
A TDM NoC supporting QoS, multicast, and fast
connection set-up

Radu Stefan
TU Eindhoven

R.Stefan@tue.nl

Anca Molnos
TU Delft

A.M.Molnos@tudelft.nl

Angelo Ambrose
UNSW

ajangelo@cse.unsw.edu.au

Kees Goossens
TU Eindhoven

K.G.W.Goossens@tue.nl

Abstract—Networks-on-Chip are seen as promising intercon-
nect solutions, offering the advantages of scalability and high
frequency operation which the traditional bus interconnects lack.
Several NoC implementations have been presented in the litera-
ture, some of them having mature tool-flows and ecosystems. The
main differentiating factor between the various implementations
are the services and communication patters they offer to the end-
user. In this paper we present dAElite, a TDM Network-on-Chip
that offers a unique combinations of features, namely guaranteed
bandwidth and latency per connection, built-in support for
multicast, and a short connection set-up time. While our NoC
was designed from the ground up, we leverage on existing tools
for network dimensioning, analysis and instantiation. We have
implemented and tested our proposal in hardware and we found
it to compare favorably to the other NoCs in terms of hardware
area. Compared with aelite, which is closest in terms of offered
services our network offers connection set-up times faster by a
factor of 10 network, traversal latencies decreased by 33%, and
improved bandwidth.

I. INTRODUCTION

As the complexity of Systems-on-Chip (SoC) increases,
traditional bus-based interconnects become limited in terms of
efficiency and performance. Networks-on-Chip [9], [4] (NoC)
were proposed as a scalable replacement that can cope with
the increasing number of on-chip IPs.
SoCs typically execute various, real-time or non real-time,

applications which may have diverse requirements from the
interconnect, e.g., high throughput for video, low latency to
serve cache misses, etc. These applications run concurrently
in different combinations denoted as “use-cases”. Providing
NoC service guarantees, e.g., minimum bandwidth, bounded
latency, is crucial for the timing analysis and verification
of real-time applications [15]. At the same time, special
communication patterns like multicast or broadcast may be
required, for example for implementing cache coherence or
synchronization primitives, and in certain applications that
involve distributed decision making algorithms. Besides the
service guarantees and various communication patterns, the
NoC implementation should have low cost, and ideally provide
fast (re)configuration to adapt to dynamic use case switches.
Existing NoC approaches either (i) offer service guarantees but
do not support multicast [14], [17], or (ii) provide multicast
but at the expense of a high cost [10], [23] or of compromising
the guarantees of service [35].
In this paper we propose a Circuit Switching network

which supports multicast and offers hard guarantees in terms
of bandwidth and latency per connection. Our network uses

978-3-9810801-8-6/DATE12/ c©2012 EDAA

a time-division-multiplexing (TDM), contention-free scheme
and a distributed routing model similar to one of the Æthereal
[10] flavors. However, we propose a new configuration infras-
tructure, that is one order of magnitude faster than Æthereal,
and has efficient encoding of the configuration data, thus in-
creasing the speed of setting up and tearing down connections.
Our proposal compares favorably in terms of hardware cost
and performance to the most cost-effective of the Æthereal
models. We support only guaranteed-services (GS) because,
as suggested in [11], GS offers a better performance-cost
ratio and are in fact the more likely to be required by
applications in the embedded domain. We refer to our network
as distributed-aelite, dAElite, as for network dimensioning and
hardware instantiation we use the standard Æthereal tools, with
a modified back-end to generate the new architecture.

The rest of this paper is organized as follows. Section II
describes similar network implementations and other related
work. In Section III we describe the contention-free routing
model which is used by our current proposal. We present
the building blocks and operation details of our network in
Section IV. Experimental results are presented in Section V
while the last section presents conclusions.

