Predicting Best Design Trade-offs: A Case Study in
Processor Customization

Marcela Zuluaga
ETH Ziirich

Abstract—Given the high level description of a task, many
different hardware modules may be generated while meeting its
behavioral requirements. The characteristics of the generated
hardware can be tailored to favor energy efficiency, performance,
accuracy or die area. The inherent trade-offs between such
metrics need to be explored in order to choose a solution that
meets design and cost expectations. We address the generic
problem of automatically deriving a hardware implementation
from a high-level task description. In this paper we present a
novel technique that exploits previously explored implementation
design spaces in order to find optimal trade-offs for new high-
level descriptions. This technique is generalizable to a range of
high-level synthesis problems in which trade-offs can be exposed
by changing the parameters of the hardware generation tool. Our
strategy, based upon machine learning techniques, models the
impact of the parameterization of the tool on the target objectives,
given the characteristics of the input. Thus, a predictor is able to
suggest a subset of parameters that are likely to lead to optimal
hardware implementations. The proposed method is evaluated
on a resource sharing problem which is typical in high level
synthesis, where the trade-offs between area and performance
need to be explored. In this case study, we show that the technique
can reduce by two orders of magnitude the number of design
points that need to be explored in order to find the Pareto optimal
solutions.

I. INTRODUCTION

The increasing complexity of very large-scale integration
(VLSID) designs makes the generation of fully optimized sys-
tems a big challenge. As Moore’s law continues to hold
true, more resources can be placed in a single chip and
larger system modules are moved from software to dedicated
hardware in order to improve performance. Moreover, the
rapid proliferation of electronic devices puts pressure on
industry to offer not only high performance, multi-purpose
devices but also extended battery lives, low silicon cost, and
new generations of products in short periods of time. Thus,
embedded systems designers have to customize their solutions
in order to meet strict requirements: performance, cost, power
consumption and time-to-market. As design trade-offs become
more complex, and large design spaces define competing ob-
jectives, the use of Computer Aided Design (CAD) techniques
becomes essential in order to achieve optimality. Similarly,
the use of higher levels of abstractions to define systems, in
which designers can comfortably reason, requires advanced
behavioral synthesis methods that can automatically generate
gate-level specifications. Given the high level description of a
task, many different hardware modules may be generated in

978-3-9810801-8-6/DATE12/(©2012 EDAA

Edwin Bonilla
NICTA & Australian National University

Nigel Topham
University of Edinburgh

order to meet its behavioral requirements. The characteristics
of the generated Register-Transfer Level (RTL) description can
be tailored to favor energy efficiency, performance, accuracy
or area. The inherent trade-offs between such metrics need to
be explored in order to choose a solution that meets design
and cost expectations.

In this paper, we present a novel technique to quickly
discover the design space of solutions, of a subset of high level
synthesis problems, by exploring only parameter solutions
that are likely to lead to optimal trade-offs. This technique
is generalizable to a range of high-level synthesis problems
in which trade-offs can be exposed by parameterizing the
hardware generation tool. Based on previously-explored design
spaces, predictive modeling is used to generate the parameter-
ization that the hardware generation process requires in order
to directly find the optimal trade-off solutions, given the char-
acteristics of a new input. Our strategy uses machine learning
techniques to capture the impact of the parameterization of the
tool on the target metrics, given the characteristics the inputs.
Thus, a predictor is able to suggest a subset of parameters that
are likely to lead to optimal hardware implementations, and
therefore the need to exhaustively explore a large parameter
space is removed. This proves to be of particular value when
the evaluation of each design point is expensive, or when local
explorations need to be carried out repetitively as explorations
at higher levels of the design take place.

The proposed technique is evaluated on a resource sharing
problem, which is typical in high level synthesis, where the
trade-offs between area and performance need to be explored.
With this application, we show in detail how the technique is
conditioned to a particular process. Moreover, we demonstrate
that in comparison with an exhaustive exploration of the design
space, the predictor reduced by two orders of magnitude the
number of executions of the resource-sharing process that are
required in order to find the optimal trade-offs.

