
RSM: a Small and Fast Countermeasure for AES,

Secure against 1st and 2nd-order Zero-Offset SCAs

Maxime Nassar∗†, Youssef Souissi∗, Sylvain Guilley∗‡ and Jean-Luc Danger∗‡

∗Institut TELECOM / TELECOM ParisTech, †Bull TrustWay, ‡Secure-IC S.A.S.,
CNRS LTCI (UMR 5141), 46 rue Barrault Rue Jean Jaurès, B.P. 68 80 avenue des Buttes de Coësmes,

75 634 Paris Cedex, France. 78 340 Les Clayes-sous-Bois, France. 35 700 Rennes, France.

Abstract—Amongst the many existing countermeasures against
Side Channel Attacks (SCA) on symmetrical cryptographic
algorithms, masking is one of the most widespread, thanks to
its relatively low overhead, its low performance loss and its
robustness against first-order attacks. However, several articles
have recently pinpointed the limitations of this countermeasure
when matched with variance-based and other high-order analy-
ses. In this article, we present a new form of Boolean masking for
the Advanced Encryption Standard (AES) called “RSM”, which
shows the same level in performances as the state-of-the-art, while
being less area consuming, and secure against Variance-based
Power Analysis (VPA) and second-order zero-offset CPA. Our
theoretical security evaluation is then validated with simulations
as well as real-life CPA and VPA on an AES 256 implemented
on FPGA.

Keywords: Side-Channel Attacks (SCA), Variance-based

Power Analysis (VPA), zero-offset DPA, Mutual Information

Analysis (MIA), substitution boxes (S-Boxes), Advanced En-

cryption Standard (AES), Boolean masking, Rotating S-boxes

Masking (RSM).

I. INTRODUCTION

The Differential Power Analysis (DPA) [1], [2] takes advan-

tage of the fact that the power consumption of a cryptographic

device depends on the internally used secret key. Since this

property can be exploited with relatively cheap equipment,

DPA attacks pose a serious practical threat to cryptographic

devices, like smart cards (ASICs) or embedded systems (DSPs,

CPUs and FPGAs).

During the last ten years, there have been many endeavors

to develop effective countermeasures against DPA attacks.

Amongst the two major countermeasures [2] against DPA,

namely hiding and masking, the latter is certainly the least

complex to implement as it can be applied at the algorithmic

level, in a software or hardware implementation. The idea

of masking the intermediate values inside a cryptographic

algorithm has been suggested in several papers [3], [4],

[5], [6] as a possible countermeasure to power analysis

attacks. Masking ensures that every single variable is

masked with at least one random value so that a classical

(first-order) DPA attack cannot be successfully carried out

anymore. Nonetheless, straightforward implementations of

this “first-order” countermeasure happened to be vulnerable

to zero-offset “second-order” attacks [7], [8].

978-3-9810801-8-6/DATE12/ c© 2012 EDAA

We call a “first-order” countermeasure an implementation

where one single mask protects the sensitive data.Zero-offset

attacks use one sample of side-channel trace, and are thus

mono-variate. They apply when the masked variable and the

mask are consumed simultaneously by the implementation,

which is commonplace in hardware. Indeed, this architectural

strategy allows to keep the throughput unchanged. Zero-

offset second-order attacks consider not the plain observations

themselves, but their variance instead [7], [8]. The variance of

the leakage function, that involves its squaring (second-order

moment), does depend strongly on the sensitive data. More

sophisticated methods like the generic multi-variate attack

called MMIA have been introduced in [9] to attack high-

order countermeasures. Consequently, a branch of the research

on masking countermeasures has evolved towards masking

schemes with multiple masks. Another drawback of masking

is the increase of complexity. In hardware implementation,

the first-order masking countermeasure can be at least twice

as much complex as the unprotected implementation; multi-

ple masking is even worse. This significant increase comes

from the mask path implementation necessary to operate the

masking/unmasking operation, and specially the non-linear

part [10]. Therefore, it is worthwhile to study masking counter-

measures thwarting second-order DPA (2O-DPA) in particular,

and high-order DPA (HO-DPA) in general, with a complexity

increase almost negligible, or much less than a factor two.

