
Side Channel Analysis of the SHA-3 Finalists
Michael Zohner∗, Michael Kasper†, Marc Stöttinger∗, and Sorin A. Huss∗

∗Integrated Circuit and Systems Lab (ISS), Technische Universität Darmstadt,
Email: {zohner, stoettinger, huss}@iss.tu-darmstadt.de

†Fraunhofer Institute for Secure Information Technology (SIT)
Email: michael.kasper@sit.fraunhofer.de

Abstract—At the cutting edge of today’s security research and
development, the SHA-3 competition evaluates a new secure
hashing standard in succession to SHA-2. The five remaining
candidates of the SHA-3 competition are BLAKE, Grøstl, JH,
Keccak, and Skein. While the main focus was on the algorithmic
security of the candidates, a side channel analysis has only
been performed for BLAKE and Grøstl [1]. In order to equally
evaluate all candidates, we identify side channel attacks on
JH-MAC, Keccak-MAC, and Skein-MAC and demonstrate the
applicability of the attacks by attacking their respective reference
implementation. Additionally, we revisit the side channel analysis
of Grøstl and introduce a profiling based side channel attack,
which emphasizes the importance of side channel resistant hash
functions by recovering the input to the hash function using only
the measured power consumption.

Index Terms—SHA-3 Finalists; Side-Channel Analysis; DPA

I. INTRODUCTION

Hash functions are one of the elementary and most well
established primitives in cryptography. Hash functions not
only ensure the integrity of a transferred document, they are
also applicable for functionalities including digital signatures,
password verification, zero knowledge proofs, and Message
Authentication Codes (MAC). Thus, hash functions are part
of the foundation that secures information technology. To
guarantee the security features of a hash function, the National
Institute of Standards and Technology (NIST) published the
Secure Hashing Algorithm 1 and 2 (SHA-1 and SHA-2). When
doubts about the security of SHA-1 and SHA-2 were raised,
NIST announced the SHA-3 competition, which evaluates a
successing hashing standard. In the current final round, the
remaining candidates of the SHA-3 competition are BLAKE,
Grøstl, JH, Keccak, and Skein. The algorithmic security of
these candidates has already been researched down to the core
and very few major weaknesses have been found [2]. However,
because the new SHA-3 will be implemented in various
hardware architectures, its resistance against implementation
attacks is also of great concern [3]. Such implementation
attacks are for instance side channel attacks, which utilize all
kinds of physical leaking information, e.g. the execution time
of the algorithm, the power consumption of the device, or
even the electromagnetic emission, in order to recover secret
information. Until now only the side channel resistance of

BLAKE and Grøstl has been analyzed [1]. The resistance
of the other three candidates to side channel attacks still
remains uncertain and thus poses a potential risk for hardware
implementations.

In this paper, we continue the work of Benoı̂t et al. [1] by
performing a side channel analysis for the three SHA-3 can-
didates JH, Keccak, and Skein. Subsequently, attacks, based
on the insights of the analysis, are introduced and applied
to the respective reference implementation of the candidates,
executing their dedicated MAC function. Furthermore, we
perform a side channel analysis of Grøstl and introduce a novel
power analysis attack against its hashing operation, which
allows us to recover the input to the hash function call without
any information about the message or hash.

II. BACKGROUND

The following section will briefly cover the background
theory, required for understanding this work. First we give an
overview of hash functions, followed by a brief introduction
to side channel analysis.

A. Hash functions

Hash functions H : {0, 1}∗ 7→ {0, 1}n map a variable
sized data value from an input domain to a fixed sized
representation from their output range, the so called hash.
When used in cryptography, hash functions have to guarantee
certain properties, e.g. collision resistance, second preimage
resistance, and one-wayness.

