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Large Signal Simulation of Integrated Inductors on

Semi-Conducting Substrates
Wim Schoenmaker, Michael Matthes, Bart De Smedt, Sascha Baumanns, Caren Tischendorf, Rick Janssen

Abstract—We present a formulation of transient field solving
that allows for the inclusion of semiconducting materials whose
dynamic responses are prescribed by drift-diffusion modeling.
The robustness and the feasibility is demonstrated by applying
the scheme to compute accurately the large-signal response of an
integrated inductor.

I. INTRODUCTION

The most common way to address electromagnetic (full-

wave) field problems is by solving the Maxwell equations, i.e.

setting up and solving discretized versions of these equations

for the electric field E and the magnetic field B. Moreover,

another common ingredient is to solve the equations in the

frequency regime. Faraday’s law then provides a reduction of

unknowns in the discretization using edge elements. The finite-

integration technique does not attempt to reduce grid variables

and therefore, these variables are a very faithful representation

of the continuous degrees of freedom. In the transient regime,

the latter has therefore been very successful in comparison

to transient field solving based on finite-element methods and

generalizations thereof. However, in semiconductor physics,

the electric and magnetic fields are coupled to the carrier

concentrations in a highly non-linear fashion. This is because

the carrier densities depend on the energy density via the

Boltzmann distribution functions, whereas the fields refer

primarily to forces. The path dependency of the energy, being

a force integrated along some path, will highly complicate the

full-wave field solving if semiconductors are involved. This

explains that so far, most semiconductor device simulators

ignore the magnetic field because in this approximation, the

force integral becomes path independent again. Fortunately,

there is an appealing solution to avoid above complications.

When the EM field problem is solvable in terms of the

scalar potential and the vector potential, then it is possible

to insert these solutions into the semiconductor equations

and one has obtained a very straightforward upgrading of

the semiconductor device simulation tools into the EM wave

regime. In the last decade, we have demonstrated that, at least

in the frequency domain, this solution is not only feasible

but also leads to accurate results using standard non-linear

and linear solver techniques [1]. This is not at all evident

since the potential field formulation leads at first instance to a
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singular operator that needs to be regularized by gauge fixing.

At the same time, the choice of the gauge fixing should not

affect the outcome of physical variables such as resistance,

inductance, capacitance, etc. The gauge independence of the

physical variables is the outcome of a subtle interplay between

the differential-geometry based discretization, the formulation

of the boundary conditions and the selection of the gauge

condition [2]. The potential field formulation requires only

one grid (the ’primary grid’) to be built. The scalar and vector

potentials are located at the primary grid. The dual grid is a

’conceptional’ tool to make the proper differential-geometry

identifications.

II. NEED FOR MIMETIC FORMULATION

Just as in the frequency regime, the formulation of the

transient equations for the potential fields are also subject

to gauge fixing and differential-geometry based discretization

considerations. Moreover, in the transient regime it becomes

also evident that Gauss’ law is not a dynamical evolution

equation but a constraint, meaning that after each time step

the state space vector should be compliant with this constraint.

This is illustrated in Fig. 1. On the other hand in general

the gauge condition can be time dependent, for example the

Lorenz gauge. It can therefore play a role as part of the evolu-

tion equations. In this paper we will provide the complete and

correct formulation of the transient equations for the potential

fields which is fully compliant with mimetic principles [3].

Moreover, we show that standard linear (CGS) and non-linear

solvers (Newton-Raphson) can be used to unfold the time

evolution. The method is applicable to metallic materials that

are covered by Ohm’s law as well as semiconducting materials

for which drift and diffusion contributions determine their

voltage responses.

III. FIELD EQUATIONS

We start from the Maxwell equations in the potential

formulation in the time domain. Then the Maxwell equations

in these variables become:

For insulators:
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Fig. 1. ’Artist impression’ of the Gauss’ law-induced constraint for the time
evolution of the full wave variables.