II. TRADE-OFFS IN HARDWARE SYNTHESIS

Opportunities to exploit design trade-offs can be found at
all levels of system design. The primary design trade-off in
hardware generation processes is typically between area and
performance. As more resources are allocated, execution time
and/or throughput can be improved. These trade-offs can be
exposed by parameterizing the hardware generation process (or
algorithm), where parameters represent design choices that are
taken along its execution in order to generate a single solution.



Typical parameters used in hardware generation processes are:
number of execution units, amount of resources to share,
memories to allocate, data types and sizes, algorithm choice,
pipeline stages, unrolling factors, etc.

In CAD for hardware synthesis, there are two important
types of processes in which this parameterization can be
applied. Some processes convert an abstract specification of
a task into an RTL description, while others convert an RTL
description into a gate level netlist.

A particular solution, generated with a fixed set of pa-
rameters, can be evaluated with the objectives (or metrics)
that better suit the design goals. Commonly used metrics
are: execution time, energy consumption and cost. Solutions
might be optimal or suboptimal in comparison to others, in
terms of the target metrics. Every combination of parameter
values affects differently each input, and each parameter has a
unique impact when evaluating trade-offs in the design space.
Therefore, the parameter space has to be explored exhaustively
for every new input to the process. After this exploration is
completed, the Pareto-optimal solutions can be extracted. A
solution is said to be Pareto-optimal when no other solution
is better in all of the target metrics.

III. PREDICTING BEST DESIGN TRADE-OFFS

As exhaustive processes are extremely time-consuming,
machine-learning approaches can be used to predict the com-
bination of parameters that results in Pareto-optimal solutions,
based on previously explored design spaces. The ideal scenario
being that the hardware generation process is executed only as
many times as Pareto points can be found in the design space.

Machine learning techniques can detect patterns such as that
similar inputs respond similarly to some parameter configura-
tions. These similarities across inputs can be inferred from a
number of characteristics (or features) extracted from them.
In the following sections we show that a model learned on
training data from previous explorations can be used to speed
up the exploration of a design space created by a new input.

A. Construction of the Predictor

A predictive model aims at capturing the patterns of the
parameter values that generate a Pareto-optimal point in a
given process. Therefore, as the goal of the model is to find all
optimal trade-offs in the design space, different regions of the
parameter space need to be explored. Training samples are
extracted from previously fully-explored spaces by coupling
input features with each set of parameter values that led to
a Pareto solution. Figure 1 illustrates the general process of
generating predictions (parameter values) for an unseen input.
We describe four high-level steps:

1) Selection of Training Inputs: In this step we select
a subset of the training inputs (from our previously
explored design spaces) that are closest to the unseen
input, for which we are interested in making predictions.

2) Clustering of Parameter Values: Those parameter
values associated with the selected training inputs are
grouped into clusters so that they partition the parameter

space according to their values. Parameter sets that
belong to the same cluster are expected to have simi-
lar values, and parameter sets that belong to different
clusters are expected to have different characteristics.

3) Extraction of Distributions over Parameter Values:
In order to model the similarities (or patterns) of param-
eters within each cluster we extract a distribution over
the parameter values for each cluster.

4) Generation of Predicted Parameter Values: We then
draw samples from these distributions, i.e parameter
values, that will be used as the predicted parameters
for the unseen input, and for which we wish to evaluate
their performance.

The exploration in every cluster is expected to target differ-
ent regions of the Pareto curve, and is based on the parameters
values taken from the training cases most similar to the unseen
input. We now introduce some notation and describe in more
detail each of the steps mentioned above.

B. Problem Definition

Let us denote the D-dimensional vector f as a vector of D
features associated with an input, and the Ny,i, X D matrix
Fain as the matrix containing the features for all Ny, training
inputs. Additionally, let us denote fjen as the vector of
features for the unseen input, which we will also refer to as
the test input. Similarly, let Py be the Nywin X Nparam matrix
of parameter values for all training inputs, where Nparm is the
number of parameters. Our goal is to predict a set of parameter
values Pypeen for the unseen input that have best performance
in terms of Pareto optimality.

