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Abstract—The application of coding strategies is an established
methodology to improve the characteristics of on-chip intercon-
nect architectures. Therefore, design methods are required which
realize the corresponding encoders and decoders with as small
as possible overhead in terms of power and delay. In the past,
conventional design methods have been applied for this purpose.

This work proposes an entirely new direction which exploits
design methods for reversible circuits. Here, much progress has
been made in the last years. The resulting reversible circuits
represent one-to-one mappings which can inherently work as
logical descriptions for the desired encoders and decoders. Both,
an exact and a heuristic synthesis approach, are introduced which
rely on reversible design principles but also incorporate objectives
from on-chip interconnect architectures.

Experiments show that significant improvements with respect
to power consumption, area, and delay can be achieved using the
proposed direction.

I. INTRODUCTION

With the rise of very deep sub-micron and nanometric tech-
nologies, interconnects are increasingly affecting the overall
power consumption, performance, and reliability of the chip.
As a result, interconnect-centric design [1], a paradigm which
sets the interconnect architecture in the center of the design
process, is gaining relevance. To address the aforementioned
issues, concepts from communication system engineering are
getting introduced and adapted for on-chip communication
architectures. Networks-on-chip and coding applications are
two examples of this trend.

An established methodology is thereby the application of
coding strategies in order to improve the on-chip interconnec-
tions [2], [3], [4], [5], [6]. Fig. 1 illustrates the basic idea.
Instead of simply transmitting the desired data (see top of
Fig. 1), the architectures are extended by an encoder and a
decoder (as shown in the bottom of Fig. 1). Thanks to the
additional flexibility provided by the coding, it is possible to
achieve important improvements on the overall communication
architecture and additionally consider the trade-off between
power consumption, delay, and reliability.

In the past, the first broad use of (on-chip) coding was aimed
at reducing the power consumption [2], [3]. As technology
improved, coupling capacitances and the related timing and
noise issues had to be addressed. This led to the coupling
aware codes [4], [7], [6]. Recently, reliability is emerging as
an important issue where coding plays a major role [7], [8]. A
key issue in any case is the reduction of the overhead imposed
by the additional hardware of the encoder and decoder.

All the codings proposed in the past have been determined
by means of conventional design methods. In this work, we
take another direction. In order to determine “good” codings
for the above mentioned communication architectures, we
propose the exploitation of design methods for reversible
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Fig. 1. Optimization of interconnect architectures through coding

logic [9]. Here, functions and circuits with an equal number of
input and output signals are considered, whereby each input
assignment maps to a unique output assignment. In the last
decade, much progress has been made in the development of
corresponding design methods for this kind of circuits. As a
result, various methods for the synthesis of reversible circuits
are already available [10], [11], [12], [13], [15], [16]. Since the
considered encoders and decoders are also realizing reversible
one-to-one mappings, it is reasonable to exploit this progress.

This is done in this work. More precisely, we introduce
an exact approach and a heuristic approach, respectively,
aiming at the determination of feasible codings to be used
in order to improve the on-chip interconnections. For this
purpose, the general idea of existing synthesis methods for
reversible circuits work as “blueprint”. In doing so, the past
progress in the development of reversible synthesis methods
is exploited while, at the same time, objectives from on-
chip interconnect architectures are incorporated. We focus
thereby on the development of coding strategies aiming at
the improvement of the power-consumption. However, other
objectives (e.g. delay) can be considered similarly.

Experiments confirm the benefits of the codings obtained
by our approaches: On average, the corresponding encoder
and decoder require 23% less static power, 25% less dynamic
power, are 25% smaller, and have 17% less delay than their
counterparts obtained by a conventional method. In the best
cases, even up to 70% improvements are possible.

The remainder of this paper is structured as follows: The
next section provides a brief review of the background on
low-power coding for on-chip interconnections as well as
on reversible logic and circuits. In Section III, the problem
addressed in this paper is explicitly formulated and the general
idea of the proposed solution is sketched. Afterwards, the
proposed synthesis algorithms are introduced in Section IV. Fi-
nally, Section V provides experimental results and Section VI
concludes the paper.978-3-9810801-8-6/DATE12/ c©2012 EDAA



II. BACKGROUND

In order to keep the remaining paper self-contained, in this
section we briefly review the basics on the considered low-
power coding approach. Afterwards, reversible circuits are
introduced.