Besides the usual full-wave equations in the potential formu-

lation for metals and insulators we find

for semiconductors:
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The hole current-continuity equation is with U the recombi-

nation/generation :

∇ · Jp = −U(n, p)−
∂p

∂t
, ∇ · Jn = U(n, p)−

∂n

∂t
(9)

The Maxwell-Ampere equation becomes
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Finally, one needs to provide a gauge condition:

1

µ
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(
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)

= 0

Due to the full-wave nature of the problem, there are second-

order time differentiations. We circumvent these 2nd-order
differentiations in time by (1) applying a Legendre trans-

formation to obtain the canonical momentum Π = ∂A/∂t
conjugate to the vector potential field variable and (2), by

putting two variables on each link of the primary grid, i.e.

besides the usual projections of the vector potential on the

links of the computational grid also the canonical momentum

is projected on this grid and for each link it becomes an

additional unknown (degree of freedom). Finally, since we

have transformed the 2nd-order time differentiation into a first-

order one we use backward Euler time stepping. The remaining

variables V , φp and φn are discretized in the conventional way:

these discrete variables are placed on grid nodes. In Fig. 2,

the variables are shown for one mesh cell. The presence of

semiconducting materials requires that the currents in these

Fig. 2. Illustration of the discrete variables in one mesh cell

regions need to be discretized using the Scharfetter-Gummel

discretization method. The presence of the vector potential

implies that the transient current becomes :

Jij = J · n = scµ
∆A

hij

(ciB[sc Xij ]− cjB[−sc Xij ]) (11)

where µ is the carrier mobility, n is the unit vector along

the link < ij > between nodes i and j and ∆A is the dual

area corresponding to the link < ij > whereas hij is the

length of the link < ij >. The sign factor sc is +1 for

holes and −1 for electrons. The carrier density ci,j = pi,j
for holes and ni,j for electrons respectively in the nodes i and
j. The argument of the Bernoulli function B(x) = x

ex−1 is

Xij =
q

kT
(Vj −Vi+sij Πijhij). Finally sij = ±1, depending

on the orientation of the link < ij > with respect to its

intrinsic orientation. It should be noted that the full system

of equations still is redundant despite the fact that the gauge

condition is added to regularize the singular (non-invertible)

property of the curl-curl operator. The divergence of the

Maxwell-Ampere equation leads to the current conservation

law, and therefore, the latter is an implicit result after having

found a solution of the first one. Alternatively, one may still

insist on having the current-continuity equation(s) as part of

the full set of equations that needs to be solved. In that

case, one must omit the gauge condition as an independent

equation to be solved. The gauge condition will be respected

as an additional result from solving Gauss’ law, the current-

continuity equation and the Maxwell-Ampere equation. In fact,

the elimination of the redundancy can also be lifted by using

either the gauge conditions as a temporal evolution equation

or Gauss’ law as a constraint on the state variables at the

latest time instance. All this is achieved provided that the

mimetic principle is respected in the discretization method.

The differential-geometry discretization scheme guarantees

that either choice implies the other. The reader may wonder

why introducing the gauge condition since it may be avoided

after all in solving the transient problem. The reason for the

inclusion of the gauge condition is found in the fact that the

transient problem may have a static solution. In that case

one runs into the singular character of the curl-curl operator.

Therefore, the gauge condition still is needed for regularization

of this operator. Details of the corresponding discretization

procedure can be found in [4].



IV. APPLICATION

We demonstrate the feasibility of the method by computing

the on-set transient response of the current flow that is induced

in the substrate (semiconductor) by switching on the voltage

from 0 to 1 Volt in 100 ps. The structure is shown in Fig. 3

and is isolated from the substrate by 2.48 micron of dielectric

consisting of several layers. Integrated inductors are a key-

component for RF circuits such as low-noise amplifiers (LNA),

voltage controlled oscillators (VCOs), filters and impedance

matching networks. In Monolithic Microwave Integrated Cir-

cuits (MMICs), inductors still occupy a significant portion of

the total area. Furthermore, integrated inductors can induce

parasitic couplings. In order to prevent and limit such disturb-

ing couplings, special attention should be paid to placement

and radiation-optimization of integrated inductors. Planar spi-

ral inductors, while offering scalable layout canonical archi-

tectures (rectangular, octagonal) with ease of manufacturing

suffer from low Q-factors. During the last years, considerable

efforts have been directed towards finding ways to design

inductors with increased quality factors and higher resonant

frequencies. The shown 8-shaped configuration [5], compared

to classical rectangular, octagonal, circular topologies, has the

advantage of limiting EMC (Electro-Magnetic Compatibility)

