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Abstract—In the light of implementation attacks a better
understanding of complex circuits of security sensitive
applications is an important issue. Appropriate evaluation
tools and metrics are required to understand the origin of
implementation flaws within the design process. The selected
leakage model has significant influence on the reliability
of evaluation results concerning the side-channel resistance
of a cryptographic implementation. In this contribution we
introduce methods, which determine the accuracy of the leakage
characterization and allow to quantify the signal-to-noise ratio.
This allows a quantitative assessment of the side-channel
resistance of an implementation without launching an attack.
We validate the conclusions drawn from our new methods
by real attacks and obtain similar results. Compared to the
commonly used Hamming Distance model in our experiments
enhanced leakage models increased the attack efficiency by up
to 500%.

Key words: signal-to-noise ratio, approximation error,
constructive side-channel analysis, secure hardware design

I. INTRODUCTION

Since the mid-nineties side-channel attacks have constituted
serious threats to security implementations. Usually, either
profiling-free attacks (like simple power analysis (spa) [1],
differential power analysis (dpa) [1], correlation power anal-
ysis (cpa) [2], or mutual information analysis (mia) [3])
or profiling-based methods (like Template Attacks [4] or the
stochastic approach [5]) are used to check the vulnerability of
cryptographic implementations by side-channel attacks. Many
side-channel attacks apply simple leakage models to exploit
the power consumption, assuming bitwise independent side-
channel leakage (e.g., the Hamming Distance or the Hamming
Weight for single-bit or multi-bit leakage models). However,
[6]–[8] clearly point out that complex leakage models (in
combination with linear regression analysis) are often more
effective than the commonly used simple leakage models since
they map the switching activity of the circuit more precisely

to estimated power consumption. Linear regression analysis
allows to reduce the number of parameters, which have to
be considered. But how can a designer decide whether the
considered leakage characterization is precise enough, and
which model is most efficient for a given implementation?

In this article we develop two methods, which help to
answer these questions. The first method considers the ac-
curacy of the selected leakage function, which quantifies the
leakage model. More precisely, it provides an estimate for the
approximation error of the (estimated) leakage function, which
has been derived on basis of the selected leakage model. The
second method quantifies the signal-to-noise ratio for arbitrary
leakage models. We demonstrate both the application and the
benefit of the introduced new methods (viewed as design-
supporting tools) for several leakage models. The proposed
methods are based on the stochastic approach, which was
originally designed as an attack instrument to disclose a secret
cryptographic key of a block cipher [5], [9]–[12]. We explain
how the first profiling step of the stochastic approach can be
used by hardware designers in order to obtain information of
the selected leakage function accuracy and of the acquisition
quality. These information can constructively be used to design
effective countermeasures and to gain insights in security-
critical properties of an implementation.

In Sect. II we briefly sketch the basics of the stochastic
approach. In Sect. III we discuss several leakage models
and explain which internal effects of the circuit they should
capture. A method to estimate the approximation error of the
leakage function is developed in Sect. IV, which allows the
designer to quantify the accuracy of the leakage function. In
Sect. V we show how the stochastic approach can be used to
estimate the signal-to-noise ratio, which in turn determines the
quality of the measurable leakage of a circuit. Besides theoret-
ical reasoning a case study (including attacks) for a hardware
implementation of the Advanced Encryption Standard (AES)
[13] is conducted. Section VI concludes the contribution.
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Fig. 1. a) Relation between the stochastic model and the current consumption
b) Subspace representation of the data-dependent current consumption

II. CONSTRUCTIVE SIDE-CHANNEL ANALYSIS

The general idea of constructive side-channel analysis is to
gain quantitative information on the side-channel leakage and
to use it for the (re-)design. In [8] it was demonstrated how
the first profiling step of the stochastic approach can be used
to quantify the data-dependent power consumption and thus
to support (re-)design constructively. Moreover, in [14] a new
symmetry metric was introduced to gain quantitative informa-
tion of the selected leakage model. Although very useful, the
feedback information does not contain any information about
the precision and accuracy of the selected leakage function.
In Subsects. II-A and II-B we briefly summarize the basics of
the stochastic approach (cf. [5], [8], [11] for details).