A. Low-Power Encoding
Power consumption and propagation delay are pattern de-

pendent phenomena.
Consider an m-bit Boolean stationary random signal X

which has to be transmitted over a bus with ground capaci-
tance Cg and coupling capacitance Cc = κCg (see Fig. 1).
Furthermore, let the current and previous digital value of
the j-th line be denoted as b+j and b−j respectively and let
∆bj = b+j − b

−
j be the value of the temporal variation of that

bus. The difference between two neighboring lines is defined
as ej = bj − bj+1 and the temporal variation between two
consecutive lines is defined as ∆ej = e+j −e

−
j = ∆bj−∆bj+1.

Then, the power dissipated when loading or un-loading a
capacitor Cg is given by E0 = 1

2CgV
2
dd. Thus, the power

dissipation depends on the probability of having a transition. In
the presence of coupling capacitances, the situation gets more
intricate. Then, the power extracted from the supply voltage
of the driver corresponding to the line j is given by [17]

Evdd j = 2E0 [∆bj + κ(2∆bj −∆bj+1 −∆bj−1)]b+j . (1)

That is, the mean power dissipated in the form of heat during
a transition can be calculated by adding the contribution of
each bit and averaging (statistically) the cost associated with
each pattern. Using the expectation operator E[ · ], we get

Ed = E0 (Tt + κTe) , (2)

where the total (self) transition activity, Tt, and the total
coupling activity, Te, are given by

Tt =
m−1∑
j=0

E[∆b2j ] Te =
m−2∑
j=0

E[∆e2j ]. (3)

As a consequence, the goal of a standard low-power code
either is to minimize Tt (i.e. the number of transitions in
the wires of a bus) or to minimize Te (i.e. the number of
transitions in opposite directions for neighbor wires if coupling
is considered).

In buses where Cc is dominant, it is common to use a
coupling aware code (e.g. edge coding [6]). The idea behind
edge coding consists of delaying the rising edge of the
signals. Then, because of the temporal shift, the lines on
the bus cannot switch simultaneously in opposite directions.
Therefore, the worst-case delay is avoided. This compensates
the delay introduced by the edge coding while improvements
with respect to the power consumption are achieved. After
the incorporation of this technique, the power consumption is
mostly dependent on Tt and can be optimized with a standard
low-power coding scheme.

Templates for such a low-power coding scheme are illus-
trated in Fig. 2. One possibility is to consider the coding
scheme as an XOR-decorrelator together with a Boolean
function E(x[n], x[n − 1]) : Bm × Bm → Bm which is
decodable and minimizes the expected number of ones at the
output of the decoder (see left-hand side of Fig. 2). An optimal
implementation of such a coder E has been proposed in [3].
However, the hardware complexity of the resulting circuit is
very high – particularly with increasing bit-widths. Thus, more
structured solutions are usually applied.
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Fig. 2. Template for a low-power coding.

Similar to the coding template proposed in [2], we can
describe a low-power coding scheme as composed of three
layers (see the right-hand side of Fig. 2): the source-layer, the
interface-layer, and the channel-layer. The goal of the source-
layer is to detect the redundancy of the input data (denoted
by x[n]) using the previous values of the data (denoted
by x[n−1]). The channel-layer aims to simplify and, if possi-
ble, improve the data with respect to the characteristics of the
physical medium. Typically, the channel-layer is composed by
an XOR-decorrelator. By this, Tt is minimized with respect to
the number of ones (i.e. the Hamming weight) of z[n]. Finally,
the interface-layer implements a decodable map (denoted by f )
between y[n] and z[n]. More precisely:

Ed = E0Tt = E0 E[Ham(z)] = E0 E[Ham(f(y))], (4)

where Ham( · ) represents the Hamming distance.
If the probability of y[n] is known, an optimal decoder

is obtained by mapping the most probable input values to
codewords with a small Hamming weigh. This is called,
probability based mapping (pbm) [2]. This is later illustrated
by means of Table I in Section III.