related issues when symmetrical structures are considered. The

EMC reduction is expected to result from the twisted nature

of the 8-shaped topology, where the two constitutive loops

will lead to equal magnetic field distributions with opposite

polarities [6], [7]. Here a design improvement is highlighted to

Fig. 3. Octagonal (left) and 8-shaped (right) VCO coil

show the difference between an octagonal coil and an 8-shaped

coil. Fig. 3 shows the octagonal and 8-shaped coil used for a

VCO. Fig. 4 gives the measurement results of the 2fm spur (in

dBc) at the RF output as a function of the output power (Pout).

The main graph (VCO-octagonal coil) shows that the spur is

above the -40dBc, which is the upper level that is acceptable.

Use of the VCO 8-shaped coil improves the spurious level

by 10dB. Using 8-shaped coils, the quality factor and the

self-inductance (L) of the coil will de-crease only slightly,

depending on the situation. Refer to Figure 5. The inductor is

designed in M6-M7-M8. The substrate thickness is 100 micron

and is equipped with a ground contact at the back (not shown

in Fig. 6) and is p-type doped with a value of 1015cm−3. The

full simulation domain is shown in Fig 7. Note that a layer

of air is included to allow for the electromagnetic field spread

around the inductor. The structure is discretized using a grid of

52185 nodes leading to 330983 variables in the linear systems

Fig. 4. Measurement of spur level of octagonal and 8-shaped coil

Fig. 5. Inductance and quality factor of octagonal (red) and 8-shaped (green)
coil

Fig. 6. View of the integrated 8-shaped inductor from above. The vertical
direction is stretched

Fig. 7. View of the full simulation domain



of the Newton-Raphson scheme needed to solve the implicit

next time step problem. We performed a time stepping of 1 ns

in 10 intervals with a step function potential change at one of

the inductor contacts. A capacitive coupling to the substrate

is detected and its strength as well as the inductance of the

on-chip inductor can be extracted from the results. In Fig. 8,

the currents into and out of the inductor contacts are shown.

In Fig. 9, the transient current in the ground plane contact is

Fig. 8. Value of currents at the left and right contact of the inductor

shown. An overshoot effect is observed. In Fig. 10, the current

of the ground plane contact is shown in a logarithmic plot.

Clearly, two time constants are observed. The corresponding

’signal-decay’ constants are (1) for 0-4 nsec: 1.5× 1010sec−1

and (2) for 4 - 10 nsec: 0.48 × 109sec−1. In general the

Fig. 9. Value of the current in the ground plane contact. A transient overshoot
is observed

advantage of having a transient design flow in place is to

circumvent the problems arising from using frequency domain

EM models (S-parameters) in transient circuits. Often these

S-parameter models turn out to have a lack of passivity and

stability, resulting in transient solutions not converging, arising

from failing to capture dominant poles in the right frequency

plane. For this approach, as an example, the 8-shaped inductor

can be used by comparing a simple circuit with a simple

Fig. 10. Logarithm of the absolute values of the current in the ground-plane
contact. Two time scales are observed.

lumped element inductor model in transient with the same

circuit coupled with the EM model. In order to assess the

results of the current build-up shown in Fig. 8, we represent

the inductor as a simple lumped compact model (see Fig. 11),

consisting of L, R and C to ground. As a first approximation

we can take the values from the RF-simulations which give

a value of 3 Ω at 1 GHz, but in order to get a good fit, we

took R=2 Ω. Using a step magnitude of 1.0 Volt, the result in

Fig. 12 is obtained. The need for this fitting already indicates

that the RF values that were obtained with the assumption

of small-signal perturbations can not be assumed to be the

correct values if large signals are applied. The current build-

up is shown to be in good agreement with the currents in

Fig. 8.