We describe in the present paper a masking method called

RSM (short for “Rotating Sboxes Masking”) which removes

the masking path. Therefore this solution is low-cost, moreover

it is robust against first-order and zero-offset 2O-DPA attacks.

The paper is organized as follows. Section II presents

the principle of the RSM method. The RSM implementation

is provided with in Sec. III. The section IV presents the

theoretical security analysis of RSM. Then section V reports

simulation and experimental results. Optimizations in terms

both of security and of resources usage are given in Sec. VI.

Finally, section VII concludes the paper and opens some

perspectives.

II. PRINCIPLE OF RSM

In this section a detailed description of the proposed

countermeasure, namely RSM, is given in terms of rationale

and architecture. RSM aims at keeping performances and

complexity close to an unprotected AES design, while being

1



as robust against first-order SCAs (DPA, CPA) as the state-

of-the-art masking in hardware (e.g. [11], [12]). To our best

knowledge, these countermeasures are based on the Global

Look-up Table scheme described in [13]: the S-Boxes are

addressed by the masked data and the mask, thereby leaking

at second-order in the same of zero-offset attacks [7, §4.1]. In-

stead, the RSM countermeasure adheres to the Re-computation

Method described in [13]. The S-Boxes are addressed only

by the masked data: we say RSM has a mono-path structure.

This feature grants to RSM an immunity to variance-based

attacks (VPA [14, §4.3]) and makes it considerably resistant

to MIA [15]. Nonetheless, RSM is based on using precom-

puted sets of constant masks rather than random ones, and

specific customized S-Boxes with built-in input and output

unmasking/masking operations.

In the remainder of this article, our study is based on a

straightforward implementation of AES 256 on FPGA, without

pipelining and with 16 S-Boxes implemented in ROM. We also

use the following notations: S for S-Box, SB for the whole

SubBytes operation, SR for ShiftRows, MC for MixColumns.

A. Rotating S-Boxes

As stated in Sec. I, for most countermeasures on symmet-

rical cryptoprocessors, like AES or DES, the critical part in

terms of area and computation time is the non-linear operation

(i.e. the S-Boxes). Therefore, the main improvement brought

by our design lies within the definition of low-cost, high

performance S-Boxes.

RSM uses the same number of S-Boxes (16) as an un-

protected implementation for the entire computation of the

AES algorithm. But unlike any previous masking scheme, all

those S-Boxes are different. They all contain a mechanism to

unmask the input data, perform the basic S(x) (where x is

an 8-bit unmasked data) and re-mask it with another constant.

However, these new S-Boxes would clearly be a source of

first-order information leakage if implemented in logic gates,

as the unmasked variable would be associated to an actual

net. Therefore those S-Boxes shall be stored in RAM/ROM

for either FPGAs or ASICs [16], after being precomputed as

follows:

• Before programming the device, sixteen 8-bit constants

m0−15 are randomly chosen once and for all. Those will

be the base masks for the rest of this counter-measure.

• The 16 rotating S-Boxes S′

0−15(x
′) (x′ being an 8-bit

masked data) are then designed to verify: S′

j(x
′) =

S(mj ⊕ x′)⊕mj+1 (mod 16), with j ∈ {0− 15}.

• At each round of the AES algorithm, the S-Boxes are

rotated by one position in direction D, in order to

successively compute all 16 possible SB′

j such as:

SB′

j = SB(Mj ⊕X ′)⊕Mj+1 (mod 16), ∀j ∈ {0−15} ,
(1)

where SB denotes the whole operation on 128-

bit data, X ′ is the 128-bit masked state, and

Mj = {mj ,mj+1 (mod 16), . . . ,mj+15 (mod 16)}.

4

SubBytes SubBytes SubBytes

4

Barrel shifter

. . .