In the remainder of this paper, we assume implicitly the
templates of Fig. 2 and, thus, we address the question of how
to automatically design efficient hardware implementations for
that pbm-mapping using design methods for reversible circuit
synthesis.

B. Reversible Logic and Reversible Circuits

A logic function f : Bm → Bm′ over inputs
X = {x0, . . . , xm−1} is reversible if and only if
• its number of inputs is equal to its number of outputs

(i.e. m = m′) and
• it maps each input pattern to a unique output pattern.

In other words, a reversible function represents a bijection and,
therefore, a valid coding.

A reversible function can be realized by a circuit
G = g0g1 . . . gd−1 comprised of a cascade of reversible
gates gi, where d is the number of gates. Fanouts and feedback
are not directly allowed [18]. Several different reversible gates
have been introduced including the Toffoli gate [19], the
Fredkin gate [20], and the Peres gate [21]. In the following,
we focus on Toffoli gates which are universal gates, i.e. all
reversible functions can be realized by means of this gate type
alone [19].

A multiple control Toffoli gate has a target
line xj and control lines {xi0 , xi1 , . . . , xik−1}.
This gate maps (x0, x1, . . . , xj , . . . , xm−1) to
(x0, x1, . . . , (xi0xi1 . . . xik−1) ⊕ xj , . . . , xm−1). That is,
the target line is inverted if all control lines are set to 1;
otherwise the value of the target line is passed through
unchanged. A Toffoli gate with no control always inverts the
target line and is a NOT gate. A Toffoli gate with a single
control line is called a controlled-NOT gate (also known
as the CNOT gate). The case of two control lines is the
original gate defined by Toffoli. For brevity, we refer to a
multiple-control Toffoli gate as a Toffoli gate.
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Fig. 3. Reversible circuit

TABLE I
ILLUSTRATING THE OBJECTIVE OF AN ENCODER

(a) Pattern probability
Inputs Prob.

000 8%
001 8%
010 10%
011 10%
100 40%
101 10%
110 8%
111 6%

(b) Desired encoding
Inputs Weight (H)

000 2
001 2
010 1
011 1
100 0
101 1
110 2
111 3

(c) Possible encoding
Inputs Encoding

000 101
001 011
010 010
011 001
100 000
101 100
110 110
111 111

In the following, a Toffoli gate is denoted by the tuple
T (C, t) where C ⊂ X is the possibly empty set of control
lines and t ∈ X \ C is the target line. Note that the control
lines and unconnected lines pass through a gate unchanged.
For drawing circuits, we follow the established convention of
using the symbol ⊕ to denote the target line and solid black
circles to indicate control connections for the gate.

Example 1. Fig. 3 shows a reversible circuit composed of
m = 4 circuit lines and d = 4 Toffoli gates. This circuit
maps e.g. the input pattern 1111 to the output pattern 1000
(as shown in Fig. 3). Inherently, every computation can be
performed in both directions (i.e. computations towards the
outputs and towards the inputs can be performed).

III. AUTOMATIC DESIGN OF LOW-POWER ENCODERS
USING REVERSIBLE CIRCUIT SYNTHESIS

In this section, first the problem addressed in this paper
is explicitly formulated. Afterwards, the general idea of the
proposed solution is illustrated.

A. Problem Formulation
In this work, we focus on coding strategies to improve on-

chip interconnect architectures based on the coding template
shown in the right-hand side of Fig. 2 and briefly reviewed
in Section II-A. Therefore, implementations of encoders and
decoders are required that realize the pbm-mapping, i.e. that
link the most frequently occurring data inputs to patterns with
a low Hamming weight. The following example illustrates the
objective.

Example 2. Table I(a) shows a set of data inputs with their
corresponding probability of occurrence. Based on that, an
encoder should map the most frequently occurring data input
(i.e. 100) to a bit-string with the lowest Hamming weight
(i.e. 000). Then, the second-most frequently occurring data
inputs should be mapped to a bit-string with the second-
lowest Hamming weight and so on. That is, a coding is desired
which leads to patterns with Hamming weights as shown in
Table I(b). A precise coding satisfying this property is given
in Table I(c).

