
SAFER PATH: Security Architecture using

Fragmented Execution and Replication for

Protection Against Trojaned Hardware

Mark Beaumont, Bradley Hopkins and Tristan Newby

Defence Science and Technology Organisation

Adelaide, Australia

Email: Mark.Beaumont@dsto.defence.gov.au

Abstract—Ensuring electronic components are free from Hard-
ware Trojans is a very difficult task. Research suggests that even
the best pre- and post-deployment detection mechanisms will not
discover all malicious inclusions, nor prevent them from being
activated. For economic reasons electronic components are used
regardless of the possible presence of such Trojans.

We developed the SAFER PATH architecture, which uses
instruction and data fragmentation, program replication, and
voting to create a computational system that is able to operate
safely in the presence of active Hardware Trojans. We protect
the integrity of the computation, the confidentiality of data
being processed and ensure system availability. By combining a
small Trusted Computing Base with Commercial-Off-The-Shelf
processing elements, we are able to protect computation from the
effects of arbitrary Hardware Trojans.

I. INTRODUCTION

Hardware Trojans are undesired, malicious modifications

to electronic circuits. They are designed to compromise the

operation of systems containing the circuits, presenting a

persistent threat to the security of the infected hardware, as

well as any software executing on that hardware. Hardware

Trojans can be inserted into an electronic circuit at any stage

of development, manufacturing, or distribution [1].

Hardware Trojans may operate continuously, or may lie

dormant, waiting to be activated before performing their

function. This can include modifying the behaviour of the

electronic circuit, degrading its performance, or compromising

sensitive information that is processed or stored by the circuit.

Given the proliferation of electronic devices, and their

underpinning of our financial, military, industrial and trans-

portation sectors, the devastation that could be caused by

a carefully designed Hardware Trojan is immense [2]. This

threat has given rise to a flurry of research over the past five

years, as detailed in [3] and [4]. Most research has focused

on preventing the modification of an Integrated Circuit (IC),

or methods for detecting a Hardware Trojan once it has been

inserted into an IC. However, there can be no guarantee that

an IC is free of Hardware Trojans before it is deployed [5],

nor, given the large state-space of trigger mechanisms [6] is

it possible to reliably prevent the activation of a Hardware

Trojan in a device, despite current best efforts [7][8].

To maintain a capability edge, the Australian Military must

procure and use Commercial-Off-The-Shelf (COTS) electronic

components. Without being able to guarantee components free

of Hardware Trojans, we must pursue methods for safely

operating in their presence, assuming they will be active within

our systems.

We have developed SAFER PATH, a new architecture that

takes a generic, defence in depth approach to combating Hard-

ware Trojans in COTS components. SAFER PATH allows the

use of these untrusted components, including ICs and third-

party Intellectual Property (IP) from different manufacturers,

for general purpose computation. Computational integrity and

availability is achieved by multiple processing elements (PEs)

simultaneously voting on a computer program’s execution.

Further, data confidentiality is protected by fragmenting this

execution over different sets of PEs.

The architecture is underpinned by a Trusted Computing

Base (TCB) that controls the replication, voting, and fragmen-

tation. Placing effort in the development and accreditation of

this TCB provides the flexibility to incorporate many different

COTS PEs into this architecture.

Section II introduces our threat model and assumptions.

Section III discusses related work. Section IV details our

solution. Section V and Section VI describe our experimental

implementation and results. Section VII discusses some po-

tential extensions while Section VIII summarises our work.

II. THREAT MODEL

Many critical systems rely on embedded microprocessors to

control their operation, including SCADA systems, telecom-

munications networks, and military cryptographic devices.

These processors are typically procured in a global market

from a large array of vendors, leaving their design, im-

plementation, and fabrication details untraceable. The pace

of technological development has meant that even the most

advanced military systems now incorporate these same COTS

processors [9].

