
MAPG: Memory Access Power Gating

Kwangok Jeong1, Andrew B. Kahng1,2, Seokhyeong Kang1, Tajana S. Rosing1,2 and Richard Strong2

1 Dept. of Electrical and Computer Engineering, UC San Diego, La Jolla, CA USA
2 Dept. of Computer Science and Engineering, UC San Diego, La Jolla, CA USA

Abstract—In mobile systems, the problems of short battery life and
increased temperature are exacerbated by wasted leakage power. Leakage
power waste can be reduced by power-gating a core while it is stalled
waiting for a resource. In this work, we propose and model memory access
power gating (MAPG), a low-overhead technique to enable power gating
of an active core when it stalls during a long memory access. We describe
a programmable two-stage power gating switch design that can vary a
core’s wake-up delay while maintaining voltage noise limits and leakage
power savings. We also model the processor power distribution network
and the effect of memory access power gating on neighboring cores.
Last, we apply our power gating technique to actual benchmarks, and
examine energy savings and overheads from power gating stalled cores
during long memory accesses. Our analyses show the potential for over
38% energy savings given “perfect” power gating on memory accesses;
we achieve energy savings exceeding 20% for a practical, counter-based
implementation.

I. INTRODUCTION

In mobile devices, operation time and peak processor performance

are limited by battery capacity and chip thermal limits. These limits

demand that all available power is used as efficiently as possible.

However, a significant portion of power usage is leakage power. At

the 32nm and 22nm technology nodes, leakage power ranges from

16.9% to 52.7% of total core power depending on circuit type, latency

constraints, and temperature [1]. This leakage power translates into

significant wasted energy if a core stalls waiting for a resource.

A core may stall quite often if it is intensely accessing the memory

subsystem: every time a thread makes a memory request that misses

in the L1 cache, the core is subjected to a variable access latency. This

variable latency often translates into a stall during which no forward

thread progress occurs. Indeed, five of the Spec2006 [2] benchmarks

(GemsFDTD, gobmk, lbm, mcf, and milc) spend more than 50% of

their execution time waiting for the memory subsystem. Increased

memory pressure in multicore processors suggests that waits will

become longer as more threads contend for the memory resource.

Power-gating the core during a memory access can potentially

mitigate costly leakage power dissipation during core stalls.

Power gating [3] drastically reduces leakage power by introducing

a switch between the voltage supply (and/or ground) and a given

block of functional circuitry; the block’s leakage is stopped when

the switch cuts off the current path from supply to ground. The area

and capacitance of a power-gated circuit block, as well as the supply

noise tolerance of neighboring blocks that share supply rails with

the gated block, determine several key parameters of power gating:

block wake-up latency, block wake-up energy, peak (“inrush”) current

on wake-up, and supply voltage noise caused by wake-up. Modern

architectures only power gate cores with long idle periods (on the

order of 100ms [4]), because the core wake-up latency limits the

applicability of power gating for short time intervals. [6], [7] have

Authors are listed alphabetically by last name. Principal contribu-
tors, to whom correspondence should be addressed: Richard Strong
(rstrong@eng.ucsd.edu) and Seokhyeong Kang (shkang@vlsicad.ucsd.edu).
Kwangok Jeong (kwang@samsung.com) is currently with Samsung Electron-
ics Corporation, Yongin City, Korea.

978-3-9810801-8-6/DATE12/ c©2012 EDAA

proposed multi-mode power gating circuits that offer variable wake-

up latency, but these works are directed at the functional block level

and focus on the tradeoff between leakage energy savings and wake-

up latency. Our motivating observation is that if we can achieve power

gating wake-up latency less than the expected memory access latency,

much of the wasted leakage power can be eliminated.

In this paper, we propose a new system, Memory Access Power

Gating (MAPG), which does not wait for threads to finish execution,

but instead applies power gating during core stalls which are caused

by the variable latency of requests to the memory subsystem. Our

work makes the following contributions:

• We design and apply a two-stage wake-up power gating switch

[8] to control core wake-up peak current, voltage noise, and

latency without sacrificing leakage energy savings.

• We extend the two-stage power gating switch to have 10 wake-

up modes by controlling the number of power-gated switches

turned on in the first stage.

• We demonstrate the potential to reduce core energy consumption

by up to 38.07% using our power gating switch and oracle

knowledge of memory stalls.

• We design a practical, counter-directed power gating controller

that can predict power gating windows and reduce core energy

consumption by up to 22.47%.

• We develop a methodology to model voltage noise constraints

across a power delivery network that apply to cores with wake-

up latency on the order of 10 nanoseconds.

• We determine safe core wake-up modes for CMPs of 2, 4, 6, and

8 cores that consider core wake-up location, system utilization,

and neighbor core supply voltage noise limits.