Barrel shifter

M0

M1

m0

m1

m1

m2 m0

m15

SB′
0

j ∈ {0− 15}

j ∈ {0− 15}

S ′
15S ′

1S ′
0

128

128

Figure 1. Revolving S-Boxes.

Thus, considering that the 128-bit masked state X ′ is such

as X ′

i = Xi ⊕ Mj at round i, SB′

0−15 will unmask it using

the first Xor with Mj , perform the usual SB(X) and remask

it with Mj+1 (mod 16). This way, during the next round,

thanks to the rotation, the same process will take place,

using the next constant: unmasking with Mj+1 (mod 16) and

re-masking with Mj+2 (mod 16). The order in which the

constants are used is always the same, as it is fixed by the

rotation direction D, but depending on the one chosen for the

first round: thus 16 different scenarios are possible, which

induces a masking entropy of 4 bits.

The rotating S-Boxes can be implemented in hardware by

adding barrel shifters on both sides of the SB operation, as

shown in Fig. 1. This way, at each round before the S-Boxes,

the state register can be shifted in direction D, by an amount

of bytes equal to the number j of Eqn. (1). Afterwards, the

inverse process is performed, in order to rotate the state back

to its original position.

Hence our new optimized SB′

0−15 operator is only com-

posed of 16 customized S-boxes S′

0−15 (the same size as a

basic one), and two barrel shifters, which induce but a small

increase in terms of complexity and computation time, with

regards to an unprotected AES implementation.

B. Masking the linear operations

From the 16 8-bit base masks, m0−15, chosen to create the

rotating S-Boxes (see Sec. II-A), 5 sets of 16 128-bit constants

are deduced, and will be used to mask the linear part of the

algorithm, while matching the required inputs and outputs of

the SB′

0−15 operator:

1) The first set consists of basic constants denoted by

M0−15, with M0 = {m0,m1, . . . ,m15}, and M1−15 are

the successive rotations of one byte of M0 in direction

D, such that:

Mj = {mj ,mj+1 (mod 16), . . . ,mj+15 (mod 16)}

∀j ∈ {1− 15}.



2) The second set, MMS0−15 is defined as:

MMSj = MC ◦ SR(Mj)⊕Mj , ∀j ∈ {1− 15}.

3) Constants of the third set, denoted by MS0−15, verify:

MSj = SR(Mj), ∀j ∈ {1− 15}.

4) Finally the last two sets, namely IMMS0−15 and

IMS0−15 are respectively identical to MMS0−15 and

MS0−15 but with the inverse functions.

These constants are precomputed and stored in RAM/ROM,

for a total of 1280 bytes, as depicted in Fig. 2.

Pool of masks

1280 bytes

Base masks

SR(Mi)

InvSR(Mi)

MC(SR(Mi))⊕Mi+1

M0−15

MMS0−15

MS0−15

IMMS0−15

IMS0−15

InvMC(InvSR(Mi))⊕Mi+1

Figure 2. Storing masks in ROM/RAM.

Fig. 3 depicts the linear part of the datapath.
R

o
u
n
d
s

K

Mj

Plain text = X

F
irst

ro
u
n
d

K

MSj+15

L
a
st

R
o
u
n
d

MMSj+1

Masked S-Boxes

ShiftRows

Masked state = X ⊕ Mj

Cipher out

MixColumns

K

Figure 3. Linear part of the RSM datapath.

During the first round, a constant (Mj) is randomly chosen

from the first set and Xor-ed with the initial plain-text (X) (this

way, as in the state-of-the-art masking, the power consumption

is decorrelated from the actual data). The resulting masked

state, X ′

state1 = X ⊕ Mj , is the input of SB′

j . Then, as

described in Sec. II-A, its output is X ′

sbox1 = SB(X)⊕Mj+1.

Thanks to their linear properties, masking the SR, MC and

AddRoundKey functions only requires a simple Xor operation.

Keeping that in mind, we use the second set to simultaneously

unmask the data at the end of each round and re-mask it with

the next constant. Hence, the result of the linear operations is:

X ′

state2 = MC ◦ SR(SB(X)⊕Mj+1)⊕Kround

= MC ◦ SR(SB(X))⊕MC ◦ SR(Mj+1)⊕Kround.