In order to simplify the development of hash functions
so called constructions were proposed. The most prominent
construction is the Merkle-Damgård construction, which al-
lows building collision resistant hash functions from colli-
sion resistant compression functions. A hash function, built
by the Merkle-Damgård construction, splits the message M
into smaller blocks M = (m0,m1, ...,mp−1) and iteratively
processes them by calling the underlying compression function
G and connecting the compression function calls by passing
a state value Hi (see Figure 1). The size of the state value
is referred to as the state size of the hash function. A
collision resistant compression function, which is required
by the Merkle-Damgård construction, can again be built by
applying the Matyas-Meyer-Oseas construction to a symmetric
block cipher.978-3-9810801-8-6/DATE12/ c© 2012 EDAA

Another proposal for building hash functions is the sponge
construction [4], which hashes a value by iteratively calling a
permutation. The sponge construction divides the state value
into the bitrate and capacity and digests a message by XORing
it with the bitrate and then processing the resulting state value
using the underlying permutation.

Preneel et al. [5] performed a thorough analysis of 64 basic
schemes for constructing compression functions from block
ciphers, so called PGV schemes. Out of the 64 PGV schemes,
twelve schemes were deemed secure.

An application of hash functions is to compute MAC,
which are used to authenticate data in cryptography. They
are computed by hashing a message together with a secret,
which is only known to the sender and the receiver. The most
prominent MAC function is Hash-based MAC (HMAC) [6].
Computing a HMAC is defined as:

HMAC(K,M)=H((K⊕OPAD)||H((K⊕IPAD)||M)), (1)

where M is the message, K the key, H the underlying hash
function, and IPAD and OPAD are two constants defined as
the hexadecimal sequence (3636...36)16 and (5C5C...5C)16
with the same size as the state size of H.

B. Side Channel Attacks

Side channel attacks target cryptographic implementations
and exploit all kinds of unintentionally emitted information,
which can be attained during the computation of an algorithm.
Side channel attacks can be divided into different classes,
depending on the information they utilize in order to recover
the key. Power attacks, for example, are based on the fact that
a dependency between the power consumption of a device
and the processed data exists [7]. An attacker can exploit this
dependency in order to recover secret information, such as
keys of cryptographic algorithms.

One of the most common power attacks is the Differential
Power Analysis (DPA). This attack computes hypotheses of
the power consumption for each input and key candidate and
compares them to the recorded power consumption of the
device. Such a hypothesis can be computed by calculating the
Hamming weight (HW) of a processed value, which is defined
as the number of bits in a binary sequence set to (1)2. Finding
a suited intermediate value, which reveals information about
the key, is specified as leakage analysis. In order to compare
the calculated hypotheses to the measured power consumption,
methods like the Pearson correlation or the difference in means
can be used [7].

Profiling based attacks, such as template attacks, are an-
other kind of power attacks. Profiling based power attacks

GIV=H0

H1

m
0

m
1

m
2

m
p-1

G G G

H2 H3 Hp-1
Hp

Fig. 1: Merkle-Damgård Construction

are divided in two phases. First, a profiling phase builds a
power consumption model from the recorded power intake
of a training device. Secondly, an attacking phase recovers
the processed data by recording the power consumption of
the actual target and comparing it to the power consumption
models, built in the profiling phase.

A method for performing a profiling based attack is the
machine learning algorithm Support Vector Machines (SVM)
[8]. SVM assigns a class to an input sample by using training
data to construct a hyperplane in a higher dimensional space,
which separates two classes of data. Hospodar et al. [9]
examined the applicability of SVM when analyzing power
traces by evaluating its accuracy on several use cases and
comparing it to the accuracy of a template based approach. For
the defined use cases, SVM and the template based approach
performed similar in terms of accuracy, and thus Hospodar
et al. deemed revealing cryptographic keys from power traces
using SVM feasible.

In some cases it is more convenient to profile the Hamming
weight of a processed value instead of the actual value. Using
this approach, the number of power consumption models and
thus the profiling complexity decreases1. However, since now
multiple values are predicted, other methods are needed to
reveal the actual value. Thus, profiling based power attacks
were combined with algebraic side channel attacks [10],
which build a system of equations from the algorithm and
result in the actual key when solved.