II. RELATED WORK

Power gating technology is already visible in leading commercial

products. The recent Nehalem architecture employs power gating at

the core level to reduce leakage power on idle cores [9]. Leverich

et al. [4] have proposed that the operating system power-gate cores

after threads block from a long IO operation, taking advantage of

long idle periods on the order of 100ms.

In the realm of architectural-level power gating, Hu et al. [10]

propose power gating as a technique to reduce functional unit leakage

power when applications underutilize their functional units. Specifi-

cally, they power-gate the floating-point and fixed-point units accord-

ing to three different (ideal, time-based, and branch-misprediction-

guided) predictors. The best technique (branch-misprediction-guided)

is able to put functional units to sleep for up to 40% of total cycles

with only 2% performance loss, but functional units only make up a

portion of total core leakage power.

Lungu et al. [11] show that Hu et al.’s predictor can increase

energy consumption. [11] introduces a monitor that controls power

gating to bound performance and energy penalty from misbehaved

applications. Madan et al. [12] extend the ideas of [11] and propose

a “guard mechanism” to reduce harmful use of power gating.

In the realm of circuit innovation, the recent survey of Shin et al.

[3] summarizes the history of power gating techniques. We note that

configurable power gating has been introduced in the past to mitigate

process variation, reduce ground bounce noise, and minimize wake-

up latency. Agarwal et al. [6] and Singh et al. [7] examine multiple

sleep modes that feature different wake-up overheads and leakage

power savings. Use of multiple sleep modes achieves an extra 17%

reduction in leakage power compared to a single power gating mode.

Also, one of the sleep modes can reduce leakage power by 19%

while preserving circuit state. However, these previous works do not

consider the overhead of sleep control signal distribution.

Kim et al. [13] propose a tri-mode power gating structure in which

a PMOS switch is combined in parallel with traditional NMOS power

gating switches. The additional PMOS transistor supports intermedi-

ate power-saving state-retaining modes at low supply voltage, and

reduces ground bounce noise during transitions between normal and

power-gated modes. Chowdhury et al. [14] propose a similar tri-

mode (i.e., RUN, HOLD, CUT-OFF) power gating technique using

PMOS switches in parallel with NMOS footer switches, combined

with additional NMOS switches in parallel with PMOS header

switches. Finally, Zhang et al. [15] propose a multi-mode power

gating technique using three NMOS switches with different sizes and

threshold voltages. Using various combinations of the three switches,

[15] provide multiple power gating modes with different leakage

savings, and achieve improved tolerance to process variations.

To the best of our knowledge, previous techniques trade off faster

wake-up modes for less leakage savings and lack explicit control of

wake-up time and current profiles. Further, a common gap in previous

works is that they do not incorporate a realistic power delivery

network (PDN) model. By contrast, we explicitly control both wake-

up latency and current profile, and we achieve shorter wake-up

latency without sacrificing leakage savings; we also determine safe

wake-up latencies based on realistic PDN modeling consistent with

leading-edge mobile products at the 28nm foundry half-node.

III. MAPG SYSTEM DESIGN

In this section, we first introduce power gating and discuss the

design of our programmable power gating switch (PPGS). We then

discuss modeling and calculation of core capacitance and safe wake-

up modes, and control of the PPGS.

A. Programmable Power Gating Switch (PPGS) Design

As noted above, power gating cuts off leakage current paths

between supply (V dd core) and ground (V ss) by using switch

transistors (often, high-Vth or long-channel devices). A typical power

gating methodology with header switches is illustrated in Figure 1.

When the pg enable signal goes low, the header switches turn off

and leakage current is reduced. While in the sleep (i.e., power-gated)

state, all logic gates connected to the virtual supply (V dd int) lose

their logical states. Setting the pg enable signal to high resumes

circuit operation after a delay that corresponds to charging circuit

capacitive loads, resetting memory elements, and restoring state from

retention flip-flops connected to V dd core.

idle
active

Logic

block

Vdd_int

Vss

Vdd_core

active idle active

pg_enable

Voltage

Current

Vdd_int
Vss

Vdd_core

wake

up

Without power gating

sleep

With power gating

Fig. 1: Operation of the power gating technique.

The delay to charge circuit capacitive elements is a function of

total design charge (Q) and available charging current (Ilimit). If

all header switches turn on simultaneously, a large “inrush” current

Ilimit

R
u

s
h

 c
u

rr
e

n
t

time

(a) Simultaneous wakeup

Ilimit

R
u

s
h

 c
u

rr
e

n
t

time

enable_rest

(b) Two-stage wakeup

enable_few

enable_rest

enable

Fig. 2: Wake-up current profiles with different wake-up controls.

charges internal nodes in minimal time. To satisfy inrush current

upper limits (too-large IR drop can affect functionality of neighboring

active blocks), header switches are partially turned on in sequence,

which increases charging time to at least Tcharge = Q/Ilimit. Min-

imal charging time is achieved with a rectangular current profile, but

such a profile requires very fine-grained control of header switches.