A. Notation and the Stochastic Model

In side-channel attacks the cryptographic key is guessed in
small portions, referred to as subkeys k (here: single bytes).
The letter k ∈ {0, 1}s denotes a subkey, x ∈ {0, 1}p a known
part of the plaintext or the ciphertext. Random variables are
represented with capital letters while their realizations1 are
denoted by the corresponding small letters. In particular, X
assigns a random variable that assumes a small part (p bits)
of the plaintexts or of the ciphertext. The term EY (·) denotes
the expectation (or more colloquial, the average value) of
a random variable Y . Vectors are written in bold face and
estimates are assigned by the ∼ sign. The stochastic approach
interprets the electrical current consumption2 it := it(x, k)
at time t as a realization of a random variable It(x, k)
whose unknown distribution depends on the tuple (x, k). More
precisely, as the left hand side of Fig. 1 a) depicts

It(x, k) = ht(x, k) +Rt . (1)

The leakage function ht(x, k) quantifies the deterministic part
of the electrical current consumption and the random variable
Rt quantifies the centered noise, which is independent of
ht(x, k). W.l.o.g.3 we may assume E(Rt) = 0, and further
Rt is assumed to be normally distributed.

Note that ht(x, k) provides the most relevant information
for constructive side-channel analysis. We note that if the
stochastic approach shall be used as an attack tool in a second
profiling step the joint density of (Rt1 , . . . , Rtm) is estimated

1values assumed by these random variables
2the current consumption is proportional to the power consumption
3without loss of generality

for time instants t1 < · · · < tm, and in the attack phase the
attacker uses the information derived in the profiling steps to
guess the unknown subkey, c.f., [5], [11].

B. Estimation of the Leakage Function ht(·, ·)
For each admissible subkey k ∈ {0, 1}s we consider the

restricted function ht;k : {0, 1}p × {k} → IR as an element
of a 2p-dimensional real subspace Fk := {h′ : {0, 1}p ×
{k} → IR}. Instead of estimating ht;k in Fk the stochastic
approach aims at the best approximator h∗t;k in some appro-
priate subspace Fu,t;k, which is spanned by u basis functions
gj,t;k : {0, 1}p × {k} → IR, j = 0, . . . , u− 1

Fu,t;k := {h′ : {0, 1}p × {k} → IR | (2)

h′ =

u−1∑
j=0

β′jgj,t;k with β′j ∈ IR}.

Note that the basis vectors g0,t;k(·, k), . . . , gu−1,t;k(·, k)
should capture the relevant source of side-channel leak-
age with regard to the concrete implementation (cf. [5],
[10], [11]). We denote the coefficients β∗0,t;k, . . . , β

∗
u−1,t;k of

h∗t;k with regard to this basis as the β-characteristic. Let
it(x1, k), . . . , it(xN1 , k) ∈ IR denote N1 measurements at
time t, and let the real-valued (N1 × u)-matrix

A :=

 g0,t;k(x1, k) . . . gu−1,t;k(x1, k)
...

. . .
...

g0,t;k(xN1 , k) . . . gu−1,t;k(xN1 , k)

 . (3)

If the (u × u)-matrix ATA is regular the normal equation
ATAb = ATit has a unique solution b̃∗, and accordingly

h̃∗t;k(·, k) =

u−1∑
j=0

β̃∗j,t;kgj,t;k(·, k) with β̃∗j,t;k := b̃∗j (4)

is the least square estimate of h∗t;k. Roughly speaking, the
data-dependent current consumption ht;k is projected onto the
subspace Fu,t;k, and its image can be expressed by a linear
combination of the basis functions gj,t;k(·, k) weighted with
the β̃∗j,t;k coefficients, c.f., Fig. 1 b). As shown in [8] the
β-characteristic reveals flaws of the implementation if the
leakage model is chosen reasonably. Hence the β-characteristic
provides quantitative information, which can be used for
(re-)design methods. An overview of reasonable leakage mod-
els and their relevance for hardware implementations is given
in the next section.