III. SIDE CHANNEL ATTACKS ON HASH FUNCTIONS USED
AS HMAC

1) Side Channel Attacks Against HMACs Based on PGV
Schemes: Okeya [11] performed a side channel analysis of
the twelve PGV schemes when computing a HMAC. The
side channel analysis indicated that the DPA could reveal the
information, required to forge a HMAC, for eleven of the
twelve PGV schemes, even if the underlying block cipher was
resistant to side channel attacks. The information, required for
forging a HMAC, are the inner keyed state and the outer keyed
state, i.e. the state value resulting from the digestion of the
key XORed with the inner pad and outer pad. Only the first
PGV scheme, which is the same as the Matyas-Meyer-Oseas
construction, was deemed side channel resistant. In response
to the SHA-3 competition, Okeya et al. [12] also presented a
side channel analysis of several MAC functions.

2) Side Channel Analysis of Six SHA-3 Candidates:
Benoı̂t et al. [1] presented a side channel analysis of six
round two SHA-3 candidates, used with a HMAC, and outlined
vulnerabilities to which the DPA could be applied. Among the
six analyzed candidates were the two finalists BLAKE and
Grøstl [13][14]. For BLAKE-HMAC it was shown that the
DPA could recover the keyed state, by exploiting the leakage
of the modular addition and the XOR. For Grøstl-HMAC, the
leakage of the S-box, which is the same as for AES, was

1Assuming that the Hamming weight model correctly describes the power
consumption of the device.

targeted. Because the AES S-box is an operation, which is
often targeted by side channel attacks, the keyed state was
also deemed recoverable for Grøstl-HMAC.

IV. ANALYSIS OF THE SHA-3 CANDIDATES

We conducted a leakage analysis of the SHA-3 candidates
and were able to identify major side channel vulnerabilities
in each of the reference implementations. Following, we give
an overview of our analysis for four out of five finalists of
the SHA-3 competition and then sketch the respective attacks.
The remaining candidate, BLAKE, has already been analyzed
by Benoı̂t et al. [1] and will therefore be left out of scope.
The attacks on the candidates were conducted on an ATMega-
256-1 microcontroller with a register size of 8 bit, which was
measured using a PicoScope 6000. Additionally, an external
frequency generator was used as clock for the device in order
to reduce the offset in the time dimension.

The hypotheses and the measured power traces were com-
pared using the Pearson correlation. In order to identify the
point in time, at which the power consumption of the operation
occurs, we varied the area for which we computed the Pearson
correlation until the correlation converged for a hypothesis.
Each of the described DPAs was performed on 200 power
traces.

In order to explain the attacks, we will state the hypoth-
esis functions, used in the conducted DPAs. Note that the
hypothesis functions are tailored to the target device and are
not universally applicable. However, the generalized attack
principle can be fit to other devices.

A. Skein

1) Description: Schneier et al. [15] proposed the hash
function Skein, which is built by applying a novel construction,
called Unique Block Iteration (UBI), to the block cipher
Threefish. UBI is similar to the Matyas-Meyer-Oseas construc-
tion, but additionally passes a tweak value to Threefish [16].
Threefish is a block cipher with three different internal state
sizes, i.e. 256 bit, 512 bit, and 1024 bit. Threefish processes
the input message M and key K by dividing them into N
64 bit blocks (with N ∈ {4, 8, 16}) M0,M1, ...,MN−1 and
K0,K1, ...,KN−1 and, performing a modular addition:

Hi = (Mi +Ki) mod 264, for 0 ≤ i < N. (2)

Subsequently, Hi is processed using the operations MIX,
Permute, and AddRoundKey.

Skein provides its own MAC functionality by padding the
key to a multiple of the state size and digesting it before the
message (see Figure 2). Therefore, the keyed state, i.e. the state
value resulting from the digestion of the key, is constant for
a fixed key. Thus, in order to forge a legitimate Skein-MAC,
we either need the key or the keyed state value.