We assume the presence of arbitrary, undetected Hardware

Trojans within these processors. These Hardware Trojans can

be activated at any time and the repercussions of their activity

is unknown a priori. Under normal circumstances these Trojans

could undermine the security of systems through attacks

against the integrity of computations being performed, the

978-3-9810801-8-6/DATE12/ c©2012 Crown Copyright



availability of processing resources, and the confidentiality of

data being processed.

Rather than develop and accredit a single trusted processor,

we want to augment these untrusted COTS processors with

a small subset of trusted logic. This combination can then

be used to do the job of a trusted processor, avoiding the

unwanted effects of any resident Hardware Trojans. This

approach saves considerable effort in the accreditation process

and allows the use of the latest COTS components to track

technological advances.

All PEs in our architecture have identical specifications.

From an input, output and program execution perspective

their normal (untrojaned) operation is indistinguishable. If all

PEs were also physically identical then they would all be

identically vulnerable to the inclusion of Hardware Trojans.

To counter this threat we assume that physical variability

can be introduced into the pool of PEs. This can be achieved by

utilising unique RTL descriptions of the same PE specification

created by independent design vendors, using different sets

of design tools. These descriptions can then be fabricated at

independent facilities, utilising different processes, geometries

and cell libraries. Large scale collusion would then be required

to insert the same, or colluding, Hardware Trojans into the

variant PEs.

We have focussed on countering Hardware Trojans within

processing components. The architecture does not protect other

system elements such as memory from Hardware Trojans.

However, research exists into protection elements such as

memory data guards [10], and a defence in depth approach

utilising these elements would complement the architecture.

Ultimately, SAFER PATH could be used as a drop-in replace-

ment for the embedded processor in any one of a number of

systems.

As our focus is on protecting against Hardware Trojans,

this work ignores the threats posed by malicious software. Our

intent is to enable hardware to correctly execute the software

that it is given.

III. RELATED WORK

Although the majority of research into Hardware Trojans

has focused on prevention and detection, some recent research

has looked at maintaining the secure operation of an electronic

system in the presence of Hardware Trojans. This research can

be broadly organised [6] into: Data Guards; Novel Architec-

tures; Reconfigurable Logic; and Replication and Voting.

Data Guards attempt to prevent data from being used as

a trigger for activating Hardware Trojans and prevent data

from being leaked through a specific interface. Waksman and

Sethumadhavan [7] propose bus scrambling, homomorphic

cryptography, and time-guards. Bloom et al. [10] use a double

memory guard to securely pass encrypted data to and from

memory. Das et al. [11] detect real-time modifications to

memory accesses. Beaumont et al. [12] scramble hard disk

transactions as part of a Silicon Security Harness [2].

BlueChip [8], uses a defensive strategy that identifies and

removes untrusted circuits from a design, replacing them with

a hook to a software exception handler. Further research

has since shown that circuits can be created that evade the

untrusted circuit detection mechanisms [13]. Abramovici and

Bradley detect Hardware Trojan tampering attacks at run-time

through the addition of self checking logic to an IC’s design

[5].

Baumgarten, Tyagi and Zambreno use reconfigurable logic

barriers within a design to prevent both the activation and op-

eration of Hardware Trojans added during the manufacturing

stage of an IC [14].

McIntyre et al. [15] spawn functionally equivalent but

variant software processes on multiple identical processing

elements, dynamically adjusting the trust in an individual

processing element based on compared outputs. Similarly,

we utilise variability and voting, however we use identical

software operating on variant processors and combine this with

data fragmentation to protect against Hardware Trojans.

Newgard and Hoffman [16] use a tightly coupled dual-

processor lock-step configuration to check every instruction

that is executed by both processors. SAFER PATH utilises a

modified lock-step architecture, and can include any number

of processors. Instructions are not checked by every processor,

but rather a majority consensus is reached through a voting

mechanism. Further, this voting mechanism has been extended

to include peripherals of the processor.