III. SELECTION OF THE SUBSPACE

In this section we discuss properties of increasing sub-
spaces. Figure 2 illustrates how leakage models with different
subspaces capture transitions between registers of a combina-
tional circuit part. The model with a 2-dimensional subspace4

considers the joint electrical current consumption induced by
all bit flips. The 9-dimensional subspace assumes that all bit
lines leak independently. This model is appropriate if one only

4similar to the common Hamming Distance model, favored model for DPA
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focuses on the bit flips inside the register. Leakage models
with higher subspaces may be superior if additional switch-
ing activity of the combinatorial circuit occurs since they
additionally capture data-dependent glitches. Fig. 2 illustrates
the properties of several high-dimensional subspaces, which
consider interactions between up to four bits. In the following
we specify the leakage models with subspaces from dimension
2 to dimension 163. The target is the final round of an AES-
128 cipher (key size of 128-bit) implementation in hardware.

The 2-dimensional subspace considers the Hamming Dis-
tance between the ciphertext and the intermediate register
value of the 9th round. More precisely, F2,t;k is spanned by
the following basis vectors:

g0,t;k((x(z), x(y)), k(y)) = 1 (5)
g1,t;k((x(z), x(y)), k(y)) =

HW
(
x(z) ⊕ S−1(x(y) ⊕ k(y))

)
− 4

where ’(y)’ and ’(z)’ label the respective key bytes (cf. [8]
for details). Note that the constant function g0,t;k captures the
expected level of the complete current consumption. Further-
more, for uniformly distributed pairs (X(y), X(z)) we have
EX(g1,t;k((X(y), X(z)), ky)) = 0 due to the subtraction of 4.

The 9-dimensional subspace aims at capturing the direct
transitions bitwise, thus it is spanned by the basis vectors:

g0,t;k((x(z), x(y)), k(y)) = 1 (6)
gj,t;k((x(z), x(y)), k(y)) =

2 ((x(z) ⊕ S−1(x(y) ⊕ k(y)))j − 1
21 ) for j = 1, . . . , 8.

As above EX(gj,t;k((Xy, Xz), ky)) = 0 for j = 1, . . . , 8 for
uniformly chosen (X(y), X(z)) due to the subtraction of 1

21 .
Similarly, the expectation of the basis vectors in Eqs. (7) to
(9) is 0, too.

If one assumes that the interaction between two bit lines
may also cause leakage it is reasonable to add the following
basis vectors

gj,t;k((x(z), x(y)), k(y)) = (7)

22 ((x(z) ⊕ S−1(x(y) ⊕ k(y)))j1(x(z) ⊕ S−1(x(y) ⊕ k(y)))j2
− 1

22
)) for 9 ≤ j ≤ 37 and 1 ≤ j1 < j2 ≤ 8.

Moreover, the leakage arising from the transaction between
three bit lines is captured by the following basis vectors:

gj,t;k(x(z), x(y)), k(y)) = (8)

23 ((x(z) ⊕ S−1(x(y) ⊕ k(y)))j1(x(z) ⊕ S−1(x(y) ⊕ k(y)))j2
(x(z) ⊕ S−1(x(y) ⊕ k(y)))j3 −

1

23
)) for 38 ≤ j ≤ 93

and 1 ≤ j1 < j2 < j3 ≤ 8.