C. Feature Extraction and Selection of Training Inputs

The selection of features is important to any machine
learning-based technique as these have a direct impact on how
the model differentiates between inputs and how it can gauge
similarities. Features should describe the key characteristics
of the input that may affect the response when changing the
value of the parameters. Given an unseen set of features fiseen,
along with the set of training features F.;,, we compute the
Euclidean distances from f,scen to each training feature vector
in Fyin. We select the £ training cases closest to the new case
by choosing those training inputs with the smallest Euclidian
distances to the unseen case. We refer to the features of these
k selected training inputs as Fy ., and to the associated
parameters as Pj_yin-

D. Clustering of Parameter Values

Our goal here is to group the parameter values Pi ain
obtained in the previous step into c¢ different clusters. Many
clustering algorithms have been proposed in the machine learn-
ing literature, with k-means being one of the most commonly
used in practical applications. Here we use a Gaussian Mixture
Model (GMM, see e.g. [1], Ch. 9), which is known to be
a probabilistic generalization of k-means, with the advantage
that each cluster is associated with a Gaussian distribution.
Points in Py i, are clustered into c¢ groups, thus forming



.

unseen

training tuples
P, train F train
B Fo.. . Prctain (1)
IR 2 Pytrain 2
Pirain Firain CI ' 5 @
: Calculate
i it Clusterin,
distances: - B
X; X,

Pictain (K)

Fig. 1.

predicted parameters
distribution (1) .sample 12
distribution (2) [IiSample P

Prectain (1)
Piectain (2)

unseen
ps unseen
reate
probability
distributions

Py c-train (€) distribution (c) lmmple P

unseen

X;

Graphical representation of the internal processes that must take place in order to predict the Pareto parameter-values for a new input. We are given

the features of the new input funseen and a set of feature-parameter training pairs (Fiin, Pirain) Obtained from previously explored design spaces. X returns
the set of parameters associated to the k training inputs that are closest to funseen. These parameters are represented by the matrix Py iy . X2 returns the
elements of Py qin clustered in ¢ groups (Py.c.train). X3 returns the probability distribution of each cluster. Subsequently, parameter settings Punseen are

obtained from sampling each probability distribution.

regions in the parameter space that can be independently
explored. Therefore, every vector in Py, 1S categorized into
one of the C clusters and then referred to as Py c.qain. We fit a
Gaussian Mixture Model using the expectation-maximization
algorithm (EM, [2]).

E. Extraction of Distributions over Parameters

As mentioned above, one of the advantages of using GMMs
for clustering is that we have a probabilistic model from which
we can extract the distribution corresponding to each cluster
straightforwardly. In particular, at the end of a GMM run, we
obtain a Gaussian distribution for each cluster, which we will
use to draw parameter values as candidates to be a Pareto
optimal point on our unseen (test) input.

F. Generation of Predicted Parameter Values

Finally, we use the set of Gaussians from the previous
step in order to generate our predictions Pypgeen. In order to
achieve this we draw samples from these distributions one-
by-one in a round-robin fashion. Pynsen contains the values
of the parameters that will be used in the hardware generation
process.

G. Number of Clusters ¢ and Neighbors k

Having defined the procedure to generate a prediction, the
values assigned to k (number of neighbors) and ¢ (number of
clusters) are key to the finalization of the model for future
use. Every pair of values (k,c) creates a new model that
will predict differently. For this reason, several configurations
should be evaluated in order to choose these values. It is
impractical to evaluate all of the possible configurations for the
pair (k, c). Therefore, a reasonable list of possible values can
be taken for consideration. Given these, cross-validation can
be used for model selection [3]. In short, with cross-validation
we learn the best combination (k, ¢) from the training data.

H. Performance Measure

In practice, the model will suggest values of parameters in
Punseen to be used in the hardware generation process given

a set of features extracted from the input. It will attempt to
suggest points in the parameter space that will lead to a Pareto-
point in the available design space.

The performance of the model can be a measure of how
many points need to be suggested in order to ensure that all
of the possible optimal points are found. Such points compose
the Pareto-curve that can be found during an exhaustive
exploration of the parameter space and will be referred to as
the true Pareto-curve. Therefore, the number of points that
are needed in order to find the true Pareto-curve will be used
as a metric and will be referred to as R. Consequently, for
future explorations, the hardware generation process will have
to be executed only R times. R will be determined with the
experiments that evaluate the model.