To avoid this design complexity, we use a two-stage wake-up control

[8] where the first stage (enable few signal) turns on header switches

to allow Ilimit charge current. The remaining header switches are

turned on in the second stage (enable rest signal) once the circuit

nodes are nearly charged, resulting in a triangular charging current

profile (see Figure 2(b)). This acts to increase the wake-up latency to

at least twice the minimum square wake-up profile, but significantly

simplifies signal connections.

Figure 3 shows the interface between the core module and power

gating controller. Inside the core, there are two power domains,

collapsible and non-collapsible. During power gating, the non-

collapsible domain provides power to retention registers and clamp

circuits to allow data retention. (SRAM has its own voltage domain,

and, e.g., source biasing by up to half of nominal supply voltage is

used to reduce SRAM leakage during standby [16].)

To retain internal data during power gating, additional cycles are

required for the power gating and wake-up sequence, as described

in Figure 4. When power gating is triggered from a controller, the

core clock is disabled before data retention. Then, the retention and

the clamp signals are asserted to retain data. After data retention

completes, switch enable signals are de-asserted and power switches

are turned off. The wake-up sequence is the reverse order of the

power-down sequence. To exit power gating mode, the enable few

signal is asserted to start the first stage of internal node charging.

After the V dd int nodes are charged completely in time Tcharge,

the enable rest signal is asserted. Asynchronous reset is asserted to

initialize the internal states of the core. Then, the retention signal

is de-asserted to restore data from live-slave retention flip-flops.1

Additional cycles (Trestore) are required to restore data in other

normal flip-flops (e.g., pipeline filling).

In order to maximize opportunities for power gating subject to

wake-up inrush current and supply noise constraints, we seek to

enable multiple wake-up modes, with a range of wake-up latencies,

per core. Figure 5 shows our programmable power gating switch

(PPGS) for a core, along with the wake-up current profile for different

wake-up modes. We configure the number of first-stage wake-up

switches to control the inrush current as shown in Figure 5(b). With

the dynamic configuration of the PPGS, we can minimize the wake-

up time according to the core configurations — e.g., the number or

location of active cores relative to the waking-up cores. When we

power-gate a core, all mode selection signals m[0−9] are set to one,

1The live-slave type retention register retains data in its slave latch, and
has smaller area and leakage overhead compared to the balloon type retention
register [17].

controller

reset

clock

clamp

retention

enable_few

enable_rest
CORE

Vdd_core

Q

Q

CLR

D

Q

Q

CLR

D

Q

Q

CLR

D

Q

Q

CLR

D

Collapsible Domain
)

RET

RET

Vdd_int

Vss

SRAM

level

shifter

Vdd_sram

array

cell

s
w

it
c
h

h
e
a
d

Fig. 3: Interface between core and power gating controller.

CLOCK

data retention

async-reset

ACTIVE MODE POWER DOWN WAKE UP ACTIVE MODE

enable few

power down trigger

clamp output

power up triggerpower down

Tcharge

enable rest

1

2

Power down sequence Wake up sequence

7

4
5

6

1T

1T
3

1T

RESTORE

1T Trestore

8

Fig. 4: Power gating and wake-up sequences.

which turns off all switches at the same time.2

In our PPGS design, the wake-up time and inrush current are

determined by the mode selection. For example, Mode 1, which has

the slowest wake-up time and lowest inrush current, is set by m[0] =

0 and m[1− 9] = 1. Thus, m[0] is enabled by signal enable few and

m[1−9] is enabled by signal enable rest. Mode 2 is set by m[0−1]
= 0 and m[2 − 9] = 1; inrush current increases with the number

of first-stage switches, while wake-up time decreases, as shown in

Figure 5b. The other modes can be set similarly.

enable_few

m [0]

0

✄

9
]

m out[0]

m out[1]

m [1]

m
[0

m out[1]

enable rest

m [9]

m out[9]

PPGS

enable_rest

(a) PPGS control layout

R
u

s
h

 c
u

rr
e

n
t

time

Ilimit

2Ilimit

5Ilimit

10Ilimit

t1 0.2 t1 0.1 t1

Mode 1

Mode 9

Mode 10

Mode 6

0.5 t1

(b) PPGS inrush current profile

Fig. 5: PPGS design and wake-up current profiles (modes).

B. Calculating Minimal Safe Wake-up Modes for a Core

Table I shows estimated design parameters, power gating re-

sults and PDN model parameters for 32nm and 22nm cores with

high performance (HP) and low-operating power (LOP) devices. To

study wake-up latency and inrush current, we estimate the total

charge for core logic and interconnect capacitance as Qcore =
(Clogic + Cint)V dd core, where Qcore, Clogic, and Cint represent

total charge, device capacitance, and interconnect capacitance for

2Due to the large resistance of off-state switches, inrush current from
simultaneous turnoff is negligibly small compared to wake-up inrush current.

a single core without caches. We estimate that the EV 4 core has

6.25M transistors from McPAT [1] data for both the 32nm and 22nm
designs. Based on this transistor count and parameters from the 2009-

2010 International Technology Roadmap for Semiconductors (ITRS)

[18], we estimate Clogic and Cint. The inrush current limit (Ilimit)

and on-current (Iactive) are estimated from McPAT data for peak

power and average power, respectively.