We use replication and fragmentation to limit access to

both program code and data. Trouessin et al. [17] investi-

gated Fragmentation-Redundancy-Scattering (FRS) techniques

to preserve data confidentiality in a distributed system, pro-

tecting against software threats. Data was split into small

enough fragments that each piece on its own contained little

information. Our work utilises similar ideas to ensure under-

lying untrusted hardware only has access to small windows of

an executing program. However, instead of trusted software

fragmenting data so that it can be operated on remotely, and

recombining the data when the results are returned, we simply

restrict access to a single data store. Processors are only

allowed to access the subset of the data that they need in

order to perform a given computation.

IV. ARCHITECTURE

SAFER PATH consists of a small TCB and a pool of

PEs over which a computer program is executed. The TCB

facilitates replication and fragmentation of program execution,

and resides between the PEs and program memory (Fig. 2).

PEs may typically be a microprocessor, or other process-

ing component that loads executable code from an external

memory. The architecture is not restricted by any particular

configuration and the PEs may be bare die, packaged ICs,

or implemented in reconfigurable logic. The PEs are opera-

tionally identical, but varied in their design and fabrication.

A. Replication and Voting

Program code is executed simultaneously (replicated) on

a subset of the PEs, termed a bank, from a single program

memory. All memory accesses, encompassing all instruction



and data reads and writes, are voted on by the bank of PEs.

This prevents a PE infected with a Hardware Trojan from

accessing regions of memory independently of other bank PEs.

Various schemes can be used to combine memory accesses

from multiple PEs, and thereby generate the voted memory

access. Figure 1 shows how multiple PEs in a bank connect

to a single program memory through voting logic.

Fig. 1. Processing Element bank voting on memory accesses.

PE replication and voting on program execution provides in-

tegrity in the executed program, availability of the system, and

prevents a Hardware Trojan from utilising memory accesses

for direct data leakage.

B. Fragmented Execution

The PEs in the executing bank still have access to all instruc-

tions executed and data operated on during program execution.

While voting prevents the PEs from leaking any information

through memory accesses, trojaned hardware may still utilise

other channels [18] to compromise sensitive data. To further

protect data confidentiality, we switch a program’s execution

between different banks of PEs. Each bank runs a fragment of

the program code before execution is switched to a different

bank. A fragment may be as small as a single instruction or

as large as an entire program. This switching is similar to

software context switching, with the added characteristic that

when a program is switched, it restarts execution on a different

bank of PEs. When enough banks exist, any individual PE will

only ever have access to small fragments of a program, limiting

the amount and coherence of sensitive data a Hardware Trojan

may leak.

A new bank is assembled from the pool of PEs at each

occurrence of an execution switch. The make-up of the bank

and the order of switching may be either fixed or random,

trading the complexity of the TCB logic against the flexibility

of the architecture. The generic SAFER PATH architecture is

illustrated in Figure 2.

The manner and frequency of bank switching affects both

the performance and security of the architecture. Best protec-

tion is achieved by switching the program execution to isolate

sensitive data to particular banks of PEs, but more frequent

switching also has a larger impact on performance.

Switching may be achieved through hardware, software or

hybrid mechanisms, and may be enforced at regular, program-

matic or random intervals. Hardware enforced switching logic

would need to be a part of the TCB, increasing both the

size and complexity of the trusted hardware. In Section V

Fig. 2. SAFER PATH architecture: replication, voting and fragmentation.

we describe a hybrid mechanism that relies on the executing

program to initiate the switching.

C. Trusted Computing Base

The TCB consists of the voting and switching logic. Our

goals for architecting the TCB include amenability to accred-

itation, a generic design for use with different COTS ICs, and

logic of smaller size than individual PEs. The TCB may be

implemented in a variety of ways, including combined on

a single die with PEs, in reconfigurable logic, or dedicated

silicon.