II. RELATED WORK

Many NoC implementations, either connectionless or
connection-oriented, have been proposed in the literature.
These networks may offer both Best-Effort (BE) and Guar-
anteed Services (GS). Networks-on-chip as SPIN [1], xPipes
[5], qNoC [8], SoCIN [34], artNoC [28], Quarc [24] and
[27], implement a connectionless packet switching approach.
QNoC implements quality-of-service through the means of
traffic classes, but the guarantees offered are at best statistical.
ArtNoC has support for multicast but only from one node
at a time. Support for multicast is also provided in [24]
and [27]. Another approach is BENoC [21], which uses a
bus to complement the services of the NoC. While the NoC
would provide high data throughput, the bus would provide
low latency messaging, multicast and broadcast. Compared to
BENoC the advantage of our approach is that we can provide
high-throughput multicast and more multicast connections
operating in parallel.

Connectionless packet switching NoCs typically do not
offer latency and bandwidth guarantees, thus we do not
discuss them further. In the following we comment on the
connection-oriented, circuit-switching NoCs, as they are simi-
lar to dAElite. Among these we give special attention to [10],
as it is the closest approach to ours.



TABLE I
COMPARISON WITH NETWORK IMPLEMENTATIONS USING SIMILAR CONCEPTS

Network Æthereal [10] aelite [14] dAElite Kavaldjiev [17] Wolkotte [32] Nostrum [23] SoCBUS [20]

Link sharing TDM TDM TDM VCs SDM TDM,looped none

Routing source/distributed source distributed source distributed unspecified2 distributed

Connection Setup GS/BE,guaranteed GS dedicated packet,BE3 separate BE container4 packet,BE
End-to-End Flow Cont headers headers separate wire,TDM none separate wire none none

Connection types 1-1,multicast5 1-1,channel trees 1-1,multicast 1-1 1-1 1-1,multicast 1-1

Æthereal [10] is a hybrid network offering both Best-Effort
and Guaranteed Services. Æthereal supports three routing
models, distributed routing with BE configuration, source
routing with BE configuration and source routing with GS
configuration. More recent studies [11] suggest that the BE
versions of Æthereal are not very cost-effective. For guaran-
teed services, Æthereal makes use of a routing model called
contention-free routing in which each connection may use
a link in a given timeslot. Channel trees [13] enhance the
performance of this basic scheme, by allowing sharing of
timeslots between channels, i.e., connections. This sharing
may render invalid the service guarantees per connection, thus
are not discussed further.
aelite [14] inherits the GS-only model from Æthereal,

and introduces the possibility of using asynchronous and
mesochronous links. Although we have not currently inves-
tigated this possibility, we believe that the same techniques
can be used in dAElite. From here onwards, we will refer
to the GS-only version of Æthereal as aelite, without any
implications to a particular asynchronous or mesochronous
link implementation scheme.
[26] proposed the implementation of multicast in Æthereal

using separate connections. dAElite uses instead a broad-
cast/multicast tree to achieve the same result. Our solution
is more efficient since it avoids both using separate channels
inside the NI and using the link bandwidth n times, one for
each of n destinations. Compared to Æthereal, we also use
a more efficient, low-cost connection set-up mechanism. The
connection state is stored inside all network elements in a
distributed manner and the network configuration mechanism
is centralized.
Æthereal and dAElite use a TDM scheme to share the link

bandwidth between connections, the model is described in
more depth in the following section. One of its advantages
is low buffer requirements at router level. Another network
that uses a TDM scheme to provide guaranteed bandwidth is
Nostrum [23]. Nostrum does not have a fixed TDM wheel size,
but instead, the TDM period is linked to the length of looping
connections. Multicast is supported by adding more receiver
nodes to a closed loop. Nostrum also offers BE communication
using deflection routing. One disadvantage of Nostrum is that
routing paths, and consequently multicast node sets, must be
decided at design time.

