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Abstract— Sub-harmonic injection locking (SHIL) is an interesting
phenomenon in nonlinear oscillators that is useful in RF applications,
e.g., for frequency division. Existing techniques for analysis and design of
SHIL are limited to a few specific circuit topologies. We present a general
technique for analysing SHIL that applies uniformly to any kind of
oscillator, is highly predictive, and offers novel insights into fundamental
properties of SHIL that are useful for design. We demonstrate the power
of the technique by applying it to ring and LC oscillators and predicting
the presence or absence of SHIL, the number of distinct locks and their
stability properties, lock range, etc.. We present comparisons with SPICE-
level simulations to validate our method’s predictions.
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I. INTRODUCTION
Injection locking (IL) [1], [2], [3] is a nonlinear phenomenon in which
a self-sustaining oscillator’s phase becomes precisely locked (i.e.,
entrained or synchronized) to that of an externally applied signal.
The phenomenon, together with the related effect of injection pulling,
has often been regarded as an unwanted disturbance, causing, among
other things, malfunction in serial clock/data recovery, increased
timing jitter and clock skew, increased BER in communications,
etc.. Over the years, however, IL has also been put to good use in
electronics – e.g., for quadrature signal generation [4]; for microwave
generators in laser optics [5]; for fast, low-power frequency dividers
[6]; and in PLLs [7] and wireless sensor networks [8]. Moreover, IL
is an important enabling mechanism in biology (e.g., [9], [10]).
When an oscillator locks to an external signal whose frequency is
close to the oscillator’s natural frequency, the phenomenon is termed
fundamental harmonic IL. It is also possible, however, for oscillators
to phase-lock at a frequency that is an exact integral sub-multiple
of the frequency of the externally applied signal; this is termed sub-
harmonic IL (or SHIL, described further in Sec. II-B) and is useful
in frequency division applications [6], [7].
Design of circuits exploiting SHIL has tended to rely predominantly
on trial-and-error based methodologies, using brute-force transient
simulations to assess impact on SHIL-based circuit function. Exist-
ing analyses of fundamental and sub-harmonic IL (e.g., [11], [2],
[12]) have been limited to very specific circuit topologies (e.g., LC
oscillators), while more general analyses [13], that apply to any kind
of oscillator, do not consider SHIL. The work of Daryoush et.al. [14]
presented a computationally complicated method limited to negative
feedback oscillators, and provided no insights about multiple lock
states for SHIL as in our work. To our knowledge, there is no
general analysis or theory that provides the correct design intuition
and predictive power for SHIL and related phenomena.
In this paper, we develop and validate a general method for analysing
and understanding sub-harmonic injection locking. The method ap-
plies to any self-sustaining, amplitude-stable oscillator, not only from
electronics but also from other domains such as biology. Specifically,
we obtain a simple equation that not only has numerical uses for
fast simulation of sub-harmonic injection pulling and locking, but
can be depicted graphically, thereby offering powerful insights into
qualitative and quantitative properties of SHIL in oscillators. One
important such insight is that mth-sub-harmonic locking is intimately
related to the mthharmonic component of the PPV function [15],
[16], [17] (see Sec. II-A); our analysis provides quantitative design
guidelines for inducing mth-sub-harmonic locking. Another important
insight is that mth-sub-harmonic locking typically occurs in one of 2m
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distinct phases (relative to a reference signal at the same frequency);
m of these solutions, spaced uniformly in phase increments of 2m ,
are dynamically stable.
Development of our method starts from a scalar, non-linear equation
(the PPV equation [15], [16], [17], described further in Sec. II-A) that
governs the phase dynamics of oscillators. We devise a specialized
analysis of the PPV equation by first recasting it in terms of a phase
error metric that detects SHIL, then averaging out fast variations2
to obtain a simple scalar differential equation in the phase error
metric. “DC” analysis of this equation captures SHIL and provides
the insights noted above. A key quantity needed in these equations,
the PPV function specific to a given oscillator, is obtained via efficient
and robust numerical methods [17].
We present extensive numerical experiments that compare detailed
SPICE-level simulations with our new SHIL analysis and validate
its accuracy and predictive nature. Using ring and LC oscillators as
examples, we apply our technique to determine whether or not SHIL
can occur in a given design, in how many distinct ways lock can
occur, how robust a lock is, how an existing design can be modified
to better induce SHIL, etc.. We also prove the existence of multiple
distinct locks using detailed SPICE-level simulations.
The remainder of the paper is organized as follows. Sec. II provides
brief background on PPV phase equations and basic concepts of sub-
harmonic IL. Sec. III-A presents our new analysis of SHIL, while
Sec. III-B discusses key uses and insights that stem from this analysis.
Sec. IV presents numerical experiments on ring and LC oscillators
that validate our approach.