Any TCB elements need to be designed, developed, and

fabricated free from Hardware Trojans. The small size and

simplicity of our TCB makes this a more tractable problem

than developing a complete trusted processor.

V. IMPLEMENTATION

We have developed a prototype implementation of SAFER

PATH consisting of a pool of 30 Leon3 32-bit SPARCv8

processors [19]. In this implementation the processors have no

physical variability, but, as this variability is simply a defence

against identical Hardware Trojans being introduced into the

processors, the operation and analysis of the architecture

remain valid. The processors, a TCB implementing replication,

voting, and fragmentation, and a 128 kilobyte RAM were all

instantiated in a single Xilinx XC6SLX150T Spartan 6 Field

Programmable Gate Array (FPGA).

A. Leon3 Configuration

The Leon3 processor is a configurable IP core that uses the

AMBA [20] AHB bus as its main memory bus and the AMBA

APB bus as a peripheral bus. Each individual processing core

is instantiated with the configuration shown in Figure 3. The

Debug Support Unit (DSU) is attached to a single core and is

used to load program code into the RAM. The RAM and APB

bus UART are shared between all Leon3 cores. The RAM

is the only memory in our configuration and contains both

program code and data, as well as being used for stack and

heap implementations.



Fig. 3. Leon3 configuration used for prototyping.

B. Processor Banks

The pool of Leon3 processors is divided into 10 banks of

three, although the number of banks, the number of processors

per bank, and hence, the total number of processors are

configurable at synthesis time. In our prototype, the individual

processors allocated to each bank are fixed.

All Leon3 processors within the FPGA run synchronously.

Given the same program code, they perform the same memory

accesses at the same time, allowing a bank of processors to

share access to, and execute code from, the single RAM. The

TCB logic shares the RAM between processors in a bank by

combining RAM accesses at the AHB bus level. The AHB

Bus is bi-directional, with separate input and output channels

to RAM. The output channel is separately connected to each

processor in a bank, preventing direct links between banked

processors. The input channel (an instruction fetch or a data

read or write) is voted on across the input channels from each

processor in a bank. Voting on bank l0..ln−1, is shown in

Figure 4.

Fig. 4. Voting on the AHB Bus.

We used a comparison based voting scheme on the AHB

input bus. For our implementation, with banks containing three

processors with AHB input channel buses b0, b1 and b2:

vote(b0, b1, b2) =







b0 if b0 = b1 ∨ b0 = b2
b1 if b1 = b2
bnull otherwise

(1)

Voting happens in real time and has no effect on memory

access times or overall program performance.

In our prototype, if two out of the three processors have

the same AHB bus input then that memory access occurs. If

all three are different, the memory access is voided and the

processors are reset. The voting algorithm can be modified

depending on the number of processors in a bank and security

guarantees required.

A useful system requires input and output (IO). The APB

UART is shared across a bank in a similar manner to the

AHB RAM, allowing voted control and usage for serial

communications. While each processor has its own GPIO unit,

the outputs from the individual GPIO lines are voted on to

create banked GPIO outputs.

Code executing on the processors is oblivious to the under-

lying banking and voting that is occurring for both the memory

accesses and the IO peripherals.

C. Processor Execution Switching

Each processor bank appears to the wider system as a single

processor executing the stored program code. A bank executes

a fragment of program code before execution is switched to

the next bank. To facilitate switching, the state of current bank

processors is transferred to processors in the next bank. This

is achieved in a similar manner to a context switch, as is

typically used for multitasking on a modern CPU, combined

with a hardware switch that moves program execution from

one processor bank to the next. Program execution is switched

by switching access to the RAM between banks.

In our implementation, execution switching is triggered

by the program and is hence under the direct control of

the programmer. We developed a C-code switching routine

that begins execution on one processor bank and completes

execution on another. The routine first saves the state of the

current processor, i.e. its registers, to memory, along with the

address of the first instruction in the state restoration code.