2The paper only mentions that routes are decided at run-time, possibly they
are stored in a distributed fashion inside the routers

3Guaranteed connections have preallocated VCs and setup is assumed to
always succeed

4No explicit connection setup is required, containers can be added and
removed at will at runtime by any of the nodes on the route but lack of
conflicts must be ensured

5The distributed version of Æthereal could in theory support multicast at
network level, although a solution for configuring the nework for this scenario
was not proposed; multicast was proposed using separate connections for each
target

The network proposed in [17] uses virtual circuits (a.k.a.
per-connection virtual channels) and round-robin arbitration
to provide communication guarantees. Virtual circuits are in
general expensive as they require buffers, multiplexers, de-
multiplexers and separate flow control. The number of virtual
circuits per router suggested by the authors is limited 4 due to
cost concerns which may restrict the number of simultaneously
supported connections.
aSOC [19], [18] implements the same type of static TDM

schedule found in Æthereal, but it does not implement the
actual end-to-end connections, leaving this task to the IPs.
MANGO [6] is an asynchronous network implementation

that uses, as [17], virtual circuits. The routers are not syn-
chronized with one another, and QoS guarantees are given with
prioritized virtual circuits. Like Æthereal, connection setup is
provided by using a Best-Effort network.
Another possibility for link sharing is SDM, used by [32].

Like our implementation, it makes use of an external network
for route configuration, but it does not explicitly specify how
this network is implemented. Reported configuration times are
higher than those of dAElite.
Some implementations like SoCBUS [20] do not share the

link between connections. This approach has a very low cost
but it may result in excessive blocking.
Table I summarizes the related approaches to several aspects

of the NoC implementation. One key differentiator is the
type of routing employed which also has implications on the
location to store the connection state. Source routing encodes
the packet path in the header of the packet while distributed
routing relies on separate routing decisions at each hop. We
consider source routing to be too expensive for multicast
and broadcast especially if small packets are considered, thus
dAElite utilises distributed routing.

III. BACKGROUND: CONTENTION-FREE ROUTING

In this section we present contention-free routing, which
is the routing model that we used to provide guaranteed
services. Under this model, the bandwidth of each link is split,
in the time domain, into a predefined number of timeslots.
Each connection receives exclusive use of some of these
timeslots from the moment it is set up until torn down, in
a typical circuit-switching scheme. A network-wide schedule
guarantees that packets never collide and never have to wait
for each other (Figure 1), hence the name of contention-free
routing. This reduces buffer requirements as well as network
traversal time.
Contention-free routing may be used in combination with

either source or distributed routing to implement the global
communication schedule. In source routing (Figure 2a) the
path corresponding to each connection is stored inside the
Network Interface (NI) and is sent inside the header of each
packet. Slot tables inside the NI control the exact time when



Fig. 1. Contention-free routing

packets are allowed to be inserted into the network. No
provisions are made to send data to multiple destinations.

Fig. 2. Source routing (a) and distributed routing (b)

Distributed routing (Figure 2b) uses slot tables inside each
router in addition to the ones inside the NIs. Packets are
routed based on their time of insertion into the network
and their time of arrival at each router. No header is thus
necessary and the payload efficiency is higher. Broadcast and
multicast can be easily achieved by setting up the router
slot tables to forward the data packet to multiple destinations
simultaneously. Existing distributed models [10] rely on the
Best-Effort (BE) infrastructure for connection set-up which
is both expensive and does not deliver guarantees regarding
the set-up time [11]. (Centralised models [14] do provide
guarantees on reconfiguration, but no multicast.) In dAElite
we use the same contention-free model with distributed slot
tables but we rely on a different configuration mechanism,
which uses a dedicated broadcast configuration network.

IV. DAELITE

In this section we present the hardware implementation of
our proposed NoC. We present the configuration infrastructure,
the router and NI architecture, the network connection setup
procedure and the mechanism to achieve multicast.
We assume a SoC platform as the one exemplified in

Figure 3. IPs are connected to lightweight local buses which
only (de)multiplex transactions to and from different network
connections. Network shells have the role of serializing these
requests into network messages [16].
A typical usage scenario is that the required connections

are set up before starting an application or an execution phase
of an application [25]. The application can use the configured
connections during that execution phase without further inter-
vention to the network configuration. The connections are torn
down once they are no longer needed. Setting up and tearing
down connection can be done dynamically without affecting
the normal operation of the system, i.e., an application can
use certain connections while others are being set up and torn
down.
The schedule which guarantees contention-free routing for

an application is typically computed at design time, although

computation at run-time is also possible [22], [30].