The following basis vectors additionally capture the transac-
tion between four bit lines:

gj,t;k((x(z), x(y)), k(y)) = (9)

24 ((x(z) ⊕ S−1(x(y) ⊕ k(y)))j1(x(z) ⊕ S−1(x(y) ⊕ k(y)))j2
(x(z) ⊕ S−1(x(y) ⊕ k(y)))j3(x(z) ⊕ S−1(x(y) ⊕ k(y)))j4
− 1

24
)) for 94 ≤ j ≤ 163 and 1 ≤ j1 < j2 < j3 < j4 ≤ 8.

Remark 1: (i) For a uniformly distributed random variable
X in the general case (h′, h′′) 7→ E(h′(X, k) · h′′(X, k))
defines an L2 scalar product on Fk. In our context clearly
X = (X(y), X(z)).
(ii) With regard to this scalar product all basis vectors from
Eqs. (6) to (9) are normalized, which was the reason for in-
troducing the factor 2i. While the basis functions from Eq. (6)
are even orthonormal, the others are not. An orthonormal basis
can be determined with well-known algorithms.
However, the option of applying high-dimensional subspace
based leakage models raises the question: How ’large’ should
the selected subspace Fu,t;k be? Of course, Fu,t;k might
not contain the exact leakage function ht;k but the distance
between the approximator h∗t;k ∈ Fu,t;k and ht;k should be
relatively small, c.f., Fig. 1b). We investigate this issue below.

IV. SUITABILITY OF THE SELECTED SUBSPACE

The efficiency of the stochastic approach depends signif-
icantly on the choice of the leakage model and thus of the
subspace Fu,t;k. A natural ’benchmark’ is the attack efficiency,
which allows a rating relative to other attacks. At least for
design purposes, however, it would be more desirable to have
absolute criteria for assessing the suitability of Fu,t;k.

A. A Benchmark for Different Leakage Models

In [14] a new symmetry metric was discussed, which allows
to verify the suitability of leakage models with regard to
assumed symmetries of the leakage function. However, this
definitely useful result covers only some aspects on whether
the selected subspace is indeed appropriate. A related question
is, how many basis vectors should be considered or, loosely
speaking, how ’large’ the subspace Fu,t;k should be. If Fu,t;k

is selected too ’small’ one clearly loses the information that is
contained ’outside’ Fu,t;k. On the other hand, if dim(Fu,t;k) is
unnecessarily large this may slow down the convergence rate
of the least square estimate, which must be compensated by
(maybe significantly) increasing the number of measurements.
If the number of measurements is not sufficient, the estimate
h̃∗t;k might be worse than for a smaller subspace.



Definition 1: The L2 distance between two
functions h′, h′′ ∈ Fk is given by ‖h′ − h′′‖ :=√

2−p
∑

x∈{0,1}p(h′(x)− h′′(x))2.
Note that the L2 distance corresponds to the scalar product
introduced in Remark 1(i). The term EX,R(·) stands for
the expectation with regard to the random variables X and
R. To simplify the notation we introduce the abbreviations
∆ht;k := ht;k − h∗t;k and ∆̃ht;k := ht;k − h̃∗t;k. W.l.o.g. we
may assume that g0,t;k, . . . , gu−1,t;k is an orthonormal basis of
Fu,t;k (c.f., Remark 1), which is extended by suitable vectors
gu,t;k, . . . , g2p−1,t;k to an orthonormal basis of Fk. For our
purposes the L2 distance ‖ht;k(·, k)− h∗t;k(·, k)‖ provides all
the information we are interested in, namely the approxima-
tion error ∆ht;k(·, k), resp. the estimated error ∆̃ht;k(·, k).
Unfortunately, this value cannot directly be computed since
the exact leakage function ht;k(·, k) is unknown. Let X denote
a uniformly distributed random variables that assumes values
in {0, 1}p, then

‖∆ht;k(·, k)‖2 = EX

(
(ht;k(X, k)− h∗t;k(X, k))2

)
. (10)

Equation (11) provides an equation for the unknown L2

distance, and Ineq. (12) provides an upper bound.