From the calculated charge (Qcore), the minimum wake-up la-

tency with a rectangular-form current profile is Tmin−charge =
Qcore/Ilimit and the minimal two-stage wake-up latency (Fig-

ure 2(b)) is 2× Tmin−charge.

We estimate leakage power consumption during power gating of

the core logic and SRAM. For the core logic, leakage from retention

registers and header switches must be taken into consideration. We

assume that retention flip-flops have 20% more leakage power than

normal flip-flops during power gating [17]. We use retention registers

for the first pipeline stage.3 For SRAM, we assume that the (separate)

SRAM supply voltage is scaled using source biasing, and we estimate

leakage based on [16].

TABLE I: Estimated data of 32nm HP, LOP and 22nm HP, LOP cores.

Estimated Data
32nm 32nm 22nm 22nm

HP LOP HP LOP

Design Data

V dd core (V) 1.00 0.77 1.00 0.77

core area (mm2) 4.593 4.608 2.701 3.657

logic area (mm2) 2.891 2.863 1.635 1.636
Ccore (F) 7.53E-9 7.48E-9 4.58E-9 4.58E-9
total charge (C) 7.53E-9 5.76E-9 4.26E-9 3.30E-9
core leakage (W) 0.355 0.042 0.147 0.019
Iactive (A) 0.725 0.374 0.371 0.233
Ilimit (A) 1.298 0.674 0.701 0.632

Power Gating and Wake-up

Tmin−charge (ns) 5.08 7.36 6.40 6.55
wake-up energy (pJ) 3.30E+3 1.91E+3 2.24E+3 1.60E+3
head switches 9,664 6,222 5,516 5,127
leakage in PG state (W) 8.03E-3 7.14E-4 3.37E-3 3.59E-4
leakage reduction in PG 97.74% 98.29% 97.71% 98.12%

PDN Model

bump 45 45 95 95
Rshared (Ω) 0.01 0.01 0.01 0.01
Lpkg−core (nH) 7.69E-4 7.76E-4 6.44E-4 6.44E-4
Rpkg−core (Ω) 1.54E-5 1.55E-5 1.29E-5 1.29E-5
Cdecap (F) 1.51E-9 1.50E-9 9.16E-10 9.16E-10
RPDN (Ω) 0.07 0.10 0.12 0.15

We construct a detailed PDN model that includes package par-

asitics to enable realistic noise analysis under various wake-up

scenarios. Power is delivered from an external voltage regulator

module (VRM) through a printed circuit board (PCB), a package ball,

package interconnect, microbumps, on-die redistribution layers, the

on-chip PDN, and power gating switches. We model the entire power

delivery network including power gating switches as a simplified RLC

circuit as shown in Figure 6. Package inductance and series resistance

from VRM to bumps for a core are lumped as in-series inductance

Lpkg−core and resistance Rpkg−core. The PDN in package shared

by multiple cores is represented as a resistance mesh with a branch

resistance of Rshared. There are three variant models depending on

the state of the core — core in active mode, core being woken up, and

core in sleep mode (see Figure 6). On-chip decoupling capacitance

Cdecap is assumed to be 20% of Ccore as in Huang et al. [19].

PDN parameter values in Table I are from personal communication

with industry experts [20] and reflect production designs at the 28nm
foundry half-node. Bump density is assumed to be 45 bumps per

mm2, and the number of bumps is then calculated from logic area

3We must wake up the core 4 cycles earlier to fill the pipeline.

TABLE II: Wake-up latency (ns) for each PPGS wake-up mode (32nm
HP).

mode 1 2 3 4 5

latency(ns) 14.16 13.14 12.12 11.11 10.09

mode 6 7 8 9 10

latency(ns) 9.08 8.06 7.05 6.03 5.02

TABLE III: Minimum safe wake-up mode with respect to the number of
idle cores for a 32nm HP processor.

idle cores 0 1 2 3 4 5 6 7

2-core 4 10 - - - - - -

4-core 2 2 7 10 - - - -

6-core 1 2 3 4 8 10 - -

8-core 2 2 2 2 3 5 8 10

(I/O signals are peripherally located in the SoC die plan). The package

inductance and resistance to a bump are respectively assumed to be

0.05nH and 1mΩ based on the empirical data. The lumped package

inductance Lpkg−core and resistance Rpkg−core for a single core

are respectively calculated as Lpkg/Nbump and Rpkg/Nbump, where

Nbump is the number of bumps.