A dedicated GPIO line is then toggled to signal the TCB

hardware to switch RAM access to the next bank. The GPIO

line is voted on by all bank processors, preventing a Hardware

Trojan from interfering with the switching. When the TCB

detects the GPIO line change, the bank is disconnected from

the RAM.

After disconnecting the first bank, a new, pseudo-randomly

chosen bank of processors is connected to RAM. Immediately

after this, the TCB resets all processors. On being reset,

processors attempt to boot from the AHB RAM. The banks

that are not connected to RAM will not boot and will be in an

error state until they are reset. The bank that is connected to

the RAM executes program boot code from the base of RAM.

The boot code first reads in the saved address of the state

restoration code from RAM, checking if this is the first boot

(address=0x00000000), otherwise it jumps to the saved

address (Listing 1).

s t a r t : s e t s aved add r e s s , %r5
ld [%r5 ] , %r7
cmp %r7 , 0
be f i r s t
nop

jmp %r7
f i r s t :

Listing 1. Leon3 processor boot code.

Execution then continues from this address, loading the

saved processor state from memory, to complete the execution



switch. As all memory accesses are voted on, the state is

saved and restored without concern for Hardware Trojan

manipulation.

D. Software

The programmer has control over when and how the exe-

cution switching is implemented. A programmer can choose

exactly which registers are saved and restored, only restoring

enough registers for a bank to execute its code fragment.

Minimising this context decreases switching overhead. It also

restricts an individual processor’s view into the executing

program. Our implementation runs monolithic C-programs

which call a generic switching routine that performs a full

save and restore of all important processor registers. The

frequency of the switching affects performance through the

context switching overhead, and also affects data confidential-

ity through the granularity of the fragmentation.

E. TCB Analysis

In our prototype consisting of b banks of n fixed processors,

the TCB consists of n b:1 multiplexers on the AHB input

channel, and n 1:b demultiplexers on the AHB output channel.

This switching connects the RAM, via the voting logic, to

one bank at a time. For n = 3, the voting logic requires 3

comparators on the AHB input channels. Additional control

logic resets the processors and updates the select signals

for the multiplexers and demultiplexers. Table I compares

synthesised resource usage within the Xilinx Spartan 6 FPGA

for a minimal Leon3 core (as in Fig. 3, though without DSU

and UARTs) against the TCB for b = 1 and b = 10.

TABLE I
TCB SIZE ANALYSIS1

Slice LUT6 Slice Registers
Single Leon3 core 2516 1221

TCB, 3 PEs (b=1, n=3) 359 5

TCB, 30 PEs (b=10, n=3) 1096 13

1 Results obtained using Xilinx ISE Release 13.1 - xst O.40d

For b = 10, the TCB logic is considerably smaller than a

single Leon3 processor. As the number of processors increases,

the TCB scales by increasing the size and number of multi-

plexers and demultiplexers. The small size, low complexity

and mainly stateless, repetitive logic of the TCB lends the de-

sign to trusted fabrication when compared to the development

of a full trusted processor.

VI. EXPERIMENTATION AND RESULTS

For SAFER PATH to be a viable architecture, it must protect

against the effects of Hardware Trojans while maintaining an

acceptable level of performance. We tested the implementation

described in Section V for its ability to protect against data

leakage, functional modification and Denial of Service (DoS)

attacks.

A. Data Leakage

Hardware cannot leak data that it does not have access to.

We use program execution switching to limit an individual

processor’s access to data. The key expansion phase of the

AES-128 encryption algorithm was used to examine the data

fragmentation effects of execution switching. This was im-

plemented in C, with execution switches strategically placed

to fragment access to the generated key material. During the

process of expanding the 128-bit key into the required round

keys, execution switches occurred after each 32 bits of the

expanded key were generated.

By recording which processors had access to which parts

of the generated key, we were able to show that no single

processor was exposed to more than 32 bits of the key at any

one time, nor was any one processor exposed to more than 32

consecutive bits of the key.