Thereby, Xor-ing this value with MMSj , removes the

current mask: MC ◦ SR(Mj+1), and re-masks it with Mj+1.

Thus ensuring that the state register of the next round is indeed

the expected masked value X ⊕Mj+1.

Finally during the last round, due to the absence of MC, the

masked ciphered value is:

SR(SB(X)⊕Mj+14 (mod 16))⊕Kround, j ∈ {0− 15} .

Therefore, it can directly be unmasked with the constants of

the third set, i.e. MSj .

III. IMPLEMENTATION ON ALTERA

As shown in the previous section, our overall design differs,

in term of complexity, from an unprotected AES by three Xor

operators, two barrel shifters and 1280 bytes of ROM. We im-

plemented a reference AES 256, as well as one protected with

the RSM countermeasure on an Altera Stratix-II, soldered on a

SASEBO-B board provided by the RCIS [17]. Both bitstreams

were generated using version 11.0 of the QuartusII software,

with default synthesis and fitter options. Area occupation and

performance results are shown in Table I.

Table I
IMPLEMENTATION RESULTS FOR REFERENCE AND PROTECTED AES

Unprotected RSM Overhead

Number of ALUTs (%) 2136 (8%) 2734 (10%) 28%

Number of M4K ROM Blocs (%) 20 (14%) 24 (17%) 20%

Frequency (MHz) 133 88 34%

The number of ALUTs and M4K are given both in absolute

value and in percentage of the total FPGA resources. As we

can see, the overheads in terms of logical cells, ROM blocks

and clock frequency are all within reasonable ranges, even

for real-life applications where several IPs are included in the

same FPGA.

As of now, few papers have dealt with an actual implemen-

tation of a complete masked AES design on FPGA. In [18],

Mentens et al. proposed such an implementation, combining

Boolean and multiplicative masking. However this type of

countermeasure has been shown to be susceptible to so-called

zero-value attacks, that exploit the absence of masking on the

0x00 byte value. More recently, Regazzoni et al. [12] have

developed a full Boolean masking scheme on a Xilinx Virtex5



FPGA, obtaining an area consumption of roughly three times

the unprotected one, and a performance penalty of 50%.

In this context, our implementation seems to bring a signif-

icant improvement in terms of area overhead, while keeping a

reasonable performance degradation. It is however noteworthy

that a precise and fair comparison between two FPGA designs

is quite difficult, and depends on many factors [19] such as

technology, vendor and synthesis options.

IV. THEORETICAL SECURITY EVALUATION

First of all, we notice that the initial offset j cannot be

guessed by SPA, since irrespective of j ∈ {0 − 15}, all the

masks are accessed in parallel. Thus, we consider differential

SCA. For a theoretical security analysis, we place ourselves in

the case where the last round of AES is attacked. The attacker

is thus able to guess the transition on a sensitive variable

x (one byte), that is nonetheless masked with an unknown

byte m. Thus, the leakage function, in the Hamming distance

model, is equal to HW (x⊕m). Nonetheless, contrary to usual

masking schemes, m is not fully entropic: it does not take all

the possible values in F
8
2, but only a strict subset of them.

Even in these conditions, it is explained in [20] how to

best attack a masking countermeasure with first- and second-

order CPA attacks. An optimal correlation coefficient ρopt is

defined in Eqn. (15) at page 802. Using a SAT-solver, we have

identified several sets of 16 masks that resist CPA and second-

order zero-offset CPA [21]. We note the following results:

• Without any mask (the random variable m is deter-

ministic), both ρ
(1)
opt at first-order and ρ

(2)
opt at second-

order are nonzero, and the mutual information leaked

I[HW (x⊕m);x] is equal to 2.5442 bit;

• With two complementary masks (m is uniformly dis-

tributed in a pair {m̃,¬m̃} for a given byte m̃, e.g.