Cext

Lpkg-core

Rpkg-core Rshared Rshared Rshared

CORE

11

CORE

12

CORE

13

CORE

14

CORE

21

CORE

22

CORE

23

CORE

24

CORE

31

CORE

32

CORE

33

CORE

34

CORE

41

CORE

42

CORE

43

CORE

44

Rshared Rshared Rshared Rshared

Rshared Rshared Rshared

Rshared Rshared Rshared Rshared

Rshared Rshared Rshared

Rshared Rshared Rshared Rshared

Rshared Rshared Rshared

Cdecap

Cdecap

CORE in sleep mode

VRM

Ccore

Iactive

RPDN

CORE in active mode

nv

Cdecap

Irush

RPDN

CORE being woken up

nv

Fig. 6: 16-core system power delivery network with power gating.

We measure the V dd core and V dd int voltages of all cores

using HSPICE. We vary the number of cores being woken up, and

search over all configurations of woken-up and active cores. For each

configuration, we find the minimum wake-up latency that satisfies

two IR drop constraints: (a) V dd int of active cores should drop by

no more than 5% (threshold = Vlow,virtual) and (b) V dd core of

standby cores should drop by no more than 40% to retain data in

retention circuits (threshold = Vlow,core) [20].

Table II gives the wake-up latency for each of the 10 wake-up

modes for a 32nm HP core. We use HSPICE simulation to check

the IR drop constraints for each wake-up mode across all spatial

configurations; Table III shows the best (minimum latency) wake-up

mode that is safe for each number of woken-up cores. The tables

confirm that as the number of active cores increases, the minimum

safe wake-up latency increases. We exploit this information in PPGS

mode control, and use the minimum safe mode to reduce the wake-up

time.4

C. MAPG Controller Design

Our system also includes a MAPG Controller, which enables each

core to power-gate on memory-induced stalls, and to wake up using

the minimal safe wake-up mode consistent with system utilization.

The MAPG Controller should also avoid any overhead in terms of

4We have separately studied the sensitivity of our safe wake-up mode
modeling. Minimum safe modes as in Table III will depend on the specific
values of PDN parameters, with highest sensitivities being to core resistance
(RPDN), number of bumps, and package inductance (Lpkg).

extra execution time or energy. We can calculate the interval over

which a core must be power-gated, so as to break even on wake-

up energy costs — e.g., Energywake−up/(Powercore leakage ∗

PGLeakageReduction) from Table I as 9.5ns.5 To avoid both

energy and performance overhead for a core wake-up delay of 8.06ns,

a core must receive no memory response for at least 17.6ns after the

core is power-gated. Any power-gated time over 17.6ns yields energy

savings. The expected response time at the core of a L3 cache hit is

equal to 22ns, but the core would not know to power gate for it until

after the expected L2 hit time of 5ns; this gives a predictable power

gating window of only 17ns. Thus, we do not try to power-gate L2

misses and instead focus on memory accesses that go all the way to

the memory controller.

To aid the following discussion, we define the following core states:

• Active: a core which is either executing code or waking up from

a power-gated state.

• Stall: a core that is not making forward progress on an appli-

cation because of a memory dependence.

• Idle: a core with a thread that has either exited or blocked and

will not be running more code for at least 100ms.

In order for the PPGS to power-gate a core, it must determine the

wake-up mode and the interval over which to power-gate. Wake-up

mode is determined by the number of idle cores from Table III. For

instance, for a 4-core system, we see that wake-up modes 2, 2, 7

and 10 are used when 0, 1, 2, and 3 cores are idle, respectively. For

the PPGS to get the current wake-up mode, it must register with the

Wake-up Controller (WUC) and set whether it is active or idle. If

the PPGS registers with the WUC as active, the WUC returns the

wake-up mode defined in its lookup table indexed by the number of

idle cores to all active cores. If the PPGS registers with the WUC

as idle, the WUC will send the new wake-up mode to the remaining

active cores. A core is not allowed to power-gate during a memory

stall until it has registered with the WUC; this prevents any violation

of voltage noise constraints.

The interval over which to power-gate should be optimized to

avoid any performance overhead and to maximize power gating

duration. Performance overhead is avoided by (i) predicting a long

stall interval, and (ii) waking the core at the expected end of the

stall interval. The long stall interval is predicted by counting the

number of stalled cycles after a core memory access. If the number of

cycles reaches beyond the expected latency at which the core would

have received an L3 hit response (22ns), the PPGS calculates the

expected arrival time of the memory response and power-gates the

core if sufficient time will elapse to save energy. The expected arrival

time is estimated as the memory’s row buffer miss latency (45ns)

plus a value, δ. We compute δ as an exponential moving average

of the difference between the actual and expected response arrival

times, with the extra condition that if the expected arrival time is

greater than actual, δ is immediately set to the difference.6 This extra

condition avoids repeated late core wake-ups and performance hits

that would otherwise have to wait for the exponential moving average.

In the common case, the exponential moving average will adapt

to variable memory latency caused by contention for the memory

resource, optimizing the duration of the power gating window.