However, determining the best possible or even just one
“good” coding is a non-trivial task. Already for 3-bit data
inputs as considered in Example 2, eight different codings
are possible. In the general case with m-bit data inputs, this
number significantly increases to

∏m
i=0

(
m
i

)
.
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Fig. 4. Mapping Toffoli gate to conventional circuit

Motivated by this, the problem addressed in this paper is
formulated as:

How can we automatically determine codings (as well as
corresponding encoders and decoders) that map frequently

occurring data inputs to patterns with low Hamming weight
while keeping the hardware overhead as small as possible?

B. General Idea
Since encoders realize reversible one-to-one mappings, the

application of synthesis approaches for reversible logic is a
reasonable choice. Here, many achievements have been made
in the last decade. Mainly motivated by the application of
reversible logic in the design of quantum circuits [18], various
efficient synthesis methods have been introduced. This include
exact methods that guarantee minimality with respect to the
number of gates (e.g. [10], [11]), more scalable heuristic
approaches (e.g. [12], [13]), and first hardware description
languages [16].

All these methods realize circuits composed of Toffoli
gates as introduced in Section II-B. But since Toffoli gates
represent a logic description, they can easily be mapped to a
conventional gate library. As an example, Toffoli gates with
two control lines can be mapped to a netlist composed of one
AND-gate and one XOR-gate as shown in Fig. 4. From such
a netlist, the established optimization and technology mapping
steps can be performed.

While this already motivates the consideration of reversible
synthesis methods for the design of low-power encoders,
no existing approach does explicitly address the “Hamming
weight”-objective so far. As in conventional circuit design,
synthesis methods for reversible circuits get a function de-
scription with a fixed input-output mapping. However, the
underlying reversibility enables to address this issue in a more
elegant and powerful way than their conventional counterparts.

IV. PROPOSED SYNTHESIS APPROACHES

In this section, two approaches for synthesis with respect to
the “Hamming weight”-objective are introduced. This includes
one method for exact synthesis and one method for heuristic
synthesis.

A. Exact Approach
Exact synthesis algorithms determine a minimal circuit

realization for a given function with respect to a given cost
metric (e.g. with respect to the number of gates). Ensuring
minimality often causes large computation times and, thus,
exact approaches are applicable to relatively small functions
only. Nevertheless, it is worth to consider exact methods,
since e.g. they allow an evaluation of the quality of heuristic
approaches or they generate minimal building blocks for larger
circuits.

In the past, exact approaches synthesizing reversible cir-
cuits with respect to different cost metrics have been intro-
duced [10], [11]. In this work, we are proposing an approach
similar to the one introduced in [11]. Here, the exact synthesis
problem is formulated as a sequence of decision problems.
Given a reversible function f : Bm → Bm, it is checked
whether f can be synthesized using d = 1 Toffoli gates.
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Fig. 5. Encoding for exact synthesis

If this is not the case, d is increased until a realization is
determined. Since d is iteratively increased starting with d = 1,
minimality is ensured. The respective checks are thereby
performed by (1) formulating the synthesis problem as a
satisfiability instance and (2) using satisfiability solvers to
solve this instance.

Due to page limitation, we refer to [11] for a detailed
description of the satisfiability formulation. In this work, the
precise formulation is simplified as follows:

Definition 1. Let f : Bm → Bm be a reversible function to be
synthesized. Then, the satisfiability instance of the respective
synthesis problem is given as

Φ ∧
2m−1∧
i=0

([−→xi ]2 = i ∧ [
−→
fi ]2 = f(i)),

where
• −→xi = (xi,m−1 . . . xi,0) is a Boolean vector representing

the inputs of the circuit to be synthesized for truth table
line i,

•
−→
fi = (fi,m−1 . . . fi,0) is a Boolean vector representing
the outputs of the circuit to be synthesized for truth table
line i and,

• Φ is a set of satisfiability constraints representing the
synthesis problem according to [11].

Example 3. Figure 5(a) shows the abstracted formulation of
the synthesis problem applied for the function specified in
Table I(c).