{0x00,0xff}), ρ
(1)
opt = 0 but ρ

(2)
opt 6= 0, and the mutual

information leaked is equal to 1.8176 bit; Thus the

significant progress is the cancellation of ρ
(1)
opt . Regarding

the mutual information, it still remains quite large.

• With the 16 masks found by the SAT-solver, ρ
(1)
opt =

ρ
(2)
opt = 0, and I[HW (x ⊕ m); z] can be found as low

as 0.2168 bit.

From a leakage analysis point of view, we have shown

that the RSM countermeasure with the 16 identified masks is

secure against zero-offset second-order attacks. We nonethe-

less precise that this is not equivalent to being secure against

any second-order attack. Indeed, if the attacker is able to

spy simultaneously the random number generator (RNG) that

decides for the masks’ initial phase j and the addressing of the

S-Boxes, then a second-order SCA could reveal information

about the unmasked address of the S-Box. This is why we

assume the RNG is not observable, and that the leakage only

comes from the calls to the S-Boxes. In this case, our scheme

is indeed second-order zero-offset resistant.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, in order to validate our theoretical approach,

simulation is performed on both state-of-the-art masking and

RSM, as well as real life attacks on our countermeasure.

A. Simulation

We simulated attacks on the last round of AES for both

state-of-the-art and RSM, considering the attacker would use

the Hamming Distance between one byte of the last state

register (ST) and the corresponding 8-bit known ciphertext

(C). As a matter of fact, the Hamming Distance is one of the

most commonly used leakage model in SCAs [22], especially

on FPGAs [23].

Let x and x′ respectively be the values of ST and C for

the unprotected AES, and ∆(x) such as: ∆(x) = x ⊕ x′.

Leakage observations were simulated in a “perfect” scenario

(without any noise), and as single values depending on the

countermeasure:

• State-of-the-art: sum of Hamming Distance for the

masked data part, and Hamming Distance for the mask

part, such as: Lmask = HW (∆(xm)) + HW (∆(m)),
where:

– ∆(m) = m ⊕m′, m and m′ being respectively the

values of two last mask registers,

– ∆(xm) = xm ⊕ xm′ = (x ⊕ m) ⊕ (x′ ⊕ m′),
corresponding to ST and C of the masked data part.

• RSM: Hamming Distance between the last masked state

and the unmasked ciphertext, such as:

LRSM = HW ((x⊕m0−15)⊕x′) = HW (∆(x)⊕m0−15),

where m0−15 denotes the 16 base masks described in

Sec. II-A.

This model complies with the theoretic one used in Sec. IV.

The following analyses are performed on both architectures:

• Differential Power Attack (DPA);

• Correlation Power Attack (CPA);

• Variance-based Power Attack (VPA);

• Mutual Information Analysis (MIA).

1) Results: We evaluated the simulation results using the

first-order success rate and guessing entropy metrics, proposed

by Standaert in [24]. An attack is said to be successful when

a success rate of 90% is reached.

First-order analyses, namely DPA and CPA, were unsuc-

cessful on both countermeasures, for 100 attacks of 200000

simulated observations. Moreover the resulting success rate,

in both cases, is always 0%.

VPA was successful on the state-of-the-art in about 1200

observations, as depicted in Fig. 4, whereas the RSM showed a

success rate of 0% for up to 200000 observations (see Fig. 5).

Additionally, the guessing entropy of RSM is roughly stable

at 175, which means that the attack is not likely to succeed

even with an increasing number of observations.

MIA is used as a metric to evaluate the information leakage,

as described by Veyrat-Charvillon and Standaert in [25]. In

this context, simulation results in a leakage of ≈ 1.0 bit on the

state-of-the-art masking, and only ≈ 0.015 bit for RSM. These

figures are lower than those announced in Sec. IV because the

entropy estimation is based on histograms.



Figure 4. Success Rate and Guessing Entropy for 100 VPA Simulations on
“State-of-the-Art” Masking.

Figure 5. Success Rate and Guessing Entropy for 100 VPA Simulations on
RSM.