Configuration infrastructure

We implement the network configuration mechanism as a
dedicated broadcast network with a tree topology, with links
running in parallel to a subset of the normal data network
links. One IP, by convention called host, has exclusive control
over the configuration infrastructure through a configuration
module. The subset of links forming the configuration tree is
chosen in such a way as to minimize the distance from the
host to any of the network nodes.

The configuration infrastructure is used to set up data
connections by updating the contents of the slot tables inside
routers and NIs, to configure and read back the state of the
network interfaces and to configure the buses adjacent to the
network.

Fig. 3. Example of platform with dAElite

The configuration links consist of a forward and a reverse
connection. The forward connection is of broadcast type, that
is, each intermediate node forwards the data it receives on
its input to all of its outputs. The responses converge on the
reverse path in the same tree structure. There is no arbitration
on the response path and as a result a policy of only one active
request at a time is enforced.

Network Routers

The structure of network routers is presented in Figure 4.
Because we are using a distributed routing mechanism each
router contains a slot table to store the TDM schedule. Incom-
ing packets are “blindly” routed based on this schedule. In the
absence of contention, no link-level flow control is required.
A configuration submodule interprets the messages received
through the configuration port and updates the schedule.
Routers are also nodes in the configuration broadcast tree
and they forward their configuration data to a parameterizable
number of neighbors.

In dAElite the latency per hop is fixed to two cycles: one
cycle for link traversal and one for router crossbar traversal.
Data is thus buffered twice inside the router. For reasons
of symmetry data is also buffered twice at each hop in the
configuration tree.

Network Interfaces

The structure of Network Interfaces is shown in Figure 5.
The NI contains a slot table governing both packet departures
and arrivals. This is because NIs have to know both when they



Fig. 4. dAElite Network Router

Fig. 5. dAElite Network Interface

are allowed to insert packets into the network, and into which
channel queue they have to deposit the arriving packets.

dAElite implements a connection-based network and the
NIs perform the function of end-to-end flow control for the
connections. We use a credit-based flow control scheme which
employs two credit counters for each channel. A counter at the
source keeps track of the available space in the destination
queue, and a counter at the destination stores the number of
words that were already delivered until this value can be sent
back to the source.

Connections are bidirectional and credits for one direction
are sent on separate bit-lines alongside data in the opposite
direction. The separate credit lines and data obey the same
TDM scheme and there is actually no distinction between the
two at the router level. The bit-width of the credit information
is configurable. In our experiments, 3 wires dedicated to
sending credit data are enough to send the value of a 6-bit
credit counter during each slot cycle.

A configuration submodule, similar to the one inside the
router interprets the configuration messages and configures the
NI slot table, the credit counters and connection state flags.
Reading back flags and flow control information from the NI
is supported, as is the configuration of adjacent buses. For
the latter, the configuration words are deserialized into wider
words which are translated by an NI shell into the appropriate
bus standard (DTL in our case) used by the configuration port
of the bus.

Connection setup and tear-down

The configuration network supports setting up and tearing
down communication channels, configuring and reading back
credit information, and configuring the buses adjacent to the
network. Due to lack of space we will only present here in
detail the path set-up process.

Network configuration, including path setup and tear-down
is performed using configuration packets, consisting of several
words, transmitted one per cycle over the configuration links.
The configuration links have small bit-width, that is equal to
the size of the configuration words.

For ease of implementation we have selected a configuration
word width that is sufficient to encode a network element ID,
a pair of input and output port IDs or the value of a credit
counter. The configuration word size of 7 bits, used in our
experiments, is sufficient for networks with up to 64 network
elements (routers and NIs), routers with an arity of 7, and
end-to-end buffers of up to 63 words.

Consider the following example illustrated in Figure 6. A
set-up operation is performed for a communication channel
using the path NI10-R10-R11-NI11. The host IP in charge of
network configuration writes 3 data words to the configuration
module using normal write operations. These words are then
serialized into 7-bit configuration words. 0-padding is allowed.