5When cores are waking up, there will be signal ripples until all nodes settle
at their final valid values. In our Energywake−up calculation, we ignore
these ripple effects since the effective operating voltage (between virtual
supply and ground) is small during the wake-up.

6The exact calculation:
(1) diff = MemDelayactual −MemDelayexpected;
(2) if (diff < 0) {δ = δ + diff} else {δ = 0.8δ + 0.2 · diff}.

IV. RESULTS

A. Simulation Methodology

We simulate a 4-core system, with key microarchitectural settings

as given in Table IV. Each core has a private L1 and L2 cache

and shares a large L3 cache. The L3 cache forwards requests to

the memory controller through a shared memory bus. The L3 cache

is relatively large, which we expect to minimize extra pressure on

the memory subsystem and hence minimize gains that we see from

our power gating technique. We choose an in-order dual-issue core

both to model future energy-efficient many-core processors and to

pressure any energy-saving scheme, as this core is considered quite

energy-efficient. This system is similar to the Intel ATOM and ARM8

processors.

TABLE IV: Architectural configuration used for cores and basic system.

Core

ISA, Model Alpha64, EV4
Execution In-order

Clock 2GHz

ICache, DCache 32kB-2way
Width 2

Functional Units 2IALU,1IMULT,1FPALU

L2Cache 256kB-4way 4ns
Memory L3Cache 8MB-16way 13ns

Hierarchy Memory Latency 50ns
Memory Size 2GB

We simulate the system with the M5 2.0 simulator [21]. M5 is

a full system simulator that can boot an unmodified OS. It features

cycle-level models of an in-order core, the cache hierarchy, IO, and

interconnect. We have modified M5 to support MAPG’s counter-

based and oracle power gating, described in the next subsection.

Once simulation is complete, we feed the system configuration and

performance counters to McPAT [1] to model power consumption.

McPAT is comprised of a power, area, and timing framework that

provides off-line power and area estimates for full systems designed

in technology nodes between 90nm and 16nm. McPAT generates

values for dynamic power, leakage power, peak power, thermal design

power, and area.

To evaluate single-threaded execution, we simulate 19 SPEC

CPU2006 [2] benchmarks. We use Simpoint-3.2 [22] to determine

the most representative region of execution for each benchmark, fast-

forward simulation to 100E6 instructions before the point, warm-

up the core for 100E6 instructions, and then run for 100E6 in-

structions. Multi-threaded workloads are created by combining the

SPEC CPU2006 benchmarks into homogeneous sets. Homogeneous

sets of benchmarks capture the dominant portion of core power

gating behavior, since the core’s power gating behavior is mostly

defined by local thread behavior. Heterogeneous sets of benchmarks

sometimes act to increase memory contention and increase power

gating opportunities; we omit these results due to space limits.

B. Power Gating Energy Savings and Overheads

We now present the results for MAPG in a running system and

give a comparison between MAPG using an oracle predictor (MAPG-

Oracle) of core stall periods, MAPG using a counting based mech-

anism (MAPG-Counter) described in Section III-C, and functional

unit power gating (FUPG) similar to that proposed in [10] and [11].7

We assume a four-core system that is 50% utilized (two cores idle)

using core wake-up mode 7 (8.06ns) and 32nm technology. When

calculating the reported results, we consider core wake-up energy,

core wake-up delay, core pipeline refill latency, retention overhead

of live-slave retention cells, SRAM leakage during source biasing

mode of operation, and voltage noise safety.

7Functional units account for 36.14% of core energy and are assumed to
take 6ns and 1780pJ to wake up.

astar
bwaves

bzip2

cactusADMgcc

GemsFDTD
gobmk

gromacs
h264ref

hmmer lbm
leslie

3d

libquantummcfmilc
namd
omnetpp

povray
sjeng

zeusmp
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

En
er

gy
 S

av
in

gs

MAPG-Oracle
MAPG-Counter
FUPG

Fig. 7: Energy savings comparison of MAPG-Oracle and MAPG-Counter
with 8.06ns wake-up delay, versus FUPG.

Ultimately, we are interested in how much energy we save by

power-gating a core during a memory access. Figure 7 shows

MAPG’s energy savings for each of the SPEC CPU2006 benchmarks

normalized to core execution without power gating or circuit support

for power gating. For each benchmark, we present the energy savings

for MAPG-Oracle, MAPG-Counter, and FUPG. First, MAPG-Oracle

shows the limit of potential energy savings from MAPG, given oracle

knowledge of core stall time. On average, the oracle system saves

8.80% energy across all benchmarks with a maximum energy savings

of 38.07% for lbm and a minimum of -0.17% for libquantum. Greater

energy savings occur when cores stall more often from accessing

the memory; lbm is the most memory-bound benchmark and hence

has the largest energy savings. The negative energy savings for

libquantum are due to its cpu-bound behavior and the overhead from

the power gating switches and retention flip-flops. MAPG-Counter is

able to save 4.44% energy on average with maximum energy savings

of 20.99% for lbm and a minimum of -0.17% for libquantum - for

similar reasons as with MAPG-Oracle. FUPG saves 2.64% energy on

average, with a maximum energy savings of 13.75% for lbm and a

minimum of -1.54% for povray. FUPG’s smaller energy savings are

due to the fact that it power-gates only the functional units which

make up 36.14% of core leakage power, and to the performance

overhead from power gating short stall periods until the control

logic prevents negative-energy power gating actions. Overall, MAPG-

Counter is able to achieve better energy savings than FUPG in all

cases except for benchmarks astar and milc for which FUPG power

gates underutilized functional units.