B. Experimental setup

To corroborate our simulation results, we performed the

same attacks on a real-life implementation of the RSM coun-

termeasure. Power consumption measurements were acquired,

using a differential probe plugged to the positive rail of the

FPGA core power supply through a 1 Ω shunt resistor, coupled

with a 54855 Infiniium oscilloscope [26].

1) DPA, CPA, VPA: Those three attacks were all unsuccess-

ful on 150000 power consumption measurements. Moreover

they all displayed a success rate of roughly 0%.

2) MIA: In order to experimentally evaluate the information

leakage of RSM, MIA as a metric [25] was performed on the

same 150000 power traces. Results, displayed in Tab. II, show

that, for all subkeys, the leakage is included between 0.001
and 0.012 bit, which corroborates the simulation performed in

Sec. V-A, and should hardly be exploitable for a conclusive

attack.

Table II
MUTUAL INFORMATION ON THE AES PROTECTED BY RSM.

Sub-key 0 1 2 3 4 5 6 7

MIA 0.012 0.006 0.008 0.006 0.010 0.007 0.006 0.005

Sub-key 8 9 10 11 12 13 14 15

MIA 0.004 0.011 0.001 0.008 0.004 0.012 0.009 0.002

VI. OPTIMISATIONS

As stated in Sec. II-B, although our implementation proves

to be robust against CPA and DPA, the security evaluation

shows a possible leakage due to the difference in entropy

between the S-Boxes inputs and constants. Thus, in order to

ensure an optimal security and remove all possible leakage, we

introduce three new versions of this countermeasure: a time-

security, a surface-security trade-off, and one using partial

reconfiguration. In all cases, the idea is to regularly generate

new pools of constants and customized S-Boxes, in order to

approach the full 8-bit masking entropy.

A. Surface-security trade-off

The first idea is to compute new sets of constants and S-

Boxes while using the old ones, and store them in additional

memory, therefore not altering the performances. For this

purpose, it is mandatory to use RAM for storing both S-Boxes

and constants, and the required size is doubled. Some logic

operators also need to be added:

• A 128-bit random number generator (RNG), to produce

the 16 new base masks m0−15.

• A barrel shifter.

• A MC and InvMC operator.

• A SR and InvSR operator (no actual logic gates).

• One basic AES S-Box and its inverse.

• 4/8 8-input Xor gates.

This way, each time a given set of S-Boxes and constants is

used for the countermeasure, another is being computed and

stored in the additional memory. With the additional barrel

shifter, MC, SR and their inverse operators, the 5 sets of

16 constants can easily be generated from a 128-bit random

number in 80 clock cycles (one per constant).

As for the S-Boxes, if the target device includes Dual-Port

RAM, one S-Box can be used for two parallel computations,

hence 8 Xor gates instead of 4. As a matter of fact, they can

be created within 256× 8 = 2048 or 256× 16 = 4096 clock

cycles, for respectively 8 and 4 Xor gates, considering the

basic S-Boxes and their inverse are generated in parallel.

Eventually the area consumption of this countermeasure

would be roughly twice the regular one (for both logical gates

and memory blocks), for the same performances, but with a

masking entropy of almost 8 bits.

Moreover, considering that a straightforward implementa-

tion of AES 256 takes 14 clock cycles to process, it follows

that a potential attacker would be able to take at most 150 to

300 side-channel measurements for a given S-Box/constants



set, which should hardly be sufficient to perform a meaningful

analysis.

B. Time-security trade-off

The second idea is to pause the encryptions every once

in a while, in order to compute a new sets of S-Boxes and

constants, using the existing AES operators, as well as an

additional basic AES S-Box/InvS-Box, 4/8 8-input Xor gates

and a 128-bit RNG. As stated in the previous section, it would

take between 4096 + 80 = 5076 and 2538 clock cycles, that

is respectively about 50 µs or 25 µs at 100 MHz.