II. PRELIMINARIES

A. The PPV Nonlinear Phase Equation for Oscillators
A SPICE-level representation of any circuit (including oscillators) is
equivalent [18] to a system of differential-algebraic equations (DAEs)
[19] in the form:

d
dt
!q(!x(t))+ !f (!x)+!b(t) =!0, (1)

where !x denotes internal state, !f (·) and !q(·) capture static and dy-
namic terms, respectively, and!b(t) denotes inputs to the system. Self-
sustaining autonomous oscillators, by their nature, produce periodic,
time-varying solutions !x(t) even when !b(t) vanishes (or is constant
with time) — this is termed natural oscillation. Denote such natural
oscillation by !xs(t) and its period by T . For a large class of self-
sustaining oscillators, it has been shown [16] that if natural oscillation
is disturbed by small time-varying external inputs!b(t), the oscillator’s
response can be approximated well as

!x(t)!!xs(t+ (t)), (2)

where (t), a time shift caused by the external inputs, is governed
by the scalar differential equation

d
dt

(t) =!vT1 (t+ (t)) ·!b(t). (3)

In (3), the vector !v1(t), known as the Phase Response Curve (PRC)
[15] or Perturbation Projection Vector (PPV) [17], is a T -periodic

2in a manner similar to that used to derive Adler’s equation for fundamental
harmonic IL [1], [13].
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vector function of time. For the purposes of this paper, we rewrite
(3) by defining a 1-periodic version of the PPV, i.e.,

!p(t) =!v1(Tt), (4)

and using this in (3) to obtain
d
dt

(t) = !pT ( f t+ f (t)) ·!b(t), (5)

where f ! 1
T . (5), known as the PPV equation or the PPV phase

macromodel, is the starting point for our SHIL analysis in Sec. III-A.

B. Basic Concepts of Sub-harmonic Phase Locking

Given any T periodic function s(t), if another function r(t) is derived
from it as r(t)! s( (t)), then (t) is termed the phase of r(t) with
respect to the base period T3. For example, if s(t) is the 1-periodic
sinusoid s(t) = sin(2 t) and

REF(t)! s( f0t), (6)

then the phase of REF(t) with respect to the base period 1 is

REF(t)! f0t. (7)

Suppose we are given another signal y(t) with phase y(t) (with
respect to the same base period as REF(t)). Then REF(t) is said to
in “simple mth sub-harmonic phase lock” to y(t) if

REF(t) =
y(t)
m

+const. (8)

For example, if y(t)! cos(2 ·3 · f0t+0.5), then REF(t) in (6) is in
simple 3rd sub-harmonic phase lock to y(t).
We now establish terminology that will be used in the remainder of
the paper. The natural period of any oscillator will be denoted by T ;
its natural frequency, 1T , will be denoted by f . External inputs to the
oscillator will be denoted by #          »SYNC(t), with frequency fin and phase
in(t) = fint; i.e., !b(t) in (1) is given by

!b(t) = #          »SYNC(t) =!c
(

in(t)
)
, (9)

where !c(t)!!b( t
fin ) is 1-periodic.

If !b(t) = #          »SYNC(t) results in mthsub-harmonic lock, then fin ∼ mf ;
define f by fin = m( f + f ). Denote the frequency of mthsub-
harmonic lock to #          »SYNC(t) by f0; i.e., f0 = fin

m = f + f . Finally,
denote REF(t) to be a reference signal, at frequency f0, that is in
mth sub-harmonic phase lock to the external input signal #          »SYNC(t).