asta
r

bwaves
bzip2

cactu
sADM gcc

GemsFDTD
gobmk

gromacs
h264ref

hmmer lbm
leslie

3d

libquantum mcfmilc
namd

povray
sjeng

zeusmp0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 T

im
e

execute
power gate
short stalls
core wakeup
core restore
overhead

Fig. 8: Breakdown of simulation time for each benchmark utilizing MAPG-
Counter.

Figure 8 examines simulation time of each benchmark and breaks it

into time spent executing (execute), time spent power gating the core

(power gate), short stalls that MAPG-Counter could not power gate

without energy loss (short stalls), core wake-up time to charge core

logic (core wake-up), core restore time to restore data from retentive

flip-flops and fill the pipeline (core restore) and overhead added from

waking up the core too late (overhead). Across all benchmarks, the

average overhead added to execution time was 0.08%. Core restore

and core wake-up latency averaged 0.60% and 0.99% of simulation

time, respectively, with a maximum of 2.59% and 4.23% of the

simulation time of lbm caused by the many power gating actions.

On average, the core was power-gated 11.16% percent of the time

with up to 47.39% of simulation time being power-gated for the

benchmark lbm. In addition, short stall time made up an average

of 21.70% of simulation time, with a maximum of 46.46% for the

benchmark GemsFDTD; this indicates that there could be significant

energy savings gains if idle periods could be predicted earlier and

core wake-up latencies reduced.

bwaves
bzip2

cactu
sADM gcc

GemsFDTD
gobmk lbm

leslie
3d mcf milc

namd
sjeng

zeusmp
0.00

0.05

0.10

0.15

0.20

En
er

gy
 S

av
in

gs

mode1-14.16ns
mode2-13.14ns
mode3-12.12ns
mode4-11.11ns
mode5-10.09ns
mode6-9.08ns
mode7-8.06ns
mode8-7.05ns
mode9-6.03ns
mode10-5.02ns

Fig. 9: Energy savings for MAPG as wake-up mode changes from mode 1
to mode 10. Benchmarks astar, gromacs, h264ref, hmmer, libquantum, and
povray omitted due to small change (less than 0.2%) and space limits.

Finally, we examine the energy savings that will occur for different

wake-up modes, to understand how much energy could be saved

in a system that uses MAPG-Counter and dynamically adapts to

wake-up latency. Figure 9 shows that energy savings increase linearly

with reduced wake-up delay for the 13 benchmarks bwaves, bzip2,

cactusADM, gcc, GemsFDTD, gobmk, lbm, leslie3D, mcf, milc, namd,

sjeng, and zeusmp. Average energy savings increase from 3.78%

at wake-up mode 1 to 4.75% at mode 10 across all benchmarks.

The maximum energy savings increase occurs for lbm which goes

from 17.81% energy savings at mode 1 to 22.47% energy savings at

mode 10. The improved energy savings result from less wake-up time

overhead and the ability to power-gate the core for longer periods.

This means that an adaptive system could improve its energy savings

by an additional 4.66% if mode 10 is a viable wake-up mode.

V. CONCLUSIONS AND FUTURE WORK

With each new generation of CPUs, leakage power becomes an

increasingly dominant issue. In this paper, we have described our

MAPG system, which effectively reduces wasted leakage power on

cores that are waiting for the memory subsystem, without disturbing

voltage noise safety constraints across the chip PDN. Specifically,

MAPG-Oracle demonstrates the potential of the PPGS to reduce

wasted core leakage power by 38.07% with oracle knowledge and

a 8.06ns core wake-up delay. MAPG-Counter shows a realistic

implementation of a PPGS controller that achieves energy savings

as much as 20.99% for a 8.06ns wake-up delay. If allowed to

dynamically adapt to system utilization levels, energy savings rise

from 17.81% to 22.47% as the wake-up mode changes from 1 to 10.

Looking toward the future, Figure 8 indicates the importance of

power-gating short stalls. If core wake-up delay can be significantly

reduced and delay periods predicted sooner, the amount of time

the core spends power gating can be greatly increased. In addition,

we seek to provide a more accurate minimum wake-up latency via

more detailed PDN modeling. The effect of MAPG on back-end-

of-line interconnect reliability is currently an open issue. Finally, we

recognize that it will be important to extend this work to out-of-order

cores, as this would extend the scope of the technique and hopefully

achieve greater energy proportionality in server processors; this is the

subject of our ongoing efforts.