Additionally, there is a need to measure, for a given R, the
similarity between the true Pareto-curve and the curve that has
been found so far. The latter is referred to as known Pareto-
curve. A metric dy,, is created for this purpose and calculated
by summing up the distances from each point of the true
Pareto-curve to the closest point of the known Pareto-curve
after R explorations. In order to normalize the distance-based
metric, this sum is divided by the length of the true Pareto-
curve. Figure 2 indicates how these distances are found.

IV. CASE STUDY: RESOURCE SHARING IN PROCESSOR
CUSTOMIZATION

When new instructions (or custom instructions) are added
to the Instruction-Set Architecture (ISA) of a processor, new
execution units need to be added to its hardware implementa-
tion. Thus, while more instructions are added to a processor,
the area can grow to the point that static power becomes
critical. An alternative to reduce the energy consumption and
die area of a customized processor is to share resources
amongst the custom instruction hardware modules, creating
instead a module that can be configured to execute several
instructions. Resource sharing is then a process that generates
hardware modules that are attached to the execution stage of
a processor. The input to this process is a set of Data-Flow



® ® True Pareto-curve: found after
i exhaustive exploration
¢ Known Pareto-curve: found after partial
\
\

2 exploration of R predicted parameters
.\\ Distances from each true Pareto-point @
“.\\ to the closest known Pareto-point
Rl TEE—— ® -
Length of the curve used to normalize d,,,
Metric 1
Fig. 2. Visualization of the components needed to calculate dpp, which

measures the distance between the known Pareto-curve and the true-Pareto
curve.

Graphs (DFGs), where each DFG represents the operations
performed by a custom instruction. These graph representa-
tions are extracted from the target application code. Resource
sharing involves merging the DFGs of two or more custom
instructions which contain a similar subgraph. Therefore, the
output of the process is a set of DFGs composed of at most
as many DFGs as the input set. Aggressive merging could
considerably increase the latency of the instructions. In order
to control the effect of merging on the execution latency of
the custom instructions, [4] proposed a heuristic that param-
eterizes a resource-sharing process in order to explore the
design space of implementation alternatives. Implementation
alternatives represent trade-offs between custom instruction
execution latency and area. Thus, solutions that aggressively
share resources amongst the custom instructions might present
the highest data-path latency. The merging process proposed
in [4] is primarily parameterized by three threshold values:
ar, Br and Op. These parameters constrain the impact of
merging on the custom instruction at different stages of the
resource sharing algorithm. When ap = 1, 8 = 1 and
f0r = 1, the process maximizes sharing amongst the input
custom instructions in order to obtain the minimum-area
solution. On the other hand, when ar = 0, 7 = 0 and
61 = 0, no resource sharing is performed and the minimum
instruction data-path latency is obtained. The design space of
intermediate solutions that represent trade-offs between area
savings and instruction data-path latency can be explored by
varying o, B and @7 values in the range [0,1]. The merging
process can be further parameterized in order to enable the
creation of multi-function operators such as adder-subtracters,
through the binary parameter MwultiOp, and/or to enable
the compression of custom instruction operators that allow
synthesis optimizations to create modules such as multiply-
adders and carry-save adders, through the binary parameter
grouping.

Every solution found by the parameterized resource-sharing
process is characterized by the metrics: total area and weighted
average critical path of the custom instructions. The critical
path of the custom instructions is weighted by their execution
frequency. The features that were chosen to quantitatively
describe every input (or set of DFGs) are: number of DFGs (or
number of custom instructions to implement); and standard de-
viation, 1st quartile, 2nd quartile and 3rd quantile of the set of
critical paths of the graphs, weighted with their corresponding

k=40 c=5
k=20 c=15
— k=10c=20
0.08r 1
0.06[
Q
Q
T
0.04f
0.02r
0‘000 50 100 150 200
R

Fig. 3. Average results for 3 of the (k,c) configurations that were tested.
Other configurations are not included for better readability of the plot. Shaded
areas correspond to the 95% confidence interval of the mean values.