C. Using partial reconfiguration

Finally it should be possible to take advantage of recent

FPGA technologies, like the Xilinx Virtex5 family, which

allows partial reconfiguration of the device. As a matter

of fact, the mask recomputation could be performed by an

embedded processor, which would regularly reconfigure the

RAM blocks containing both constants and S-Boxes. This way,

the countermeasure size and performances would be almost

unchanged, except for the reconfiguration times, during which

the computations must be paused. We insist that knowing the

masks is of no use for an attacker (since only the direction D
is sensitive): therefore, the mask fresh process needs not be

protected against SCA.

VII. CONCLUSION AND PERSPECTIVES

In this paper we presented a new masking scheme for AES

called RSM. A theoretical evaluation pointed out the security

of RSM against first- and second-order zero-offset SCAs, and

was corroborated by both simulations and real-life attacks.

Moreover the implementation results on Altera StratixII FPGA

shows that the performances in terms of speed and complexity

is very near to unprotected implementation and far better than

usual masking structures.

The RSM countermeasure discussed in this paper has been

described as a Boolean masking scheme. However, it could

also be implemented using other masking flavors. Therefore, as

a perspective, we intend to study its overhead and security with

affine masking [27]. On another hand, exploiting partial recon-

figuration on recent FPGAs also seems to be an interesting lead

to further improve the robustness of RSM by refreshing the

mask regularly, in order to thwart dth-order attacks (d > 2).

REFERENCES

[1] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
CRYPTO, ser. LNCS, vol. 1666. Springer, 1999, pp. pp 388–397.

[2] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing

the Secrets of Smart Cards. http://www.springer.com/Springer, Decem-
ber 2006, ISBN 0-387-30857-1, http://www.dpabook.org/.

[3] M.-L. Akkar and C. Giraud, “An Implementation of DES and AES
Secure against Some Attacks,” in Proceedings of CHES’01, ser. LNCS,
LNCS, Ed., vol. 2162. Springer, May 2001, pp. 309–318, Paris, France.

[4] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards Sound
Approaches to Counteract Power-Analysis Attacks,” in CRYPTO, ser.
LNCS, vol. 1666. Springer, August 15-19 1999, Santa Barbara, CA,
USA. ISBN: 3-540-66347-9.

[5] L. Goubin and J. Patarin, “DES and Differential Power Analysis. The
“Duplication” Method,” in CHES, ser. LNCS. Springer, Aug 1999, pp.
158–172, Worcester, MA, USA.

[6] T. S. Messerges, “Securing the AES Finalists Against Power Analysis
Attacks,” in Fast Software Encryption’00. Springer-Verlag, April 2000,
pp. 150–164, New York.

[7] J. Waddle and D. Wagner, “Towards Efficient Second-Order Power
Analysis,” in CHES, ser. LNCS, vol. 3156. Springer, 2004, pp. 1–
15, Cambridge, MA, USA.

[8] É. Peeters, F.-X. Standaert, N. Donckers, and J.-J. Quisquater, “Im-
proved Higher-Order Side-Channel Attacks With FPGA Experiments,”
in CHES, ser. LNCS, vol. 3659. Springer-Verlag, 2005, pp. 309–323,
Edinburgh, UK.

[9] B. Gierlichs, L. Batina, B. Preneel, and I. Verbauwhede, “Revisiting
Higher-Order DPA Attacks: Multivariate Mutual Information Analysis,”
in CT-RSA, ser. LNCS, vol. 5985. Springer, March 1-5 2010, pp. 221–
234, San Francisco, CA, USA.

[10] G. Piret and F.-X. Standaert, “Security Analysis of Higher-Order
Boolean Masking Schemes for Block Ciphers (with Conditions of
Perfect Masking),” IET Information Security, vol. 2, no. 1, pp. 1–11,
2008, DOI: 10.1049/iet-ifs:20070066.

[11] F.-X. Standaert, G. Rouvroy, and J.-J. Quisquater, “FPGA Implemen-
tations of the DES and Triple-DES Masked Against Power Analysis
Attacks,” in FPL. IEEE, August 2006, Madrid, Spain.