2) Side channel analysis: Since the data dependent leakage
during the digestion of the key is always constant for a fixed
key and therefore not attackable using the DPA, we targeted
the keyed state. Because Skein uses the Matyas-Meyer-Oseas
construction, which is side channel secure (see [11]), we

Fig. 2: Skein-MAC

attacked Threefish by performing the DPA on the result of
the modular addition between the keyed state and the input.

The problem with the DPA on Skein-MAC is that the modu-
lar addition processes two 64 bit values. This renders the usual
approach of performing the DPA, by computing hypotheses for
all 264 key candidates, computationally infeasible. Thus, we
split the 64 bits of the keyed state value into eight blocks of
eight bit each and attacked them independently. The hypothesis
function h for the DPA is:

h(mj)c = HW (mj + c), for 0 ≤ j < 8 (3)

where m0m1...m7 = Mi is the 64 bit block input message
block and c ∈ {0, 1, ..., 255} denotes the key candidate, for
which the hypothesis is computed. This attack has to be
performed for each of the N ∈ {4, 8, 16} 64 bit blocks of the
keyed state value. But since the N 64 bit blocks are processed
independently, the complexity when attacking multiple blocks
rises only linearly.

B. JH

1) Description: Hongjun Wu proposed the hash function
JH [17], designed by using a novel construction method for
building a collision resistant compression function from a
block cipher. Additionally, he generalized the AES design
methology, resulting in a block cipher E as base for the
construction of JH. The JH construction processes the 512
bit message Mi and the 1024 bit state value Hi as follows:

Hi+1 = E(Hi ⊕ (M || {0}512))⊕ ({0}512 || M). (4)

Upon being called, E changes the order of the bits of
the input H . This transformation is called grouping and is
illustrated in Figure 3. The result of the grouping is a state
with 256 four bit blocks. Subsequently, the four bit blocks are
substituted by applying two 4 bit S-boxes S0 and S1. Which
S-box is used for which four bit block is determined by pre-
defined round constants. The subsequent linear transformation
and permutation, which JH performs, are not detailed further

H0
H2 -1

N

H 2 -1
N

2

a0

H 2 -1
N

3

H 2 -1
N

4

H2 +1
N-1

H
2 +

N
2 +1

N-1

H
2 2 +

N
2 +1

N-1

H
3 2 +

N
2 +1

N-1

H2
N-1

H
2 +

N
2

N-1

H
2 2 +

N
2

N-1

H
3 2 +

N
2

N-1

H 2
N

2

H 2
N

3

H 2
N

4

H 2 +1
N

2

H 2 +1
N

3

H 2 +1
N

4

H1
H2 -1

N-1

H
2 +

N
2 -1

N-1

H
2 2 +

N
2 -1

N-1

H
3 2 +

N
2 -1

N-1

a1a2
a3a2

N-1 a2 -1
N

Fig. 3: JH Grouping

since they are not relevant for the side channel analysis. The
suggested MAC function for JH is HMAC.

2) Side channel analysis: The following attack is appli-
cable for the recovery of the inner and outer keyed state of
JH-HMAC and will thus be described in a general manner.

In order to recover the 1024 bit sized state value HK ,
resulting from the digestion of the key K, the leakage of two
operations has to be exploited. The first attacked operation is
the XOR of JH’s construction, which processes the message
M and HK,0, i.e. the first 512 bits of HK = HK,0 || HK,1.
Because HK,0 is directly XORed with the input message M
and the XOR is an operation, which is known to be exploitable
by the DPA, the hypothesis function h0 was chosen as:

h0(M)c = HW (M ⊕ c), for c ∈ {0, 1}512. (5)

Similar to the attack against Skein, the hypothesis computa-
tions are divided in blocks of eight bit size.