To apply the “Hamming weight”-objective, all possible
codings leading to the same Hamming weight have to be
considered. In a simple way, this can be done by separately
considering all possibilities resulting in

∏m
i=0

(
m
i

)
single syn-

thesis calls. However, exploiting the reversibility of the con-
sidered circuit descriptions enables a more efficient approach.
Therefore, the formulation is modified as follows:

Definition 2. Let H0, . . . , H2m−1 be the desired Hamming
weights for each truth table line. Then, the satisfiability
instance formulating the synthesis problem is given as

Φ ∧
2m−1∧
i=0

([−→xi ]2 = i) ∧ (
m−1∑
j=0

fi,j = Hi)

 .

Example 4. Figure 5(b) shows the new formulation of the
synthesis problem for the Hamming weights provided in Ta-
ble I(b).

As can be seen, the output patterns
−→
fi = fi,m−1 . . . fi,0

for each truth table line i are not set to fixed values in the
new formulation. Instead, they can be arbitrarily chosen by
the satisfiability solver. The additional constraints guarantee
thereby that the solver only picks values which are consistent
with respect to the desired Hamming weight. The reversibility
of the considered circuit structure further ensures that the
resulting mapping is always unique, i.e. that each data input

x0 f0
x1 f1
x2 f2

Fig. 6. Circuit obtained by exact synthesis

TABLE II
OBTAINED ENCODING

Inputs Encoding
000 110
001 101
010 100
011 010
100 000
101 001
110 011
111 111

always is mapped to one unique pattern. This is an essential
property of the applied synthesis methods which can not
directly be exploited in conventional synthesis techniques.

If the solver determines a satisfying assignment for this
formulation, the precise coding can be obtained from the
respective assignments to

−→
fi . If the solver proves that no such

assignment exists, it is shown that no such coding can be
generated by means of the given number d of Toffoli gates.
Consequently, d is iteratively increased by 1 eventually leading
to a minimal circuit.

Applying the proposed exact synthesis approach for the
Hamming weights provided in Table I(b) leads to the reversible
circuit shown in Fig. 6. From this circuit, the encoding as
shown in Table II can be derived. This is the best coding
with respect to the number of Toffoli gates (considering all
possibilities).

B. Heuristic Approach
While exact approaches guarantee minimality, usually they

do not scale well. Thus, heuristic synthesis methods are
applied if larger functions should be realized. A very well-
known heuristic synthesis approach for reversible circuits has
been introduced in [12]. Here, the basic idea is
• to traverse each line of the truth table representing the

function to be synthesized and
• add gates to the circuit until the output values of each

line match the corresponding input values (i.e. until the
identity of both is achieved).

Gates are thereby chosen so that they don’t alter already
considered lines. Furthermore, gates are added starting at the
output side of the circuit (this is, because output values are
transformed until the identity is achieved).

In this work, we adapt this idea. But instead of traversing
a truth table with fixed output patterns, we exploit the fact
that output patterns with the same Hamming weights can be
interchanged. This requires a new synthesis algorithm which
is formulated as follows:
Algorithm (Heuristic Synthesis). Synthesizes a reversible cir-
cuit with respect to the desired Hamming weights from which
a coding can be obtained.

1) Generate an arbitrary coding satisfying the desired
“Hamming weight”-objective.

2) Traverse all lines i (0 ≤ i < 2m) of the corresponding
truth table. In each iteration, perform the following
steps:

a) If the currently considered input −→xi is equal to the
currently considered output

−→
fi , continue with the

next input.
b) Consider all lines j ≥ i with Hi = Hj , i.e. all non-

traversed lines whose coding finally should have
the same Hamming weight.

c) From this set, choose the output pattern
−→
fj with

the lowest Hamming distance to −→xi . If
−→
fi 6=

−→
fj ,

swap
−→
fi and

−→
fj .

d) Add gates which map −→xi to
−→
fi while, at the same

time, do not alter previously considered lines.