0.20(7~

— model-nearest-k10-c20
model-random-k10-c20
- _no-model

0.15H *

Q
%0.10*

Fig. 4. Experimental evaluation of model-nearest-k10-c20. Results obtained
across 10 experiments are averaged. Shaded areas correspond to the 95%
confidence interval of the mean values.

execution frequency.

A. Generating the Training Data

A total of 95 training cases were obtained from 56 bench-
marks taken from the UTDSP [5] and SNU-RT [6] benchmark
suites. Custom instruction identification was performed on
each benchmark using an implementation of ISEGEN [7]. The
smallest training case contains 5 custom instructions, and the
largest training case contains 26. The design space of resource-
sharing solutions was fully explored for every training case.
The exploration of this space was done by executing the
resource-sharing algorithm iteratively with different values of
the parameters ap, S and 6p, varying from O to 1 in steps
of 0.05 (resulting in 21 different values). In turn, every set of
values for a7, S and 61, was run with the four combinations
of values for the parameters multiOp and grouping. This
resulted in a design space of 37,044 points. After this explo-
ration, training input-output pairs are composed by coupling
the features extracted from the training case and the parameter
configurations associated with each Pareto point.



B. Experimental Evaluation of the Model

Values in k& = {10,20,40} and in ¢ = {5,10,15,20} were
considered. Then, a different model was created from every
possible combination (k,c). Experiments were performed in
two rounds of cross-validation. In the first round, k and c are
chosen while in the second round, the definite (k, ¢) configura-
tion is tested. For the sake of evaluating the final configuration
on data that has not been used to choose the values of k£ and ¢,
the training set is partitioned in two. 90% of the training set is
used to evaluate the different (k,c) configurations with a leave-
one-out cross-validation strategy [3]. The 10% that is not used
for this first round of cross-validation is used to test a model
that takes the definite (k,c) configuration and that is trained
with the above-mentioned 90%. This process is repeated with
every 10% of the initial set of training cases. Hence, on
every round, 90% is used to test every configuration (k,c).
In order to demonstrate the generalization of our technique
by evaluating it on completely unseen cases, the parameters k
and c are tuned using only the training set and never the test
set.

1) Choosing k and c Values: First, the 10 experiments
of leave-one-out cross-validation are performed. These cor-
respond to every 10% left out. In every experiment, each
configuration (k,c) is evaluated. Figure 3 shows average
values of d,,, obtained with three of the (k, ¢) pairs tested over
the 10 experiments. The results of all (k, ¢) configurations are
not shown for better readability of the plot. The configuration
with £ = 10 and ¢ = 20 showed smaller d,,, values for most
values of R. Thus, the number of neighbors k& was fixed to
10 and the number of clusters ¢ was fixed to 20. The model
with this configurations will be referred to as model-nearest-
k10-c20.

2) Evaluating the Model: The second round of cross
validation takes place by testing model-nearest-k10-c20 on
every 10%, while training every time on the remaining 90%.
Figure 4 shows the averaged mean values of d,, and their
95% confidence intervals, over the 10 experiments, for every
R, in increments of 10. For comparison, we also show the
results obtained when using a modified model, referred to as
model-random-k10-c20, which makes its predictions based on
20 random training samples instead of the 20 nearest ones.
This comparison allows an evaluation of the effectiveness of
the features in extracting the relevant characteristics of the set.
Additionally, these results are compared with a random explo-
ration of the parameter space. This is, instead of using a model
to suggest parameter combinations, these are generated as a
vector composed of random numbers uniformly distributed in
the range allowed by the parameters.

When using model-nearest-k10-c20, at approximately R =
200, dp, stabilizes to its smallest value. This means that
after 200 parameter configurations suggested by the model,
the majority of the inputs find the true Pareto-curve in the
resource-sharing design-space. When the model is used for
future predictions, it will generate 200 parameter configura-
tions to parameterize the resource-sharing algorithm. Thus,

— model-nearest-k10-c20
“““ model-random-k10-c20
- no-model

Q
£ 0.10p

Fig. 5. Results of predicting parameter values for an input set generated from
the Coremark application. Shaded areas correspond to the 95% confidence
interval of the mean values.

the Pareto curve found after these 200 executions will be the
same or very close to the Pareto curve that would be found
if the algorithm was executed exhaustively for all possible
parameter configurations. At this point, the parameters of the
model: k£ = 10, ¢ = 20, and R = 200 have been determined.