There is a risk that every bank contains a trojaned processor

that continuously leaks all data that it has access to. Replica-

tion and voting ensure that all direct communication channels

(e.g. memory, IO) cannot be used for leaking. This leaves the

more challenging problem for an adversary of leaking a large

amount of real-time processor data through indirect channels.

While our random bank selection is able to minimise key

exposure in the manner described above, we could improve

upon this by giving the programmer direct responsibility for

bank selection. The programmer is then able to carefully

analyse their program and data to ensure that over time no

individual processor can piece together sensitive data. For

example, with encryption keys it is important that the same

parts of the key are always used on the same processors.

B. Functional Modification

Our processors are limited to computation, memory ac-

cess, UART access, and GPIO manipulation. All effects of

computation manifest through memory accesses (e.g. stack

manipulation). We forced one processor (in a bank of three) to

perform a different access to each of the memory, UART, and

GPIO units. This simulated the effect of a trojaned processor

attempting to modify the functionality of the system. On all

occasions program execution continued correctly. Depending

on the modification, the errant processor was able to either

resynchronise on the next instruction, or the next time it was

reset. Conversely, modifying two processors in an identical

manner allowed the erroneous access to occur, demonstrating

that our architecture makes no assumptions about “correct”

behaviour, only majority behaviour.

When all three processors were tested with different mem-

ory accesses, the system was reset. Further work could allow

software to recognise these situations and retry interrupted

sections of code or remove recalcitrant processors from the

pool. In general, SAFER PATH operates correctly as long as

enough correctly executing processors exist in a bank at each

memory access to outvote Trojan effects, further supporting

the need for the use of variant processors.



C. Denial of Service

A DoS attack was simulated by forcing a processor to be

reset during program execution. With a majority of PEs in

a bank still performing correctly, the architecture was able

to continue execution. Where a DoS attack may have been

triggered by a rare event or a “ticking timebomb” Trojan [7],

resetting the processors regularly may allow those processors

to be used productively again.

D. Performance

During the key expansion tests, the 47-instruction execu-

tion switching routine is called 44 times. The fragmented

performance is approximately 2.3 times slower than the un-

fragmented performance. For certain applications, a perfor-

mance decrease of this magnitude would be an acceptable

compromise in order to protect sensitive data. When oper-

ating without data confidentiality concerns, SAFER PATH

provides increased assurances of integrity and availability

solely through the use of the replication and voting logic.

In terms of throughput, there is no performance loss in this

configuration.

This improved security is achieved for the cost of extra

processors, TCB hardware, and increased power draw.

VII. FURTHER WORK

Further work is required on handling IO and external

interrupts. External interrupts can be shared and multiplexed

by the TCB, with a small modification to the Interrupt Service

Routine (ISR) to ensure the TCB can clear the interrupt

line. Direct IO can be multiplexed and voted as with the

UART example, but utilising memory mapped IO through the

multiplexed memory provides the most convenient solution.

Execution switches could be made automatic and more fine-

grained by instrumenting a compiler to insert them. Coupled

with data flow analysis, this could provide an optimal solution

to the provision of confidentiality through data fragmentation.

Further, resetting processors, reconfiguring banks from the

pool of processors, and feeding processors dummy code while

otherwise idle may provide added protection against Hardware

Trojans.

VIII. CONCLUSION

SAFER PATH is a new processing architecture that is

comprised mostly of COTS components and can operate

correctly in the presence of active Hardware Trojans. Through

a defence in depth approach, we utilise program replication

and fragmented execution to provide system integrity and

availability, and to maintain data confidentiality.

A prototype implementation with an FPGA has proven

SAFER PATH to be viable, demonstrating integration of COTS

processors with a minimal TCB to form a complete processing

system capable of being used as an embedded processor

replacement. The developed TCB is simple, providing a good

starting point for accreditation of a single trusted component.