Fig. 11. Set up of a compact model for the transient results.

Beside the constant time step solutions presented before,

we realized and tested a variable time step and variable

order implementation of the backward differential formulas

(BDF), also known as the implicit Gear formulas, see [8].

It is particularly suited for stiff ordinary differential equation

systems and widely used for transient circuit simulation, e.g.

in all SPICE based circuit simulation packages. After space

discretization of the electromagnetic field equations (1)-(10),



Fig. 12. Results of a compact model for the transient simulation using a
step magnitude of 1Volt.

we obtain an ordinary differential equation system of the form

g(
d2u(t)

dt2
,
du(t)

dt
, u(t), t) = 0

with u(t) involving the vector potential field variables A(t)
for each link of the primary grid, the nodal potentials V (t) at
each node of the primary grid as well as the electron density

n(t) and the hole density p(t) at each node of the primary

grid belonging to semiconducting material, all evaluated at

the time point t. Using the canonical momentum Π = ∂A/∂t
we arrive at a first order system of the form

f(
dw(t)

dt
, w(t), t) = 0 (12)

with w(t) including u(t) as well as Π(t) at each link of the

primary grid.

Applying the BDF methods of order k with variable time

steps τn to (12), we obtain an equation system of the form

f(
1

τn

k
∑

i=0

αniwn−i, wn, tn) = 0 (13)

with certain time step dependent coefficients αni. For deter-

mining the numerical approximation wn of w(tn) we solve

the nonlinear equation system (13) by Newton’s method. As

reported before, we have to solve a linear equation system of

dimension 330983 for each Newton step. Since the resulting

Newton matrix is positive definite having nonzero entries on

the diagonal, we used the algebraic multigrid package SAMG

[9] for a memory saving and time efficient solution of these

systems.

Figures 13 and 14 show the transient results for the 8-shaped

inductor when a sinusoidal voltage with 1 GHz frequency is

applied between the first and the second contact. The variable

stepsize was automatically selected by a predictor - corrector

based error estimation guaranteeing an error of the magnitude

of 10−4. Figure 15 shows two nice results of the quality of

our simulation. First, the numerical discretization preserves

charges (the sum of all currents through the 8-shaped inductor

is almost zero). Secondly, the global error is smaller than 3×
10−6, i.e. the prescribed error tolerance has been reached.

Fig. 13. Current through the first contact of the 8-shaped inductor after
transient simulation with variable order and variable time step size.

Fig. 14. Current through the second contact of the 8-shaped inductor after
transient simulation with variable order and variable time step size.

Fig. 15. Sum of all simulated currents (including the substrate current)
through the 8-shaped inductor after transient simulation with variable order
and variable time step size.

V. CONCLUSIONS

In this paper we presented a large-signal field solving

approach that faithfully represents semiconducting material

responses. The method exploits a Legendre transformation on

the full-wave formulation such that we can apply standard

backward Euler differential methods for adaptive time inte-

gration. Furthermore, we have incorporated Gauss’ law as

a constraint that should be respected at all time instances.

The gauge condition results ’for free’ once the solution is



obtained. We demonstrated the correctness of the method by

applying it to an industrial design problem, i.e. by computing

the large-signal response of an integrated inductor above a

semi-conducting substrate. The transient information provides

complementary insight in the behavior of complex designs in

which electromagnetic interaction can jeopardize the ’first-

time-right’ EDA goal. In particular, RF modeling in the

frequency domain is limited to the small-signal response su-

perpositioned to a fixed operation point. Transient simulations

are not limited to the perturbative nature of the stimuli and

therefore are a valuable add-on to improve virtual prototyping.
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