EX,R

(
(It(X, k)− h∗t;k(X, k))2

)
= EX,R

(
(∆ht;k(X, k) +Rt)

2
)

= EX

(
∆ht;k(X, k)2

)
+ ER(R2

t ) (11)

≥ EX(∆ht;k(X, k)2) = ‖∆ht;k(·, k)‖2 =

2p−1∑
j=u

β2
j,t;k . (12)

The left-hand term of (11) can easily be estimated: From N
traces one computes the term

1

N

N∑
j=1

(
it(xj , k)− h̃∗t;k(xj , k)

)2
(13)

where the values x1, . . . , xN should be drawn from a uni-
form distribution. The smaller the noise the more meaningful
Ineq. (12) is.

Nevertheless, we also provide an estimator for E(R2
t ).

Recall that for each pair (x, k) ∈ {0, 1}p × {0, 1}s the term
It(x, k) denotes a random variable with unknown distribution
that depends on (x, k). Now let I ′t(x, k) be an independent
random variable, which has the same distribution as It(x, k).
This means

It(x, k) = ht;k(x, k) +Rt and I ′t(x, k) = ht;k(x, k) +R′t
with ER(Rt) = ER′(R′t) = 0 (14)

with independent and identically distributed random variables
Rt and R′t. This implies

EX

(
(It(X, k)− I ′t(X, k))2

)
= ER,R′

(
(Rt −R′t)2

)
= 2ER(R2

t ) . (15)

From (16) we deduce an estimator for ER(R2
t )

ẼR(R2
t ) =

1

2N2

N2∑
v=1

(it(x2v−1, k)− it(x2v, k))
2 (16)
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Fig. 3. Relative approximation errors to the model with a 2-dim subspace

Here it(x1, k), . . . , it(x2N2
, k) denotes a set of randomly

selected 2N2 traces with x2v−1 = x2v for 1 ≤ v ≤ N2.
Applying Eq. (13) and Eq. (16) one finally obtains an estimate
for ‖∆̃ht;k(·, k)‖2.

Remark 2: If symmetries exist (as in Eq. (6) to (9)) the
distance ‖∆ht;k(·, k)‖ identical for all subkeys k ∈ {0, 1}s
(c.f., [14], Subsect. III.B).

B. Practical Estimation of the Approximation Error

We applied our theoretical approach to measurements per-
formed on the SASEBO-GII FPGA board. We focus on the
final encryption round of a parallel implemented AES-128 de-
sign, which uses ten clock cycles for one plaintext encryption.
We decided to use a composite-field based SBox design [15]
in order to assure a certain logic depth and thereby exploitable
data-dependent glitches.

In the following we abbreviate ‖∆̃ht;k(·, k)‖ by ∆̃
(u)
t;k when

h∗t;k(·, k) is an element of a u-dimensional subspace. For
example, ∆̃

(2)
t;k refers to ‖∆̃ht;k(·, k)‖ with h∗t;k(·, k) ∈ F2,t;k.

For each of the five leakage models and thus for each of the
five different subspaces, we estimated h̃∗t;k(·, k) from 500.000
traces. Note that the estimation of ER(R2

t ) (c.f. Eq. (16))
is independent of the leakage function. A set of 500.000
traces were used to determine ‖∆ht,k(·, k)‖2 (cf. Eq. (10))
by calculating the differences between the measured current
and the estimation h̃∗t;k(·, k) (c.f. Eq. (13)).

The experiments demonstrate that the differences in ∆̃
(u)
t;k

for u ∈ {2, 9, 37, 93, 163} are relatively small compared to the
absolute value of ∆̃

(u)
t;k . Moreover, the absolute values depend

on the concrete implementation. To illustrate our results we
compared ∆̃

(u)
t;k with ∆̃

(2)
t;k , which serves as a reference value.