TABLE III
APPLYING HEURISTIC SYNTHESIS

No. Input Weight Initial 0th 1st · · · 7th

(i) abc Hi abc abc abc abc · · · abc
0 000 2 101 000 000 000 · · · 000
1 001 2 011 110 011 001 · · · 001
2 010 1 010 111 111 101 · · · 010
3 011 1 001 100 100 100 . . . · · · 011
4 100 0 000 101 101 111 · · · 100
5 101 1 100 001 001 011 · · · 101
6 110 2 110 011 110 110 · · · 110
7 111 3 111 010 010 010 · · · 111

a|x0 f0|a
b|x1 f1|b
c|x2 f2|c

7th

. . .
· · · 1st 0th

Fig. 7. Circuit obtained by heuristic synthesis

TABLE IV
OBTAINED ENCODING

Data Encoding
000 101
001 110
010 100
011 010
100 000
101 001
110 011
111 111

In the following, the application of this algorithm is il-
lustrated by means of the Hamming weights provided in
Table I(b). The respective steps are illustrated in Table III.
Here, the first columns denote the respective line numbers i of
the truth table, the inputs, and the desired Hamming weight Hi
for each line i (taken from Table I(b)). For brevity, the single
bits are denoted by a, b, and c, respectively. The remaining
columns provide the output patterns

−→
fi for each line i as

obtained by performing the respective steps of the algorithm.
First, the algorithm arbitrarily generates an initial coding

with respect to the given Hamming weights (Step 1). In this
example, we take the coding already given in Table I(c).
Then, the 0th line is considered. Since 000 is not equal
to 101 (Step 2a) and no proper output pattern with a lower
Hamming distance is available (Step 2b and 2c), gates are
added which map −→x0 = 000 to

−→
f0 = 101 (Step 2d). To this

end, two NOT gates as shown in Fig. 7 are applied1. This
affects the output values of all the remaining lines as shown
in the fifth column of Table III. Changes to the previous values
are highlighted in bold.

Next, the mapping from −→x1 = 001 is considered. Also here,
001 is not equal to 110 (Step 2a). But, a better output pattern
is available. In fact, the current output of the 6th line (011)
has a lower Hamming distance to −→x1 (001) than the current
output of the 1st line (110). While the coding of both, the 1st

line and the 6th line, finally should have the same Hamming
distance, the precise pattern can arbitrarily be chosen. Since a
smaller Hamming distance requires less gates to be added, the
pattern from the 6th line is the better choice. Consequently, the
outputs of line 1 and line 6 are swapped as shown in the sixth
column of Table III (Step 2b and 2c). Now, just one single gate
inverting b and, at the same time, not altering the previously
considered line has to be added (Step 2d). To this end, a Toffoli
gate T ({c}, b) is applied. The target line b performs the desired
invertion, while the control line c ensures that this gate is only
performed if c = 1. Therefore, the previous line (with c = 0)
is not affected by this (see also the 7th column of Table III).

This procedure is continued until all lines have been con-
sidered and, thus, an input-output identity is achieved. Then,
a circuit has been generated which realizes a coding with
the desired Hamming weights. For the considered example,
a circuit as shown in Fig. 7 results from which the coding as
shown in Table IV can been obtained. Since a heuristic has

1Note that all gates are added at the output side of the circuit, since output
values are transformed so that they match the input values.

been applied, this circuit is larger than the one obtained by
the exact synthesis approach (compare to Fig. 6). However, as
confirmed by the experiments in this next section, the circuits
and codings generated by the proposed heuristic approach are
still better than the ones obtained from conventional synthesis
methods.

V. EXPERIMENTAL EVALUATION

In this section, we present results which have been obtained
by the proposed design methods. Therefore, the exact as well
as the heuristic synthesis approach have been implemented
in C++ on the top of RevKit [22]. Then, the obtained re-
versible solutions have been implemented in an industrial
65nm-technology using Synopsys’ Design Compiler. Results
are thereby generated by both, keeping the structure of the
reversible circuit or just using the coding obtained by the
proposed approaches. The best realization generated by this
was then compared to the best realization obtained by applying
a coding derived from a conventional design method.

For the evaluation, we used a set of benchmarks representing
a variety of different input probabilities, i.e. increasing (the
probability increases steadily), decreasing (the probability de-
creases steadily), gauss (the probability follows the Gaussian
distribution), and inv gauss (the probability follows the inverse
of the Gaussian distribution). Besides that, some randomly
generated distributions are considered (denoted by random 1
to random 6).

