire links are reserved for a connection 

even if only a fraction of the link bandwidth is required. In 

future work we will consider the support for multiple sub-

networks, which allows a connection to use only a fraction of 

a link. 

5. REFERENCE 
[1] P.-H. Pham, J. Park, P. Mau, C. Kim."Design and Implementation of 

Backtracking Wave-Pipeline Switch to Support Guaranteed Throughput 
in Network-on-Chip.” IEEE Trans. VLSI, vol. 99, 2010. 

[2] M. Winter and G.P. Fettweis   "Guaranteed service virtual channel 

allocation in NoCs for run-time task scheduling." Design, Automation & 
Test in Europe Conference & Exhibition (DATE), Page 1-6, March 

2011. 

[3] D. Wiklund and L. Dake, “SoCBUS: Switched network on chip for hard 
real time embedded systems.” In Proc. Int. Parallel Distrib. 

Process.Symp., 2003, p. 8. 

[4] M. Millberg et al. “Guaranteed Bandwidth using Looped Containers in 
Temporally Disjoint Networks within the Nostrum Network on Chip.” 

In Proc. of DATE, pages 890–895, February 2004. 

[5] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal network on 
chip: Concepts, architectures, and implementations.” IEEE Des. Test. 

Comput., vol. 22, no. 5, pp. 414–421, 2005. 

[6] A. Hansson, K. Goossens, and A. Radulescu.  “A Unified Approach to 
Constrained Mapping and Routing on Network-on-Chip Architectures”. 

In Proc. of 3rd Int. Conf. on HW/SW Codesign and System Synthesis, 

pages 75–80, 2005. 
[7]  J. Hu and R. Marculescu. “Energy-Aware Communication and  Task 

Scheduling for Network-on-Chip Architectures under Real-Time 

Constraints.” In Proc. of DATE, pages 234–239, February 2004. 
[8] M.  Winter and G.  Fettweis. “A Network-on-Chip  Channel  Allocator 

for Run-Time Task Scheduling in Multi-Processor System-on-Chips.” In 

Proc. of 11th Euromicro Conference on Digital System Design (DSD), 
pages 133–140, September 2008. 

[9] N. Ma, Z. Lu, L. Zheng "System design of full HD MVC decoding on 

mesh-based multicore NoCs." Journal Microprocessors & Microsystems 
Volume 35 Issue 2, March, 2011 

1 

10 

100 

1000 

10000 

100000 

1000000 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
average total delay, retry until success 
wrost total delay, retry until success 
worst setup delay, retry until success 
average total delay, retry for free path 
wrost total delay, retry for free path 
worst setup delay, retry for free path 
average total delay,no retry 
worst total delay, noretry 
worst setup delay, no retry 

D
el

ay
 in

 c
yc

le
s 

route rate 

0 

2000 

4000 

6000 

0 50 100 150 200 250 

comb. HAGAR 
parallel probe 

K
N

A
N

D
 

Number of routers (nodes) 