C. Practical Usage of the Model

In this section, model-nearest-k10-c20 is evaluated with
CoreMark [8], an application that was not used to generate
the training sets. 40 custom instructions that were extracted
from this application constitute the input set for the predictor.

The results of this experiment are shown in Figure 5. The
figure shows the results of predicting parameter values us-
ing model-nearest-k10-c20 and model-random-k10-c20. These
predictions are contrasted with no-model or random prediction.
The value of dp, was measured at every 10th execution of
the resource-sharing algorithm (every 10th parameter config-
uration explored). As seen in the figure, after 200 parameter
configurations tested (R = 200), dp,, values were low enough
to conclude that the majority of the area-speedup trade-offs in
the resource-sharing design-space had been found. This results
also show that the model model-nearest-k10-c20 performs
remarkably better than model-random-k10-c20 and no-model.

The actual running times of these explorations were mea-
sured. Experiments were performed on a workstation equipped
with 4 Xeon processors running at 3 GHz, and 4 GB of RAM.
An exhaustive exploration of 37,044 points in the design space
took 15,757 minutes to complete, while the exploration of the
200 parameter configurations suggested by the model took 111
minutes. Thus, the predictor achieved a speedup of 141x in
running time over a exhaustive exploration. This confirms the
predictive power of the model, and demonstrates important
time savings in the exploration of new design spaces.

V. RELATED WORK

Multiobjective optimization has been a hot topic of research
for several decades. Multiple approaches for approximating
the Pareto surface of a multi-dimentional objective space have
been proposed. Evolutionary algorithms, being one of the



most popular of these approaches, have proven to be robust
and powerful search mechanisms for tackling the exploration
of highly complex design spaces. These algorithms aim at
evolving a population to converge to Pareto solutions by
emulating natural evolution, supported by concepts such as
fitness, elitism, and mutation. The multi-objective nature of the
problem raises several challenges to these approaches. Recent
works on this topic aim at overcoming these challenges; such
as maintaining a diverse population, and defining appropriate
fitness functions to suit the multiple objectives [9], [10].

In the context of CAD, [11] proposed an unsupervised
Monte-Carlo exploration, together with a statistical analysis
that allows capturing key characteristics of the design space
in high level synthesis processes. [12] proposed a genetic
algorithm to solve a problem of digital circuit optimization
through the development of specific structures and procedures.
[13] suggested a heuristic based on Pareto simulated annealing
to explore the design trade-offs generated by the parameteri-
zation of a combined design-space of architectural parameters
and source-program transformations.

Optimization techniques such as evolutionary algorithms,
simulated annealing, and Monte-Carlo methods are well suited
for design spaces in which finding the real Pareto front by
exhaustive exploration is computationally infeasible. In this
paper, we target design spaces for which it is feasible to find
a good approximation of the Pareto front in order to create
training samples. Thus, we are able to suggest a set of good
parameter configurations by only extracting the characteristics
of the object to be transformed by the underlying process.

In the context of processor customization, the importance
of resource sharing in application-specific unit synthesis has
been stressed by several researchers [14], [15]. [4] showed
that resource sharing creates a multi-objective design space,
since aggressively sharing resources leads to large custom-
instruction data-path latencies. Moreover, it has been shown
that there is a design space of trade-offs between area savings
and instruction latency that designers can explore. An interac-
tion with the exploration at the instruction selection level has
been tackled in [16]. However, as [16] proposes an iterative
search, a large number of explorations at the implementation
level need to be carried out. Thus, an exhaustive exploration
of the resource-sharing design-space does not permit the
scalability of the selection process.