The obtained results are summarized in Table V(a) (con-
sidering the codings obtained by the exact approach) and
Table V(b) (considering the codings obtained by the heuristic
approach), respectively. The first columns denote thereby the
name of the benchmark and their corresponding bit-width m.
Afterwards, the delay (in ns), the area (in µm2), as well as the
dynamic and static power consumption (in nW and mW/MHz,
respectively) of the encoder are provided. As a reference, the
number of Toffoli gates from the obtained reversible circuits as
well as the respective number of their AND- and XOR-gates
(derived as illustrated in Fig. 4) are also reported (denoted
by #Tof and #gates, respectively). Finally, the differences of
the results obtained by the proposed approach in comparison to
the results obtained by the conventional approach are provided.

Note that all reported synthesis steps have been executed
in negligible run-time, i.e. in less than one minute. Thus,
we waived reporting the run-times in Table V. However,
due to the limited scalability of the exact approach (see
also discussion in Section IV-A), the exact approach was not
able to generate a coding for increasing, decreasing, gauss,
and inv gauss with a bit-width larger than 4. Furthermore,
the heuristic approach was not able to improve the results
of the conventional approach for the benchmarks random 1
to random 6. Thus, we omitted the corresponding (redundant)
numbers in Table V(b) and refer to the same numbers in
Table V(a).

The results clearly show the benefits of the proposed ap-
proaches. In more than half of the cases, improvements can be
observed. These improvements are thereby significant, i.e. the
static power consumption can be improved by up to 80% and
the dynamic power consumption, the area, and the delay can
be improved by up to 70% in the best cases. Considering
all benchmarks (also those without any improvement), on
average static power consumption is reduced by 23%, dynamic
power consumption by 25%, area by 24%, and delay by 17%.
That is, applying design methods for reversible circuits indeed
leads to much better codings and, thus, represents a promising
alternative to conventional design methods.



TABLE V
EXPERIMENTAL RESULTS

(a) Exact approach from Section IV-A
Benchmark Conventional approach Proposed approach Difference (in %)
Name m delay area dyn. power stat. power #Tof #gates delay area dyn. power stat. power delay area dyn. power stat. power
3 increasing 3 0.05 75.60 0.032 6.774 6 7 0.05 32.40 0.014 2.757 0.0 -57.1 -55.8 -59.3
3 decreasing 3 0.05 49.68 0.020 3.986 4 6 0.05 49.68 0.020 3.986 0.0 0.0 0.0 0.0
3 gauss 3 0.05 59.40 0.023 4.322 5 8 0.05 59.40 0.023 4.322 0.0 0.0 0.0 0.0
3 inv gauss 3 0.05 18.00 0.007 1.586 2 2 0.05 18.00 0.007 1.586 0.0 0.0 0.0 0.0
4 increasing 4 0.11 133.56 0.051 8.193 7 9 0.05 53.64 0.023 5.137 -54.5 -59.8 -54.0 -37.3
4 decreasing 4 0.08 183.96 0.075 15.404 4 6 0.05 75.24 0.029 6.954 -37.5 -59.1 -61.0 -54.9
4 gauss 4 0.10 136.80 0.054 11.192 5 6 0.08 37.08 0.016 2.102 -20.0 -72.9 -71.2 -81.2
4 inv gauss 4 0.11 117.72 0.052 8.507 4 5 0.06 108.36 0.040 7.171 -45.5 -8.0 -22.8 -15.7
random 1 3 0.07 64.80 0.029 7.196 4 5 0.09 45.00 0.019 3.304 28.6 -30.6 -35.2 -54.1
random 2 3 0.09 45.72 0.020 4.212 3 4 0.08 51.12 0.020 3.413 -11.1 11.8 -2.1 -19.0
random 3 4 0.13 63.36 0.028 3.790 6 9 0.13 63.36 0.028 3.790 0.0 0.0 0.0 0.0
random 4 5 0.12 76.68 0.034 7.456 7 8 0.12 76.68 0.034 7.456 0.0 0.0 0.0 0.0
random 5 5 0.10 94.68 0.044 8.202 8 11 0.09 26.64 0.011 2.351 -10.0 -71.9 -74.8 -71.3
random 6 5 0.09 118.08 0.054 11.763 5 7 0.10 90.72 0.041 8.265 11.1 -23.2 -23.6 -29.7