Fig. 6. Path set-up example

The first configuration word is a header that informs the
network elements that a path setup sequence will follow. The
next two configuration words contain a table of slots affected
by this path set-up operation. We assume here a slot table size
of 8. The two bits set to one in this example identify slots 7
and 4. These are followed by pairs of configuration words, the
first word in each pair representing a network element ID and
the second a pair of input and output ports or if the network
element was a network interface a single input or output port.



Each of the network elements stores the table of affected
slots. For each of the subsequent pair of configuration words,
all network elements try to match the first word against its own
ID. In case of a mismatch they rotate the table of affected slots
by one position, in case of a match they configure the entries
in their own slot table marked by the table of affected slots
with the data in the second configuration word.

In our example, the first pair of configuration words in the
configuration packet after the list of affected slots instructs
NI-11 to use output 0 during slots 4 and 7. The second pair
instructs router R-11 to forward data from input 1 to output
2 during slots 3 and 6 because the list of affected slots has
already been rotated by one position. The third pair instructs
router R-10 to forward data from input 2 to output 1, etc.

A cool-down period during which no new configuration
packets are accepted, is enforced after each complete path set-
up by the configuration module. This allows the routers and
NIs to internally update their slot tables.

The list of traversed routers/NIs begins at the destination
to ensure that downstream routers are initialized before the
upstream NI and routers start sending packets. It is not manda-
tory that a packet contains a complete source-to-destination
NI path, independent path segments can be initialized as well.
This is used to set up broadcast or multicast trees, explained
below. Tearing down a communication channel is performed
in the same way as setting one up, except intermediate routers
and the destination NI are instructed to not forward any value
to the selected output during the affected slots.

Multicast

dAElite offers a mechanism to achieve multicast that is both
simple and efficient. The TDM schedule in a dAElite router
is implemented as a table that specifies for each output port
which input port should the data be taken from during each
cycle. Two (or more) output ports are allowed to use the same
input port as a source (Figure 7).

Fig. 7. Multicast in dAElite

The multiple paths to the different destinations form a tree,
rooted at the source NI. This is more efficient and offers higher
performance than having separate connections from the source
NI to all destinations because in the latter case the bandwidth
on output link of the source NI would need to be divided
between all the connections.

The configuration mechanism allows setting up partial
paths; i.e., paths that start at a router instead of a source NI
(Figure 7).

All multicast destination shells will receive the same stream
of messages and will translate them into the same write com-
mands on the destination IP ports. There is no corresponding
multi-destination read, which would require somehow merging
read responses.

When using multicast it is necessary to ensure that the
destinations can process data at the same rate as it is delivered,
as the default flow-control mechanism cannot be used (the
source NI only has one credit counter for each communication
channel).

V. EXPERIMENTAL RESULTS

In this section we compare our proposed network to other
NoCs presented in the literature. The proposal most similar to
ours in terms of offered services and network organization is
aelite, a GS-only version of the Æthereal network. For aelite
we will compare the cost of the full interconnect, including
network interface shells and adjacent buses. The system setup
is the one represented in Figure 3.

For the other networks, we compare the router area reported
in the literature with the area of one of our routers with the
same parameters: number of ports, link width and, where
applicable, number of SDM lanes or TDM slots. Unless
otherwise noted the designs were synthesized in the same tech-
nology node. In Table II we show the reduction in area our pro-
posal achieves compared to the other networks. The reduction
is expressed as (areaotherNoC−areadAElite)/areaotherNoC.

TABLE II
DAELITE AREA REDUCTION COMPARED TO OTHER IMPLEMENTATIONS

aelite [14] 2x2 mesh, 32 TDM slots (65nm TSMC) 10%
aelite, -/- (FPGA, Virtex-6 slices) 16%
artnoc [28] router, 2-flit buffers, 4 VCs (130nm) 73%
Wolkotte [33] circuit switched router (130nm) 68%
Wolkotte [33] packet switched router (130nm) 91%

Mango [7] router, 8 VCs (120nm) 6 89%

Quarc [24] 8-port router (130nm) 7 15%
SPIN [2] 8-port router (130nm) 76%
Banerjee and Wolkotte [3], 5-port router, 4 SDM lanes (90nm) 85%
xpipes lite [31], 4-port router (130nm) 78%

Network Performance

We compare our proposed network in terms of performance
with aelite which provides similar services in terms of band-
width guarantees and same as our network and makes use of
centralized configuration. We compare path set-up time based
on FPGA execution and give analytical measures in terms of
bandwidth and latency.