III. ANALYSING THE PPV EQUATION TO CAPTURE SHIL

A. Derivation of the Alderized SHIL equation

We now proceed to analyse SHIL by expressing the PPV equation
(5) equation in terms of phase. We assume that the external input
!b(t) equals the #          »SYNC(t) signal defined in Sec. II-B, with frequency
fin =mf0 and phase in(t) = fint.
From (2), observe that the phase of the oscillator’s response under ex-
ternal perturbation is (t)! f t+ f (t). Rewriting the PPV equation
(5) in terms of (t), we obtain

d
dt

(t) = f + f!pT ( (t)) ·!c( in(t)). (10)

Define the mth-SHIL phase error to be

(t)! (t)− 1
m in(t). (11)

This definition is motivated by the fact that if the oscillator achieves
simple mth sub-harmonic phase lock to its external input #         »SYNC(t),

3For convenience, we will omit “with respect to ...” when the base period
is implicitly understood (e.g., it is usually 1 in this paper).

then (t)≡ constant. By taking the time-derivative of (11) and using
(10) and the definition of in(t) from Sec. II-B, we obtain

˙(t) = ( f − 1
m
fin)+ f

(
!pT

(
(t)+

1
m
fint

)
·!c( fint)

)
. (12)

Now, !p(·) is a 1-periodic function, hence !p
(

(t)+ 1
m fint

)
may be

expressed using Fourier series as

!p
(

(t)+
1
m
fint

)
=

k=−
!pke j2 k( (t)+ 1

m fint), (13)

where {!pk} are the Fourier coefficients4 of !p(t). Similarly,!c(t) being
a 1-periodic function, we have

!c( fint) =
l=−

!cle j2 l fint , (14)

with {!ck} being the Fourier coefficients of !c(t). Using (13) and (14)
in (12), we arrive at

˙(t) =
(
f − 1

m
fin
)
+ f

k,l=−
!pk ·!cle j2 ( fint(l+ k

m )+k (t)). (15)

The double summation term in (15) contains fast-varying components
(stemming from non-zero coefficients of fint in the exponential),
together with potentially slowly varying components resulting from
the k (t) terms. To facilitate averaging out the fast variations (in a
manner similar to [13] for fundamental harmonic IL), we define an
averaged version of the second term on the RHS5 of (15) to be

g( (t)) =
1 ∫

0 k,l=−
!pk ·!cle j2 ( fint(l+ k

m )+k (t))d . (16)

where = 1
fin , the time-span of averaging, is chosen to be oneBinary

locking refers to the case of sub-harmonic locking with m = 2. Ex-
periments were performed on a Ring oscillator and an LC oscillator.
period the external input #          »SYNC(t). Simplifying (16), we have

g( (t)) =
k,l=−

!pk ·!cle j2 k (t) · 1
∫

0
e j2

t (l+ k
m )d . (17)

For values of k, l such that (l+ k
m ) %= 0, the integral in (17) always

evaluates to zero, resulting in the further simplification

g( (t)) =
l=−

!p−ml ·!cle− j2 ml (t). (18)

We now average (15) by substituting its last term by (18), resulting
in

˙(t) =
(
f − 1

m
fin
)
+ f

l=−
!p−ml ·!cle− j2 ml (t). (19)

If the oscillator achieves simple mthsub-harmonic phase lock, then,
as noted earlier, (t)≡ constant, i.e., ˙(t)≡ 0; hence (19) reduces to

fin−mf
m f

= g( ) =
l=−

!p−ml ·!cle− j2 ml . (20)

(20), dubbed the Adlerized SHIL equation, is a simple scalar algebraic
equation in the SHIL phase error , solutions to which determine
whether or not mthsub-harmonic phase lock is possible. Observe that
the LHS of (20) is a constant equalling f

f , while its RHS g( ) is
a real periodic function with period 1

m . (20) can easily be plotted
graphically; for example, as in Fig. 2(d) and Fig. 5(d), discussed
further in Sec. IV. The significance of (20), and the insights it
provides into SHIL, are discussed in the next section.