REFERENCES

[1] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen and N.
P. Jouppi, “McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures”, Proc. IEEE
MICRO, 2009, pp. 469–480.

[2] Standard Performance Evaluation Corporation, 2006,
http://www.spec.org/cpu2006 .

[3] Y. Shin, J. Seomun, K.-M. Choi and T. Sakurai, “Power Gating: Circuits,
Design Methodologies, and Best Practice for Standard-Cell VLSI De-
signs”, ACM Trans. on Design Automation of Electronic Systems, 15(4)
(2010) pp. 1–37.

[4] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan and C. Kozyrakis,
“Power Management of Datacenter Workloads Using Per-Core Power
Gating”, IEEE Computer Architecture Letter, 8(2), (2009) pp. 48–51.

[5] P. R. Panda, A. Shrivastava, B. Silpa and K. Gummidipudi, Power-
Efficient System Design 1st Edition, Springer, pp. 25–73, 2010.

[6] K. Agarwal, H. Deogun, D. Sylvester and K. Nowka, “Power Gating
with Multiple Sleep Modes”, Proc. International Symposium on Quality
Electronic Design, pp. 633–637, 2006.

[7] H. Singh, K. Agarwal, D. Sylvester and K. Nowka, “Enhanced Leakage
Reduction Techniques Using Intermediate Strength Power Gating”, IEEE
Trans. on VLSI Systems, 15(11) (2007) pp.1215–1224.

[8] K. He, R. Luo and Y. Wang, “A Power Gating Scheme for Ground
Bounce Reduction during Mode Transition”, Proc. International Con-
ference on Computer Design, 2007, pp. 388–394.

[9] R. Kumar and G. Hinton, “A Family of 45nm IA Processors”, Proc.
IEEE International Solid-State Circuits Conference, 2009, pp. 58–59.

[10] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson and
P. Bose, “Microarchitectural Techniques for Power Gating of Execution
Units”, Proc. International Symposium on Low Power Electronics and
Design, 2004, pp. 32–37.

[11] A. Lungu, P. Bose, A. Buyuktosunoglu and D. J. Sorin, “Dynamic Power
Gating with Quality Guarantees”, Proc. International Symposium on Low
Power Electronics and Design, 2009, pp. 377–382.

[12] N. Madan, A. Buyuktosunoglu, P. Bose and M. Annavaram, “A Guarded
Power Gating for Multi-Core Processors”, Proc. HPCA, 2011, pp. 291–
300.

[13] S. Kim, S. V. Kosonocky, D. R. Knebel, K. Stawiasz and M. C.
Papaefthymiou, “A Multi-Mode Power Gating Structure for Low-Voltage
Deep-Submicron CMOS ICs”, IEEE Trans. on Circuits and Systems II:
Express Briefs, 54(7) (2007) pp. 586–590.

[14] M. H. Chowdhury, J. Gjanci and P. Khaled, “Innovative Power Gating for
Leakage Reduction”, Proc. IEEE International Symposium on Circuits
and Systems, 2008, pp. 1568–1571.

[15] Z. Zhang, X. Kavousianos, K. Chakrabarty and Y. Tsiatouhas, “A
Robust and Reconfigurable Multi-mode Power Gating Architecture”,
Proc. International Conference on VLSI Design, 2011, pp. 280–285.

[16] H. Qin, Y. Cao, D. Markovic, A. Vladimirescue and J. Rabaey, “SRAM
Leakage Suppression by Minimizing Standby Supply Voltage”, Proc.
International Symposium on Quality Electronic Design, 2004, pp. 55–
60.

[17] D. Flynn, R. Aitken, A. Gibbons and K. Shi, Low Power Methodology
Manual, Springer, 2007.

[18] International Technology Roadmap for Semiconductors, 2010,
http://www.itrs.net/Links/2010ITRS/2010Update .

[19] G. Huang, D. Sekar, A. Naeemi, K. Shakeri and J. Meindl, “Physical
Model for Power Supply Noise and Chip/Package Co-Design in Gigas-
cale Systems with the Consideration of Hot Spots”, Proc. IEEE Custom
Integrated Circuits Conference, 2007, pp. 841–844.

[20] S. Dobre, Qualcomm CDMA Technologies, Inc., personal communica-
tion, March-Sept. 2011.

[21] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi and
S. K. Reinhardt, “The M5 Simulator: Modeling Networked Systems”,
IEEE Micro, 26(4) (2006) pp. 52–60.

[22] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood and B.
Calder, “Using SimPoint for Accurate and Efficient Simulation”, Proc.
of International Conference on Measurement and Modeling of Computer
Systems, 2003, pp. 318–319.