After the attack on the XOR of the construction, we have
recovered the first 512 bit HK,0 of the state value HK ,
but still require the last 512 bits HK,1 in order to forge
legitimate JH-HMACs. Thus, we have to perform a second
attack, which targets the S-box operation during the execution
of the block cipher. After the grouping of the block cipher,
the state A = (a0, a1, ..., a255) consists of 256 four bit blocks,
which are input into the two 4 bit S-boxes. Since the grouping
mixes the bits from HK,0 and HK,1, we know for each
ai = (ai,0, ai,1, ai,2, ai,3) the two leading bits ai,0 and ai,1
and aim at recovering the two trailing bits ai,2 and ai,3. Note,
that in this specific case, we can only vary over four possible
outputs instead of 16 for each ai, since the two trailing bits are
constant. This makes the DPA more complex, since different
key candidates result in similar hypotheses for each output.
The hypothesis function h1 for the second DPA is:

h1(ai,0, ai,1)c = HW (SC0(i)(ai,0 || ai,1 || c)), (6)

where ai,j ∈ {0, 1}, C0(i) is the round constant for the first
round at position i, and c ∈ {0, 1, 2, 3}.

C. Keccak

1) Description: Daemen et. al [18] proposed a family
of permutation functions called Keccak, which are used by
the sponge construction in order to build the corresponding
hash function. The Keccak permutation familiy members are
denoted by f [b], for b = 25 · 2λ and 0 ≤ λ < 7, where
b is the state size of the member λ. Before executing the
permutation, Keccak transforms the input H = H0H1...Hb−1,
with Hi ∈ {0, 1}, into a three dimensional state matrix At,u,v
by performing:

At,u,v = H2λ·(5u+t)+v, for 0 ≤ t, u < 5 and 0 ≤ v < 2λ,
(7)

(see Figure 4). Keccak then performs 12 + 2 · λ rounds of
an internal permutation R, which again consists of the five
permutations: θ, ρ, φ, χ, and ι. In this paper we only focus on

θ, because it reveals the most information in terms of power
attacks. The permutation θ is defined as:

θ : A′t,u,v = At,u,v ⊕
4⊕
i=0

At−1,i,v ⊕
4⊕
i=0

At+1,i,v−1. (8)

Figure 5 visualizes the permutation θ. Roughly speaking,
during the permutation, all elements of each column are
XORed together and then XORed again with each matrix
element. Keccak-MAC is computed by hashing (K||M).

2) Side channel analysis: Performing a DPA on Keccak-
MAC is complicated, since the key is not padded. In theory, we
have to distinguish between many possible cases, depending
on the length of the key and the internal state size of Keccak.
However, as a full analysis of all cases could fill a whole paper
by itself, we will only introduce the main principle and give
further possible courses of action.

The proposed attack is divided into two steps. At first
it aims at recovering the bitrate of the sponge function by
exploiting the XOR with the input. Secondly it targets the
XOR operation, performed during the θ permutation.

Since the key is not padded when computing Keccak-MAC,
the key as well as its size are unknown. Therefore, we also do
not know the number of message bits, which are digested in
the same permutation iteration as the keyed state. However, the
recovery and numbering can be done by performing the DPA,
starting with the first message bit and repeatingly attacking
the next message bit until there is no correlation in a directly
subsequent point in time. The reason for this procedure is that
if two consecutive message bits are processed in the same
permutation iteration, they will be processed by the XOR of
the sponge construction successively, which can be verified
by analyzing the correlation, which results from the DPA. If,
on the other hand, they are processed in different permutation
iterations, the permutation will separate the two operations and
the point in time, where the highest correlation occurs, will
differ strongly. As hypothesis function h0 we suggest:

h0(Mi)c = HW (Mi ⊕ c), (9)

where Mi ∈ {0, 1} are the message bits, processed in the first
iteration, and c ∈ {0, 1}. By performing this attack, we can
recover the part of the bitrate, which is XORed with the first
message bits.

t

u
v

H0
H6 H8H4H2

H48

H10

H44

H12

H46

H12H12

Fig. 4: Keccak assignment

t

u
v

Fig. 5: Visualization of permutation θ for Keccak f [50]