4Given the differential equations (1) of any oscillator, robust and scalable
numerical methods for finding {!pk} are available and well established [17].
5RHS = right hand side; LHS = left hand side.
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B. Insights resulting from the Adlerized SHIL equation
The simplicity of the form of equation (20) allows several interesting
and useful design insights to be deduced from it. Typically, circuit de-
signers are interested in design variables such as injection amplitude,
lock range, stability of lock, etc., regarding which (20) provides useful
qualitative and quantitative information. (20) also provides additional
insights into the very mechanisms of lock, which translate into key
guidelines for designing oscillators for SHIL.
1) Number, stability and spacing of distinct sub-harmonic locks:
From the facts that the RHS of (20), g( ), is continuous,
bounded, differentiable and 1

m -periodic, it can be easily proved
6

that the number of distinct solutions of (20) is an integral
multiple of 2m – i.e., (20) can have zero, 2m, 4m, etc. solutions
in interval ∈ [0,1). There will be no solutions if value of the
LHS of (20) falls outside the range of g( ); this indicates that
mthsub-harmonic phase lock is not possible – as depicted in
Fig. 9(b), discussed in Sec. IV. When the LHS does fall within
the range of g( ), 2m× k solutions can exist – the typical case
being k = 1 or 2m solutions, depicted in Fig. 2(d) and Fig. 5(d).
Moreover, it can be shown that exactly half the solutions are
dynamically stable, with the other half being unstable; indeed,
stable and unstable solutions occur alternately. The separation be-
tween successive stable solutions (and between successive unstable
solutions) is always 1

m ; however, the gaps in phase between a
stable solution and its two neighbouring unstable solutions can
be (and typically is) asymmetric. Fig. 2(d) and Fig. 5(d) illustrate
these facts.
The fact that there are multiple stable solutions, spaced at phase
differences of 1

m , increases the possibility that disturbances will
lead to small phase slips when m > 1, compared to fundamental
IL situations where m = 1, potentially leading to increased jitter
concerns during design. Moreover, because of the asymmetric
spacing of neighbouring unstable solutions, the magnitude of the
phase disturbance needed to induce a phase slip depends on
whether its sign is positive or negative. To assess lock robustness,
the lesser of the gaps from a stable lock to its neighbouring
unstable locks should considered during design.

2) The mth harmonic of the PPV enables mth sub-harmonic lock:
From the definition (18) of g( ), observe that the coefficient
of the lth harmonic component of g( ) is !p−ml ·!cl . This
shows that the strength of the mth harmonic component of the
PPV is of key importance in enabling mth harmonic SHIL.
For example, if the second harmonic component of the PPV
is much smaller than its first and third harmonic components
(as in Fig. 7(c), for the symmetric ring oscillator example of
Sec. IV-B), then the oscillator is much more susceptible to first-
and third-sub-harmonic IL than to second-sub-harmonic IL, for
external inputs of the same magnitude. To make it better suited
for second-sub-harmonic locking, the oscillator’s design needs to
be changed such that its PPV’s second harmonic component is
accentuated. This can be achieved, for example, by resizing the
transistors in the oscillator’s inverters to make them asymmetric
as in Sec. IV-A1, resulting in the new PPV harmonics shown
in Fig. 2(c). Note also that the presence of higher harmonics
in the input, together with corresponding harmonics in the
oscillator’s PPV, facilitate mth sub-harmonic lock – indicating
that nonlinearity is useful for SHIL. Thus, the Adlerized SHIL
equation (20), together with computational tools for determining
the PPV’s harmonics [17], provides concrete design guidelines
for utilizing SHIL.

3) Analytical lock range formulæ for sinusoidal inputs: When the
injected signal is purely sinusoidal (i.e.,!ck ≡!0,∀k %=±1), as it is in
many applications, g( ) becomes purely sinusoidal too, enabling
simple analytical formulæ to be derived that express the SHIL
lock range f

f in terms of injection amplitude, and vice-versa7.

6The proof is omitted in the interest of brevity.
7Similar to formulæ for fundamental harmonic IL [20].

The relationship stands as

fin−mf
m f

=
1
2
·Pm ·C · cos(2 m ) (21)

where Pm denotes the real magnitude of the mth harmonic com-
ponent of the PPV and C denotes the amplitude of the purely
sinusiodal injected signal. (21) is derived by simplifying the RHS
of (20) using l =±1 only.

IV. VALIDATION ON RING AND LC OSCILLATORS
Vdd

Wn

Wp Wp Wp

Wn Wn

Fig. 1: 3-stage ring oscillator.