Table III presents the number of cycles required to set up
one connection (request and response path). For dAElite, the
set-up time is dependent on path length but not on the number
of slots used by the connection. For aelite we provide only
the average value reported in the literature and the range of
values obtained experimentally, as the set-up time depends
on multiple factors: distance from configuration node to the
source node and to the destination node, number of slots

6the area value reported in the literature is for 120nm technology while our
router used for comparison uses a 130nm technology

7the Quarc router does not implement a full 8x8 crossbar while our router
used for comparison does



used by the connection. The ideal value reported for aelite
is taken from [12] and represents the configuration delay
without taking into account processor execution time of the
configuration code, but only the actual read and writes. The
ideal value for our proposal is computed analytically from the
number of configuration words that are being written in each
case to which the cool-down latency was added.

TABLE III
CONNECTION SETUP TIME

Our FPGA experiments indicate that dAElite configuration
is roughly one order of magnitude faster than aelite.

In terms of bandwidth and latency we take into account the
fact that both networks are able to operate similar frequency.
The FPGA area results in Table II were based on designs both
constrained to a frequency of operation of 200MHz while the
ASIC synthesis which was unconstrained resulted in frequency
of 885 MHz for aelite and 925 MHz for dAElite.
In dAElite, the router (and link) traversal delay is 2 cycles.

This is lower than the 3 cycles used by aelite. We are able to
achieve this without a negative impact on the clock frequency,
because dAElite does not need to look at packet contents
before making a routing decision. Routing is performed solely
based on the packet arrival time and the contents of router’s
own slot table. This results in a reduction in the network
traversal latency of 33%.

The dAElite TDM slot is 2 words, and could be further
decreased to a single word if necessary. In aelite it is not
possible to arbitrarily decrease the slot table size because
packets contain a header and the header overhead would
become higher in shorter packets. A small TDM slot size is
useful to improve the scheduling latency (packets need to wait
for their turn before they can be inserted into the network).
dAElite has no header overhead. which in aelite is between

11% and 33%: one header is required at least every 3 slots
(possibly every slot when slots belong to different connections)
and the header represents one third of the slot size.

dAElite allows routing one connection over multiple paths at
no additional cost. In [29] it was shown that multipath routing
can provide bandwidth gains of 24% on average. Multipath
routing is also possible in aelite [29], but with higher area.
Furthermore, aelite reserves at least one slot on each of the

NI-router and router-NI links for configuration traffic. For a
slot wheel size of 16 this is a 6.25% loss of data bandwidth.
This is not the case for dAElite.

VI. CONCLUSIONS

In this paper we have proposed, implemented and evaluated
a hardware prototype of a TDM NoC using contention-free,
distributed routing, that has the following distinctive features:
(i) support for QoS; (ii) support for multicast; (iii) lower
area cost than previously proposed implementations and no

header overhead; and (iv) configuration and path set-up times
significantly shorter than the closest approach.

REFERENCES

[1] A. Adriahantenaina et al. SPIN: a scalable, packet switched, on-chip
micro-network. In DATE, 2003.

[2] A. Andriahantenaina and A. Greiner. Micro-Network for SoC: imple-
mentation of a 32-Port SPIN network. In DATE, 2003.

[3] A. Banerjee et al. An energy and performance exploration of Network-
on-Chip architectures. TVLSI, 2009.