The second step aims at recovering the remaining state
value, i.e. the part of the bitrate, which is processed with the
key, and the capacity of the sponge function. When the state
value is input into the Keccak permutation, it is transformed
into the state matrix representation and the permutation θ is
performed. During θ, the reference implementation of Keccak
precomputes the XOR of all rows by XORing all column
elements. Thus, due to the processing order of the precompu-
tation, we can recover all elements of the state matrix, which
are above a known column. The hypothesis function h1 for
this DPA is:

h1(Ai,j)c = HW (Ai,j ⊕ c), (10)

where Ai,j ∈ {0, 1}λ, 0 ≤ i, j < 5, and c ∈ {0, 1}λ. When
the overlying elements are recovered, the attack is repeated
until all elements of the state matrix, and therefore the keyed
state value, are known.

This attack becomes difficult when the number of recovered
bits of the bitrate is smaller than b

5 , i.e. we do not know all
bits of at least one row. In this case, not every value can be
recovered during the computation of θ and the attack has to be
extended to the permutation χ and/or has to be conducted over
multiple Keccak rounds. If, on the other hand, the key length
is smaller than b

5 and if we knew at least b
5 bits of the bitrate,

the actual key can be recovered, since all key bits are directly
processed with message bits during the precomputation of θ.
Thus, while the missing padding of the key makes the attack
more difficult, it also allows the recovery of small keys.

D. Grøstl

1) Description: Grøstl, proposed by Knudsen et al., is a
Merkle-Damgård hash function, based on the block cipher
standard AES [19], [14]. Grøstl digests a message M =
M0,M1, ...,MN−1 by compressing Mi and the 512 (1024)
bit state value Hi using a compression function f , defined as:

f(Hi,Mi) = Hi+1 = P (Hi ⊕Mi)⊕Q(Mi)⊕Hi, (11)

where P and Q are two permutations, similar to AES. P and
Q both perform the operations AddRoundConstant, SubBytes,
ShiftBytes, and MixBytes for 10 (14 if the state size is 1024
bit) rounds. The effect of these operations is the same as for
AES, except that P and Q operate on a 8×8 (8×16) internal
state matrix A, consisting of eight bit entries. The operations

were modified in order to cope with the increased state size.
The difference between P and Q are the round constants in
AddRoundConstant and the number of shifts in ShiftBytes.

The SubBytes operation of P and Q is the same as for
AES, i.e. it substitutes each element of A with the element in
the corresponding Rjindael S-box. MixBytes, however, uses a
different matrix B for multiplication, because of the increased
state size:

Bi = circi(02, 02, 03, 04, 05, 03, 05, 07), for 0 ≤ i < 8,
(12)

where Bi denotes the i-th row of B and circi denotes the
cyclic right shift for i positions. MixBytes performs the matrix
multiplication as A = B×A in Rjindael’s Galois field GF (28)
with the irreducible polynomial x8 + x4 + x3 + x+ 1.

2) Side channel analysis: Benoı̂t et al. [1] proposed a
DPA against Grøstl-HMAC, which targeted the inner and outer
keyed state. However, because of the vulnerability of AES to
algebraic side channel attacks, we saw the necessity for a more
thorough leakage analysis.

Until now the only considered side channel attack method
for attacking SHA-3 candidates was the DPA. However, using
the DPA, we can only recover a secret part of the input if
we have multiple measurements and prior knowledge of some
parts of a varying input. This strongly limits the applicability
of a DPA when attacking hash functions. Therefore, we were
interested in the recovery of the input to a hash function call
without requiring any prior knowledge about the input.

For this scenario, a profiling based attack seemed the
right choice. Using a profiling based attack, we can recover
information about the intermediate values. In order to exploit
these recovered information, we set up a system of equations
for P and Q, which set the intermediate values in relation.
In our explicit case, the attack consists of three steps: first we
build profiles for all HW of each intermediate values, secondly
we try to recover the HW of the intermediate values, and lastly
insert the recovered HW into the system of equations.