In this section, the theoretical pre-
dictions and insights of (20) as
developed through Sec. III-A and
Sec. III-B are validated against full
SPICE-level transient simulations
in presence of the external injected
signal #          »SYNC(t). For the sake of
brevity, the validation is performed
on two circuits - a 3-stage CMOS
inverter based ring oscillator and an LC oscillator with a tanh
negative-resistance nonlinearity. The experiments are performed on
both the circuits for 2nd sub-harmonic injection locking, and on the
ring oscillator only for 3rd sub-harmonic injection locking, but with
additional modifications in the injection amplitude and locking range
under 3 representative cases. The general flow of the experiments is
as follows. First, the natural transient of the oscillator is observed and
the resulting PPV waveforms in time and frequency domain plotted;
necessary modifications to the oscillator design to induce the intended
SHIL are done. Then the theoretical expectations regarding the nature
and possibility of SHIL are plotted by graphically depicting (20).
Finally, a full transient simulation of the oscillator output in presence
of external injection #          »SYNC(t) is performed and observed against the
reference signal REF(t). It is important to emphasize that the insight
from plots of (20) is only qualitative and not strictly quantitative since
it is subject to slow-varying approximation as explained in Sec. III-A,
while the full transient analysis does not use (20) and is precise.
Thus, the predicted phase for a successful lock in Fig. 2(d) would
not match exactly with the actual in Fig. 3, but would be close,
while the difference between the phases for two lock states would
be precisely. The predictions from theory and observations from
experiment are then cross-checked and validated.

A. 2nd Sub-Harmonic Injection Locking with 2 stable locks
We first apply the Adlerized SHIL equation (20) to explore 2nd
sub-harmonic IL in two different types of oscillators, the 3-stage
CMOS-based ring oscillator in Fig. 1 and the negative-resistance
LC oscillator in Fig. 4. We also validate the predictions of (20)
against detailed SPICE-level transient simulations. The external input
( #          »SYNC(t), defined in Sec. II-B) was applied as three current injec-
tions to the inverter nodes of the ring oscillator; for the LC oscillator,
a single current injection was applied to the LC tank.
1) Asymmetric Ring Oscillator, m= 2 Sub-Harmonic Lock: As noted
in Sec. III-B, item 2, the 2nd harmonic of the PPV is crucial to an
oscillator’s susceptibility to 2nd sub-harmonic lock. If the transistors
in each inverter in Fig. 1 are sized symmetrically, the waveforms of
natural oscillation become symmetric (about a DC value of approx-
imately half its amplitude). This results in considerable suppression
of even harmonics, in both the natural oscillation waveform and the
oscillator’s PPV waveforms (as depicted in Fig. 7(c)) — thereby
making symmetric ring oscillators unsuitable for m= 2 SHIL.
However, it is easy to modify the inverter design to generate a strong
2nd harmonic PPV component. Asymmetrizing the sizes of the P
and N transistors makes the natural oscillation waveform asymmetric
about its mean, thus generating second harmonic components. In
our design, we chose WP = 2µm and WN = 0.3µm to asymmetrize
the oscillator; the resulting natural oscillation waveform and PPV
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harmonics are shown in Fig. 2(a) and Fig. 2(c), respectively. Time-
domain waveforms of the PPV are also shown, in Fig. 2(b).
Fig. 2(d) depicts the LHS (red constant line) and RHS (blue sinu-
soidal waveform) of the Adlerized SHIL equation (20); intersections
represent solutions. Observe that (as noted in Sec. III-B, item 2)
there are 4 intersections, i.e., 4 solutions. It can be shown that the
second and fourth solutions (from the left), corresponding to negative
slopes of the RHS waveform g( ), are stable; the first and third
solutions, where the slope of g( ) is positive, are unstable. The two
stable solutions are separated by = 1

2 ; similarly for the unstable
solutions.
To validate the predictions of lock in Fig. 2(d), detailed SPICE-level
transient simulations of ring oscillator were carried out; the results
are shown in Fig. 3. The voltage waveforms of the sub-harmonically
locked ring oscillator at the three inverter nodes are depicted in red,
blue and green, respectively; the external input #         »SYNC(t) is depicted in
black; and the REF(t) signal by the sinusoidal waveform in turquoise.
As indicated in the figure by “SHIL lock 1” and “SHIL lock 2”,
there are two distinct phase relationships between REF(t) and the
oscillator’s waveforms; close inspection shows that they are shifted
by exactly half of an oscillation cycle. Indeed, as also shown in the
figure, momentary disturbances (indicated by the magenta waveform)
shift the oscillator’s waveforms from one lock state to the other.