[4] L. Benini et al. Networks on chips: a new SoC paradigm. Comp., 2002.
[5] D. Bertozzi and L. Benini. Xpipes: a network-on-chip architecture for

gigascale systems-on-chip. IEEE Circuits and Systems Magazine, 2004.
[6] T. Bjerregaard. The MANGO clockless network-on-chip: Concepts and

implementation. PhD Thesis, 2005.
[7] T. Bjerregaard et al. A router architecture for connection-oriented service

guarantees in the MANGO clockless network-on-chip. In DATE, 2005.
[8] E. Bolotin et al. QNoC: QoS architecture and design process for network

on chip. Journal of Systems Architecture, 2004.
[9] William J. Dally and Brian Towles. Route packets, not wires: On-chip

inteconnection networks. In DAC, 2001.
[10] K. Goossens et al. Æthereal network on chip: Concepts, architectures,

and implementations. IEEE Design & Test of Computers, 2005.
[11] K. Goossens et al. The aethereal network on chip after ten years: Goals,

evolution, lessons, and future. In DAC, 2010.
[12] A. Hansson and K. Goossens. Trade-offs in the configuration of a

network on chip for multiple use-cases. In NOCS, 2007.
[13] A. Hansson et al. Channel trees: reducing latency by sharing time slots

in time-multiplexed networks on chip. In CODES+ISSS, 2007.
[14] A. Hansson et al. aelite: A flit-synchronous network on chip with

composable and predictable services. In DATE, 2009.
[15] A. Hansson et al. CoMPSoC: A template for composable and predictable

multi-processor system on chips. TODAES, 2009.
[16] H. Hansson et al. An on-chip interconnect and protocol stack for mul-

tiple communication paradigms and programming models. In CODES-
ISSS, 2009.

[17] N. Kavaldjiev et al. A virtual channel Network-on-Chip for GT and BE
traffic. In ISVLSI, 2006.

[18] A. Laffely et al. Adaptive system on a chip (ASOC): a backbone for
power-aware signal processing cores. In ICIP, 2003.

[19] Jian Liang et al. aSOC: A scalable, single-chip communications
architecture. In PACT, 2000.

[20] D. Liu et al. SoCBUS: the solution of high communication bandwidth
on chip and short TTM. In RTECC, 2002.

[21] R. Manevich et al. Benoc: A bus-enhanced network on-chip for a power
efficient CMP. Comp. Arch. Letters, 2008.

[22] T. Marescaux et al. Dynamic time-slot allocation for QoS enabled
networks on chip. In ESTIMedia, 2005.

[23] M. Millberg et al. Guaranteed bandwidth using looped containers in
temporally disjoint networks within the nostrum network on chip. In
DATE, 2004.

[24] M. Moadeli et al. Quarc: A High-Efficiency network on-Chip architec-
ture. In AINA, 2009.

[25] S. Murali et al. Mapping and configuration methods for multi-use-case
networks on chips. In ASPDAC, 2006.

[26] A. Radulescu et al. An efficient on-chip network interface offering
guaranteed services, shared-memory abstraction, and flexible network
programming. Trans. on CAD of Integrated Circuits and Systems, 2005.

[27] F.A. Samman et al. Adaptive and deadlock-free tree-based multicast
routing for networks-on-chip. TVLSI, 2010.

[28] C. Schuck et al. artNoC - a novel Multi-Functional router architecture
for organic computing. In FPL, 2007.

[29] R. Stefan and K. Goossens. A TDM slot allocation flow based on
multipath routing in NoCs. MICPRO, 2011.

[30] R. Stefan et al. Online allocation for contention-free-routing NoCs. In
INA-OCMC, 2012.

[31] S. Stergiou et al. Xpipes lite: a synthesis oriented design library for
networks on chips. In DATE, 2005.

[32] P.T. Wolkotte et al. An Energy-Efficient reconfigurable Circuit-Switched
Network-on-Chip. In IPDPS, 2005.

[33] P.T. Wolkotte et al. An energy-efficient reconfigurable circuit-switched
network-on-chip. In IPDPS, 2005.

[34] C.A. Zeferino and A.A. Susin. SoCIN: a parametric and scalable
network-on-chip. In SBCCI, 2003.

[35] L. Zhonghai et al. Connection-oriented multicasting in wormhole-
switched networks on chip. In ISVLSI, 2006.