We computed (∆̃
(u)
t;k − ∆̃

(2)
t;k )/∆̃

(2)
t;k for u ∈ {2, 9, 37, 93, 163}

at each time instant. Figure 3 plots this error coefficient for
the 11th byte of the final round key. The different subspaces
denoted by capital ’D’, followed by their dimensions. In
particular, D2 - D9 refers to (∆̃

(9)
t;k − ∆̃

(2)
t;k )/∆̃

(2)
t;k .

Figure 3 shows that the approximation error of h̃∗t;k ∈
Fu,t;k becomes significantly smaller as u increases. Due
to different switching activities in the circuit this trend is
(quantitatively) not identical over all time instants. More-
over, ∆̃

(u)
t;k results from the difference of large values of



similar size so that precise estimates of the ratio require
large samples. If ‖∆̃ht;k(·, k)‖2 < 0 (rare event, estimation
error) we set ∆̃

(u)
t;k := 0. A second interesting observa-

tion is that for u ∈ {37, 93, 163} the minimum value of
(∆̃

(u)
t;k − ∆̃

(2)
t;k )/∆̃

(2)
t;k occurs at the same time instant while

(∆̃
(9)
t;k − ∆̃

(2)
t;k )/∆̃

(2)
t;k attains its minimum some time instants

later than the high-dimensional subspaces, confirming the
assumption from Sect. III. Accordingly, the experiments verify
that leakage models with high-dimensional subspaces do not
only consider bit flips within the register but additionally
capture data-dependent glitches.

V. SNR AS BENCHMARK

In Sect. IV we developed a method to estimate
‖∆̃ht;k(·, k)‖, which quantifies the approximation error for the
selected subspace Fu,t;k. This metric discloses inaccuracies of
the selected subspace, which in turn affects the success rate of
an attack. However, this metric neither includes the algorithmic
noise of parallel active circuits nor the noise inherited from
the measurement process. A common way to characterize
the quality of a measured trace is the signal-to-noise ratio
(SNR). It has a great influence on the success rate of a side-
channel attack, c.f. [16], [17], and thus is also an important
characteristic of any security implementation. For instance, the
SNR may be used to quantify the strength of countermeasures.
In this section we use the stochastic approach to estimate the
SNR. In particular, this method has the advantage that it is not
constrained to some fixed leakage model (like the Hamming
Distance).

A. SNR Leakage Estimation

Generally, the SNR is defined as Var(signal)
Var(noise) , the ratio

between the variance of the determinable signal and the noise
of the measurement. In the context of side-channel analysis a
more precise definition is given in [17] by

SNR =
Var(Pdata)

Var(Pothers + Pnoise)
. (17)

As mentioned above we focus on the electrical current con-
sumption, which is proportional to the power consumption and
all their additive components, c.f., Eq. (18).

Var(Pdata)

Var(Pothers + Pnoise)
∼ Var(Idata)

Var(Iothers + Inoise)
. (18)

Idata denotes the exploitable power consumption. Thus, it
is defined by the current consumption of the data-dependent
deterministic part h∗t;k. Further, Inoise denotes the power
consumption due to noise, which is captured by Rt. Moreover,
Iothers denotes the current consumption of parallel running
activities of the circuit and, of course, the approximation
error addressed in Sect. IV. We maintain the abbreviations
and conventions from the previous sections. In particular, we
assume that g0,t;k(·, k), . . . , gu−1,t;k(·, k) is an orthonormal
basis. Straight-forward computations yield

50 75 100 125 150 175 200
0

1

2

3

4

5

6

7 x 10 3

Time Instants

SN
R

 

 
D2
D9
D37
D93
D163

Fig. 4. SNR Evaluation over all five subspaces

Var(Idata) = VarX(h∗t;k(X, k))

= EX(h∗t;k(X, k)2)− E2
X(h∗t;k(X, k))

=

u−1∑
j=0

β2
j,t;k − β2

0,t;k =

u−1∑
j=1

β2
j,t;k . (19)