Fig. 4: LC oscillator with tanh
nonlinearity.

2) LC Oscillator in Binary Lock-
ing: Similar to 3-stage ring oscil-
lator, the LC oscillator of Fig. 4
has natural transient waveforms as
shown in Fig. 5(a). The wave-
form depicted in blue represents
the natural oscillations of the volt-
age across the capacitor (Vcap) of Fig. 4 and the green waveform
depicts the oscillations of the inductor current, the latter being of
significantly less amplitude than the former.
The time and frequency domain plots of the PPV waveforms for the
Vcap are shown in blue in Fig. 5(b) and Fig. 5(c), respectively. As
explained previously, the magnitude of the 2nd harmonic in the PPV
waveform suggests the suitability of this oscillator for m = 2 SHIL.
Fig. 5(d) shows the Adlerized plot for (20) for the LC oscillator.
As before, the LHS (red constant line) and RHS (blue sinusiodal
waveform) are observed to intersect at 4 distinct points; thus there
are 4 solutions of (20) for the given situation, of which the second
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(d) Plot of Adlerized SHIL equation.

Fig. 2: Asymmetrized ring oscillator: natural oscillations, PPV
waveforms and Adlerized SHIL plot.

Fig. 3: Asymmetrized ring osc. transient simulation, showing two
distinct SHIL lock states.

and fourth solutions from the left occuring on the negative slope
of the RHS waveform are stable and the other two are unstable,
as explained previously. Fig. 6 shows the validation against SPICE-
level transient simulation of the LC oscillator in presence of the
injected signal #         »SYNC(t), depicted in black; the output is observed
against REF(t), depicted in turquoise. As before, two distinct phase
relationships are visible between the blue Vcap oscillation waveform
and REF(t), which denote the 2 stable solutions of (20) under phase-
locked condition. Disturbances (depicted by the magenta waveform)
shift the oscillator’s response by = 1

2 from one stable solution to
another.

B. m= 3 Sub-harmonic Injection Locking with 3 stable states
The agreement between the Adlerized SHIL equation (20) and
full SPICE-level transient simulation is further tested for 3rd sub-
harmonic injection locking. As explained previously in Sec. II-B,
this means that the injected signal #         »SYNC(t) runs at a frequency
fin = 3( f + f ), f being the natural frequency of the oscillator. The
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(b) PPV (time domain).
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(c) PPV harmonics.
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(d) Plot of Adlerized SHIL equation showing robust lock.

Fig. 7: Symmetric ring oscillator: natural oscillations, PPV waveforms
and Adlerized SHIL plot.

circuit used for the validation is a 3-stage ring oscillator; however, for
m= 3 SHIL the magnitude of the 3rd PPV harmonic is of significance
as opposed to the 2nd. Therefore, unlike the asymmetrized design
of Sec. IV-A1, an accentuation of the 3rd harmonic of the PPV is
required, along with a suppression of the 2nd harmonic component
to prevent the probability of m = 2 SHIL. As noted previously,
this can be easily achieved by reverting the P and N transistors in
each inverter of the 3-stage ring oscillator to a symmetrized form;
we chose WN =WP = 0.3µm. The effect of this change is readily
noticeable in the natural oscillation waveforms of Fig. 7(a) which
are symmetric about their mean voltage. This translates to the PPV
waveforms in time and frequency domain as in Fig. 7(b) and Fig. 7(c)
respectively; the suppression of the 2nd harmonic as compared to the
3rd is observed in the latter.
The predictions of the Adlerized SHIL equation (20) are tested under
three cases:
Case-(a) with sufficient amplitude or within a sufficiently small
frequency deviation f to ensure a strong lock in the Adler plot
(Fig. 7(d));
Case-(b) with a critical amplitude or frequency deviation so that the
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Fig. 8: Symmetric ring oscillator transient simulation depicting robust
SHIL in distinct lock states.