For the task of determining the HW of the intermediate
values, we chose SVM because of its good results in [9]. Since
there has not been an approach of classifying HW using SVM,
we varied possible input parameters until we found the set,
which produced the highest accuracy. As input features we
chose the three best correlated points of a power trace as well
as their sum, together with an RBF kernel and a σ of 1. This
setup yielded an accuracy of 97.1% on test data.

In order to exploit the recovered HW information, we set
up a system of equations for P and Q. The equations in this
system consist of the HW of the input as well as the HW
of first two rounds of the SubBytes and MixBytes results
for every state value. SubBytes and MixBytes were chosen
because they set the most constraints on the processed values.
Simulations indicated that if 200 HW of the total 320 HW of
the equation system were known, the processed data could be
recovered.

The attack was performed on the ATMega-256-1 using the
reference implementation of Grøstl-256 with a 8 × 8 state

matrix. In total we needed to profile nine HW for five different
operations. We did this by using 100 traces for each HW,
which resulted in 5 ∗ 9 ∗ 100 = 4500 measurements for the
profiling phase. During the attacking phase, ten traces were
recorded, always processing the same message, and their mean
was input into the constructed SVMs in order to classify
the HW of the profiled operations. These HW were inserted
into the algebraic system, which was solved by verifying the
conditions, imposed by the equations.

V. CONCLUSION

We presented a side channel analysis of four out of five
finalists of the SHA-3 competition. Potential vulnerabilities of
JH, Keccak, and Skein were revealed and attacks on their ded-
icated MAC function were mounted. In order to demonstrate
the real world applicability of the attacks, they were conducted
on an ATMega-256-1 platform and the complexity and gain
of the attacks was evaluated.

Furthermore, we presented a profiling attack against Grøstl,
using SVM, to recover the Hamming weights of intermediate
values and an algebraic system to recover the processed data
by inserting the Hamming weights. The significance of the at-
tack lies in the recovery of the data, Grøstl hashes. Recovering
the processed data is a great issue when a secret is hashed.
Therefore, while side channel attacks are not as threatening to
hash functions as they are to encryption functions, they should
not be left out scope when evaluating a hash function.

Note that the performed side channel attacks against the
reference implementations of the SHA-3 candidates do not
tell how hard it is in practice to successfully attack SHA-3
candidate implementations, since the reference implementation
is designed with the focus on understandability. Therefore, this
paper does not conclude that certain candidates are harder to
attack in practice than others. The intention of this paper is to
outline the necessity of side channel resistant hash functions
and to identify the operations, which an attack would exploit,
so that they can be secured using countermeasures.

In terms of countermeasures, some research has already
been conducted. In [20] Hoerder et al. performed an evaluation
of hash functions, including Skein, BLAKE, and Keccak, on
a power analysis resilient processor architecture. For Keccak
there have been some notes on side channel countermeasures
[21] as well as proposals for masked Keccak implementations
[22][23]. In case of Grøstl, many side channel countermea-
sures, developed for the AES, can be adopted.

The winner of the SHA-3 competition and therefore the new
SHA-3 standard will be announced in spring 2012. Whichever
of the finalists may win will be adopted in many implemen-
tations and devices, ranging from small embedded systems to
high performance computers. Thus, fast, flexible, and secure
implementations of the winner will have to be provided so
that all application scenarios are covered. The insight, gained
from our evaluation, is that none of the analyzed candidates
should be blindly deployed as MAC function (or in the case of
Grøstl as hash function) in a security sensitive context, without
implementing countermeasures. Thus, NIST should contribute

to the side channel security of the new SHA-3 standard by
specifying multiple, flexibly applicable countermeasures, in
order to secure implementations of SHA-3.

REFERENCES

[1] O. Benoı̂t and T. Peyrin, “Side-channel analysis of six SHA-3 candi-
dates,” in Proceedings of the 12th international conference on Cryp-
tographic hardware and embedded systems, ser. CHES’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 140–157.