Similarly,

Var(Iothers + Inoise) = VarX,R(∆ht;k(X, k) +Rt)

= VarX,R(It(X, k)− h∗t;k(X, k)) . (20)

Combining (19) with (20) yields an estimator for the signal-
to-noise ratio (S̃NR) ∑u−1

j=1 β̃
2
j,t;k

empVar
(
it(x1,k)−h̃∗t,k(x1,k), . . . , it(xN,k)−h̃∗t,k(xN,k)

)
(21)

As usual, it(x1, k), . . . , it(xN , k) denotes a set of N electrical
current measurements and empVar(·) denotes the empirical
variance. Compared to the error approximation in Sect. IV
the SNR gives no information on the accuracy of the selected
subspace-based leakage model. For side-channel analysis the
SNR quantifies the relation between exploitable information
and the ’sum’ of the power consumption of other (data-
dependent) activities that run in parallel (here: other S-boxes)
and noise. The SNR quantifies how much useful side-channel
information a leakage function extracts from the traces relative
to the existing noise.

B. Experimental SNR Estimation

We calculate S̃NR for the five different subspaces, which
were introduced in Sect. III. To compare the approximation
error from Sect. IV with the SNR we focused on the same
round key byte and used the same power traces. Figure 4
depicts the S̃NR for the five different subspaces over the
selected time instants of the final encryption round. The
leakage models are denoted as in the previous analysis, c.f.,
Subsect. IV-B. One can clearly see that the S̃NR is maximal
for the 163-dimensional subspace. Accordingly, this leakage
model extracts the most leakage information from the mea-
sured set of electrical current traces. Obviously the precision
of the subspace of the leakage model, c.f., Sect. IV, affects
the SNR. Improvements in the precision of the leakage model
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increase the S̃NR, which enhances the distinguishability be-
tween the side-channel leakage and the noise. Thus the S̃NR
refers directly to the efficiency of the leakage function for an
attack, c.f. [16], [17]. Due the data-dependent glitches for the
analyzed AES-128 implementation leakage models exploiting
high-dimensional subspaces show much better results than one
with low-dimensional subspaces.

Success rate: To verify that the discussed methods may
indeed serve as reliable indicators for the degree of vul-
nerability of a cryptographic design by side-channel attacks
we performed ten side-channel attacks on different sets of
power traces. We applied the commonly used success rate [9]
to evaluate the side-channel resistance. In order to keep the
information illustrative Fig. 5 only considers the 2-, 9-, and
163-dimensional subspaces based leakage models. Table I pro-
vides the minimum number of traces needed for a successful
attack for all discussed leakage models. The results show that
low-dimensional leakage models are clearly less efficient than
the 163-dimensional version, confirming the results that were
derived from the methods introduced in Sect. V and Sect. IV.

VI. CONCLUSION

We investigated the precision of leakage functions, in partic-
ular of leakage models corresponding to high-dimensional sub-
spaces. We introduced two metrics, the L2 distance ‖∆ht;k‖
and the SNR, which can be used to quantify the accuracy
of selected subspace Fu,t;k, and thus may serve as useful
tools for secure design. For an AES-128 block cipher hard-
ware implementation we exemplarily discussed several leakage
models with high-dimensional subspaces. We investigated
the accuracy and precision of these leakage functions with
our proposed methods, and we compared these results with
the success rate of conducted side-channel attacks. In our
experiments these two metrics led to the same efficiency
ranking of the leakage functions as concrete attacks on the
implementation. We mention that even for high-dimensional
subspaces the computation time for our metrics is not the
limiting factor; the acquisition time still dominates the duration
of the side-channel evaluation. In particular, leakage models
with high-dimensional subspace reduced the required number

TABLE I
SUCCESS RATE FOR ALL LEAKAGE MODELS

Subspace [dim] 2 9 37 93 163
# Traces for success rate=1 14971 7206 3137 2881 2250

of traces up to a sixth compared to the Hamming Distance
model.
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