(b) Heuristic approach from Section IV-B
Benchmark Conventional approach Proposed approach Difference (in %)
Name m delay area dyn. power stat. power #Tof #gates delay area dyn. power stat. power delay area dyn. power stat. power
3 increasing 3 0.05 75.60 0.032 6.774 7 10 0.05 32.40 0.014 2.757 0.0 -57.1 -55.8 -59.3
3 decreasing 3 0.05 49.68 0.020 3.986 4 7 0.05 49.68 0.020 3.986 0.0 0.0 0.0 0.0
3 gauss 3 0.05 59.40 0.023 4.322 9 13 0.05 59.40 0.023 4.322 0.0 0.0 0.0 0.0
3 inv gauss 3 0.05 18.00 0.007 1.586 3 5 0.05 18.00 0.007 1.586 0.0 0.0 0.0 0.0
4 increasing 4 0.11 133.56 0.051 8.193 11 14 0.09 26.64 0.011 2.351 -18.2 -80.1 -77.8 -71.3
4 decreasing 4 0.08 183.96 0.075 15.404 7 10 0.05 75.24 0.029 6.954 -37.5 -59.1 -61.0 -54.9
4 gauss 4 0.10 136.80 0.054 11.192 13 21 0.08 77.76 0.032 5.931 -20.0 -43.2 -41.9 -47.0
4 inv gauss 4 0.11 117.72 0.052 8.507 9 17 0.08 81.36 0.032 5.824 -27.3 -30.9 -38.1 -31.5
5 increasing 5 0.11 495.36 0.171 34.657 35 80 0.13 388.80 0.135 26.210 18.2 -21.5 -21.3 -24.4
5 decreasing 5 0.38 713.88 0.384 50.471 30 75 0.11 623.88 0.223 46.608 -47.4 -12.6 -41.8 -7.7
5 gauss 5 0.14 366.48 0.138 25.480 34 84 0.14 366.48 0.138 25.480 0.0 0.0 0.0 0.0
5 inv gauss 5 0.15 303.12 0.117 21.713 29 79 0.15 303.12 0.117 21.713 0.0 0.0 0.0 0.0
6 increasing 6 2.35 2540.14 1.649 124.172 70 190 1.01 1416.24 0.809 79.444 -57.0 -44.2 -50.9 -36.0
6 decreasing 6 2.45 2525.75 1.687 134.835 64 184 0.95 1422.36 0.857 85.457 -61.2 -43.7 -49.2 -36.6
6 gauss 6 2.93 3232.07 2.154 165.499 75 228 0.82 1177.92 0.655 74.829 -72.0 -63.6 -69.6 -54.8
6 inv gauss 6 3.21 3113.26 2.100 153.345 69 222 0.72 1131.84 0.645 73.762 -77.6 -63.6 -69.3 -51.9

No improvements have been obtained for the benchmarks random 1 to random 7, i.e. all results remained as provided in Table V(a).
Legend of columns: Conventional approach: Coding obtained by a conventional design method Proposed approach: Coding obtained by exploiting reversible logic design

m: Bit-width of the pattern #Tof: Number of Toffoli gates in the encoder circuit #gates: Number of AND- and XOR-gates in the mapped encoder
delay: Delay of the encoder (in ns) area: Size of the encoder (in µm2) dyn./stat. power: dynamic/static power consumption of the encoder (in nW and mW/MHz, resp.)

VI. CONCLUSIONS
This paper showed the suitability of reversible synthesis

methods in the design of optimized coding architectures. For
this purpose, an exact approach and a heuristic approach
have been introduced. Both exploited the past progress in
the development of reversible synthesis methods while, at the
same time, incorporated objectives from on-chip interconnect
architectures. Experiments confirmed the benefits of this new
design paradigm and disclosed improvements by up to 70%
in the best cases.

While in this work, we focused on probability based
mapping aiming at the reduction of the Hamming weight of
frequently occurring patterns, the proposed design direction
can similarly be applied for other objectives. A more detailed
investigation on this is left for future work. Furthermore, the
results from this work motivate a deeper consideration of
reversible logic design methods within the development of
coding strategies for on-chip interconnections and provides the
basis for further work in this direction.
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