Adler plot only predicts a marginal lock (Fig. 9(a));
Case-(c) with a weak injection amplitude or sufficiently large fre-
quency deviation so that the Adler plot clearly predicts no possibility
of locking (Fig. 9(b)).
The three cases are motivated by the observation that in the Adler
plots the red constant waveform representing the LHS of (20)
essentially simplifies to the fractional frequency deviation

(
f
f

)
,

while amplitude of the blue sinusiodal waveform, depicting the RHS
of (20), reflects the injection amplitude of #         »SYNC(t). Changing the
frequency deviation or injection amplitude affects the magnitude of
the red constant line (LHS) or the amplitude of the blue waveform
(RHS), thus presenting an opportunity to critically examine the
predictive power of (20).
Fig. 7(d) shows the Adler plot for case-(a). The waveforms depicting
the RHS and LHS are found to intersect at 6 different points;
thus (20) admits 6 distinct solutions under this injection scenario,
of which the second, fourth and sixth intersection points from the
left denote dynamically stable solutions as explained previously.
Fig. 8 shows the corresponding forced transient simulation. As before,
the output waveform is found to show two (of three possible)
distinct phase relationships with the turquoise waveform depicting
#         »SYNC(t). Momentary disturbances (depicted in magenta) shift the
output waveforms from one lock state to the other, which are mutually
separated by a third of one complete oscillation cycle as observed in
the figure.
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(a) Adlerized SHIL predicts marginal lock.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.06

0.04

0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Ad
le

r e
qu

at
io

n 
te

rm
s

Adler plot: m=3, f0=1.62308e+11, f1=5.35616e+11, A=0, =0

 

 
g( )+A h( )
(f1 m f0)/(m f0)

(b) Adlerized SHIL predicts no lock.

Fig. 9: Symmetric ring osc.: Adlerized SHIL equation predicting weak
and no locking.

Fig. 9(a) shows the Adler plot case (b). The RHS and LHS waveforms
only marginally intersect at 6 points with 3 dynamically stable
solutions for injection locking as before. Intuitively, the possibility
of a lock in the actual forced transient simulation is questionable,
because of:



6

0 1 2 3 4 5 6
x 10 11

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (s)

ou
tp

ut
(s

)
transient w forcing: df0 = 0.1, sync amp = 1.5e 06

 

 
inv1
inv2
inv3

Fig. 10: Transient simulation of symmetric ring oscillator under
marginal lock, showing beats.

(1) the fact that an approximation was involved in the Adlerization
process which ironed out the effect of the fast variations in g( (t)).
Incorporation of those variations would imply a fluctuation in the
amplitude of the RHS (blue waveform) which in the present case
can be sufficient to throw the oscillator out of lock;
(2) the fact that the separation between alternate solutions of Fig. 9(a)
is highly skewed. This implies that when the oscillator is thrown out
of lock as in (1) above, the solution would cross over the maxima
of the blue waveform to migrate to the next stable solution point
unidirectionally. However, as this point is also prone to the same
variations as noted in (1), the solution would continue to migrate,
essentially contributing an extra

(
d
dt

)
component. This translates to

an additional frequency, characteristic of injection pulling rather than
injection locking.
Fig. 10 shows the transient simulation for case-(b). Close inspection
of the output waveforms against the REF(t) waveform depicted
in turquoise shows that the output has not phase-locked to the
reference. Moreover, the output shows beat-like patterns, typically
encountered in injection pulling scenarios. Between two such beat
patterns the REF(t) waveform is seen to shift by a third of one
complete oscillation cycle, indicative of the migration of the solution
point of Fig. 9(a).
Finally, Fig. 9(b) shows the Adler plot for case-(c). The LHS and RHS
have no intersection, implying no solution for (20). This expectation
is reflected in the forced transient simulation of Fig. 11. Inspection
of the output waveforms against the turquoise REF(t) signal clearly
shows no injection locking.

V. CONCLUSIONS
We have presented a powerful and general approach for analysing
sub-harmonic injection locking (SHIL) in oscillators. The approach
takes full account of the inherently nonlinear phase dynamics that
underlie SHIL, yet arrives at a simple and intuitive equation that
captures SHIL for any oscillator topology and any intended mode
of sub-harmonic lock. The equation provides useful design insights
for enhancing SHIL, and also provides precise information about the
number, stability and robustness of sub-harmonic phase locks. We
have demonstrated the new SHIL analysis technique using ring and
LC oscillators as examples, and shown that its predictions are in
excellent agreement with detailed SPICE-level simulations.
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