[12] F. Regazzoni, Y. Wang, and F.-X. Standaert, “FPGA Implementations
of the AES Masked Against Power Analysis Attacks,” in COSADE,
February 2011, pp. 56–66, Darmstadt, Germany.

[13] E. Prouff and M. Rivain, “A Generic Method for Secure SBox Imple-
mentation,” in WISA, ser. Lecture Notes in Computer Science, S. Kim,
M. Yung, and H.-W. Lee, Eds., vol. 4867. Springer, 2007, pp. 227–244.

[14] F.-X. Standaert, B. Gierlichs, and I. Verbauwhede, “Partition vs. Com-
parison Side-Channel Distinguishers: An Empirical Evaluation of Statis-
tical Tests for Univariate Side-Channel Attacks against Two Unprotected
CMOS Devices,” in ICISC, ser. LNCS, vol. 5461. Springer, December
3-5 2008, pp. 253–267, Seoul, Korea.

[15] L. Batina, B. Gierlichs, E. Prouff, M. Rivain, F.-X. Standaert, and
N. Veyrat-Charvillon, “Mutual Information Analysis: a Comprehensive
Study,” J. Cryptology, vol. 24, no. 2, pp. 269–291, 2011.

[16] S. Shah, R. Velegalati, J.-P. Kaps, and D. Hwang, “Investigation of
DPA Resistance of Block RAMs in Cryptographic Implementations on
FPGAs,” in ReConFig, V. K. Prasanna, J. Becker, and R. Cumplido,
Eds. IEEE Computer Society, 2010, pp. 274–279.

[17] Japanese RCIS-AIST, SASEBO development board:
http://www.rcis.aist.go.jp/special/SASEBO/index-en.html.

[18] N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede, “An fpga
implementation of rijndael: Trade-offs for side-channel security,” 2004.

[19] S. Drimer, “Security for Volatile FPGAs (university of Cambrige tech-
nical report number 763),” November 2009.

[20] E. Prouff, M. Rivain, and R. Bevan, “Statistical Analysis of Second
Order Differential Power Analysis,” IEEE Trans. Computers, vol. 58,
no. 6, pp. 799–811, 2009.

[21] M. Nassar, S. Guilley, and J.-L. Danger, “Formal Analysis of the
Entropy / Security Trade-off in First-Order Masking Countermeasures
against Side-Channel Attacks,” in INDOCRYPT, ser. LNCS, vol. 7107.
Springer, December 11-14 2011, pp. 22–39, Chennai, India. DOI:
10.1007/978-3-642-25578-6 4.

[22] É. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with
a Leakage Model,” in CHES, ser. LNCS, vol. 3156. Springer, August
11–13 2004, pp. 16–29, Cambridge, MA, USA.

[23] F.-X. Standaert, É. Peeters, F. Macé, and J.-J. Quisquater, “Updates on
the Security of FPGAs Against Power Analysis Attacks,” in ARC, ser.
LNCS, vol. 3985. Springer-Verlag, March 2006, pp. 335–346, delft,
The Netherlands.

[24] F.-X. Standaert, T. Malkin, and M. Yung, “A Unified Framework for the
Analysis of Side-Channel Key Recovery Attacks,” in EUROCRYPT, ser.
LNCS, vol. 5479. Springer, April 26-30 2009, pp. 443–461, Cologne,
Germany.

[25] N. Veyrat-Charvillon and F.-X. Standaert, “Mutual Information Analysis:
How, When and Why?” in CHES, ser. LNCS, vol. 5747. Springer,
September 6-9 2009, pp. 429–443, Lausanne, Switzerland.

[26] Agilent Technologies: http://www.agilent.com/.
[27] G. Fumaroli, A. Martinelli, E. Prouff, and M. Rivain, “Affine Masking

against Higher-Order Side Channel Analysis,” in Selected Areas in

Cryptography, ser. LNCS, A. Biryukov, G. Gong, and D. R. Stinson,
Eds., vol. 6544. Springer, 2010, pp. 262–280.