VI. CONCLUSIONS

This paper has presented a novel, yet highly practical,
predictive model that can be used to quickly find the optimal
implementation trade-offs across a range of hardware synthesis
tasks where parameterization exposes a large set of design
points. This is a relatively common scenario in electronic
design automation, from high-level synthesis, through logic
synthesis and even at the physical implementation level.

A concrete application of the proposed technique has been
presented in the context of processor customization. In this
application, for every new input to the process, a large design
space of solutions, each with different levels of resource

sharing, is available. Exhaustive search will always find the
optimum solution, but is prohibitively expensive in practice.

In this case study, the predictive model is shown to reduce
by two orders of magnitude the number of executions of the
resource-sharing algorithm that are required in order to find
Pareto-optimal solutions, compared to an exhaustive explo-
ration of the design space.

Having a fast assessment of the possible trade-offs available
at the logic level means that explorations at higher levels,
such as instruction selection, can actively interact with the
implementation stage, where resource sharing takes place.
This interaction is only possible with the presence of a fast
predictive model, as repeated calls to an exhaustive exploration
would be absolutely infeasible.

Thus, it is shown that learning techniques that extract pat-
terns from previously-explored spaces can be used effectively
in order to solve complex problems that create large design
spaces but that are likely to give rise to more efficient designs.

REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine Learning.
August 2006.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood
from Incomplete Data via the EM Algorithm,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 39, no. 1, pp. 1-38,
1977.

[3] R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection,” in IJCAI’95. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1995, pp. 1137-1143.

[4] M. Zuluaga and N. Topham, “Design-Space Exploration of Resource-
Sharing Solutions for Custom Instruction Set Extensions,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 28, no. 12, pp. 1788—
1801, 2009.

[5] C. Lee and M. Stoodley, “UTDSP benchmark suite,” 1992, http://www.
eecg.toronto.edu/corinna/DSP/infrastructure.html, 2010.

[6] “SNU-RT real time benchmarks,” 2010, http://archi.snu.ac.kr/realtime/
benchmark,2010.

[7]1 P. Biswas, S. Banerjee, N. Dutt, L. Pozzi, and P. Ienne, “ISEGEN:
an Iterative Improvement-Based ISE Generation Technique for Fast
Customization of Processors,” IEEE Trans. VLSI Syst., vol. 14, no. 7,
2006.

[8] “CoreMark,” 2010, http://www.coremark.org’/home.php.

[91 S. Knzli, L. Thiele, and E. Zitzler, “Modular Design Space Exploration
Framework for Embedded Systems,” IEE Proceedings Computers &
Digital Techniques, vol. 152, no. 2, pp. 183-192, 2005.

[10] C. Coello, G. B. Lamont, and D. Veldhuizen, Evolutionary Algorithms
for Solving Multi-Objective Problems (Genetic and Evolutionary Com-
putation). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[11] B. D., A. Bogliolo, and L. Benini, “Statistical Design Space Exploration
for Application-Specific Unit Synthesis,” in DAC’01. ACM Press, 2001,
pp. 641-646.

[12] Z. Salcic, G. Coghill, and B. Maunder, “A Genetic Algorithm High-
Level Optimizer for Complex Datapath and Data-flow Digital Systems,”
Applied Soft Computing, vol. 7, no. 3, pp. 979 — 994, 2007.

[13] G. Agosta, G. Palermo, and C. Silvano, “Multi-objective Co-Exploration
of Source Code Transformations and Design Space Architectures for
Low-Power Embedded Systems,” in SAC'04. New York, NY, USA:
ACM, 2004, pp. 891-896.

[14] P. Brisk, A. Kaplan, and M. Sarrafzadeh, “Area-Efficient Instruction
Set Synthesis for Reconfigurable System-on-Chip Designs,” in DAC’04.
New York, NY, USA: ACM Press, 2004, pp. 395-400.

[15] N. Moreano, E. C. d. S. Borin, and G. Araujo, “Efficient Datapath Merg-
ing for Partially Reconfigurable Architectures,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 24, pp. 969 — 980, Jul. 2005.

[16] M. Zuluaga and N. Topham, “Exploring the Unified Design-space of
Custom-instruction Selection and Resource Sharing,” in SAMOS X, Jul.
2010.

Springer,