[2] TU Graz, “The SHA-3 Zoo.” [Online]. Available:
http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo

[3] J. Kelsey, “How to Choose SHA-3.” [Online]. Available:
http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Kelsey.pdf

[4] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “Cryptographic
sponge functions,” Submission to NIST (Round 3), 2011. [Online].
Available: http://sponge.noekeon.org/CSF-0.1.pdf

[5] B. Preneel, R. Govaerts, and J. Vandewalle, “Hash functions based on
block ciphers: a synthetic approach,” in Proceedings of the 13th annual
international cryptology conference on Advances in cryptology. New
York, NY, USA: Springer-Verlag New York, Inc., 1994, pp. 368–378.

[6] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for
Message Authentication,” United States, 1997.

[7] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks - revealing
the secrets of smart cards. Springer, 2007.

[8] C. J. C. Burges, “A Tutorial on Support Vector Machines for Pattern
Recognition,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121–167,
1998.

[9] G. Hospodar, E. D. Mulder, B. Gierlichs, I. Verbauwhede, and J. Vande-
wallei, “Least squares support vector machines for side-channel analy-
sis,” in 2nd Workshop on Constructive Side-Channel Analysis and Secure
Design, COSADE, 2011.

[10] M. Renauld, F.-X. Standaert, and N. Veyrat-Charvillon, “Algebraic
Side-Channel Attacks on the AES: Why Time also Matters in DPA,”
in Proceedings of the 11th International Workshop on Cryptographic
Hardware and Embedded Systems, ser. CHES ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 97–111.

[11] K. Okeya, “Side Channel Attacks Against HMACs Based on Block-
Cipher Based Hash Functions,” in Information Security and Privacy,
ser. Lecture Notes in Computer Science, L. Batten and R. Safavi-Naini,
Eds. Springer Berlin / Heidelberg, 2006, vol. 4058, pp. 432–443.

[12] P. Gauravaram and K. Okeya, “Side Channel Analysis of Some Hash
Based MACs: A Response to SHA-3 Requirements,” in Proceedings of
the 5th international conference on Information, Communication and
Signal Processing, ser. ICICS, 2008, pp. 111–127.

[13] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, “SHA-3
proposal BLAKE,” Submission to NIST (Round 3), 2010.

[14] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rech-
berger, M. Schläffer, and S. ren S. Thomsen, “Grøstl – a SHA-3
candidate,” Submission to NIST (Round 3), 2011.

[15] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,
J. Callas, and J. Walker, “The Skein Hash Function Family,” Submission
to NIST (Round 3), 2010.

[16] M. Liskov, R. L. Rivest, and D. Wagner, “Tweakable block ciphers,” in
Proceedings of the 22nd Annual International Cryptology Conference
on Advances in Cryptology, ser. CRYPTO ’02. London, UK, UK:
Springer-Verlag, 2002, pp. 31–46.

[17] H. Wu, “The Hash Function JH,” Submission to NIST (round 3), 2011.
[18] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “The Keccak

reference,” Submission to NIST (Round 3), 2011.
[19] Announcing The Federal, “Processing Standards Publication 197.”
[20] S. Hoerder, M. Wojcik, S. Tillich, and D. Page, “An evaluation of

hash functions on a power analysis resistant processor architecture,” in
Workshop in Information Security Theory and Practice - WISTP 2011.
Springer-Verlag LNCS 6633, June 2011, pp. 160–174.

[21] The Keccak Team, “Note on side-channel at-
tacks and their countermeasures.” [Online]. Available:
http://keccak.noekeon.org/NoteSideChannelAttacks.pdf

[22] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “Building
power analysis resistant implementations of Keccak,” in Second SHA-3
Candidate Conference, August 23-24, 2010.

[23] E. Alemneh, “Sharing nonlinear gates in the presence of
glitches,” August 2010, Master’s Thesis. [Online]. Available:
http://essay.utwente.nl/59599/