Ideal candidate systems for SAFER PATH are those where

the cost of failure is significant, such as cryptographic ICs

or on-board missile guidance systems. As a complement to

prevention and detection techniques, it provides a last line of

defence against Hardware Trojans.

REFERENCES

[1] J. Rajendran, E. Gavas, J. Jimenez, V. Padman, and R. Karri, “Towards
a comprehensive and systematic classification of hardware trojans,” in
Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International

Symposium on, 30 2010-june 2 2010, pp. 1871 –1874.
[2] M. Anderson, C. North, and K. Yiu, “Towards Countering the Rise

of the Silicon Trojan,” DSTO Information Sciences Laboratory, DSTO
Technical Report DSTO-TR-2220, May 2008.

[3] R. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware trojan:
Threats and emerging solutions,” in IEEE High Level Design Validation

and Test Workshop, 2009, pp. 166 –171.
[4] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan

taxonomy and detection,” IEEE Design and Test of Computers, vol. 27,
pp. 10–25, 2010.

[5] M. Abramovici and P. Bradley, “Integrated circuit security: new threats
and solutions,” in Workshop on Cyber Security and Information Intelli-

gence Research, ser. CSIIRW’09. New York, NY, USA: ACM, 2009,
pp. 55:1–55:3.

[6] M. Beaumont, B. Hopkins, and T. Newby, “Hardware Trojans - Pre-
vention, Detection, Countermeasures (A Literature Review),” DSTO
Information Sciences Laboratory, DSTO Technical Note DSTO-TN-
1012, June 2011.

[7] A. Waksman and S. Sethumadhavan, “Silencing hardware backdoors,”
in Proceedings of the 32nd IEEE Symposium on Security and Privacy,

May 2011, May 2011.
[8] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. Smith,

“Overcoming an untrusted computing base: Detecting and removing
malicious hardware automatically,” IEEE Symposium on Security and

Privacy, pp. 159–172, 2010.
[9] Lockheed Martin Corporation, “Lockheed martin delivers first

advanced computer modules for F-35 JSF program,” July 2003,
http://www.lockheedmartin.com/news/press releases/2003/Lockheed
MartinDeliversFirstAdvanced.html.

[10] G. Bloom, B. Narahari, R. Simha, and J. Zambreno, “Providing secure
execution environments with a last line of defense against trojan circuit
attacks,” Computers & Security, vol. 28, no. 7, pp. 660 – 669, 2009.

[11] A. Das, G. Memik, J. Zambreno, and A. Choudhary, “Detecting/prevent-
ing information leakage on the memory bus due to malicious hardware,”
in Proceedings of Design, Automation and Test in Europe, ser. DATE’10,
2010, pp. 861–866.

[12] M. Beaumont, C. North, B. Hopkins, and K. Yiu, “Hard disk guard
based policy enforcement,” in Proceedings of POLICY’11, June 2011.

[13] C. Sturton, M. Hicks, D. Wagner, and S. T. King, “Defeating UCI:
Building stealthy and malicious hardware,” in Proceedings of the 32nd

IEEE Symposium on Security and Privacy, May 2011, May 2011.
[14] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC piracy using

reconfigurable logic barriers,” IEEE Design and Test of Computers,
vol. 27, no. 1, pp. 66–75, 2010.

[15] D. R. McIntyre, F. G. Wolff, C. A. Papachristou, and S. Bhunia, “Dy-
namic evaluation of hardware trust.” in IEEE International Symposium

on Hardware-Oriented Security and Trust, 2009, pp. 108–111.
[16] B. Newgard and C. Hoffman, “Using multiple processors in a sin-

gle reconfigurable fabric for high-assurance applications,” in HOST,
J. Plusquellic and K. Mai, Eds. IEEE Computer Society, 2010, pp.
25–29.

[17] G. Trouessin, Y. Deswarte, J.-C. Fabre, and B. Randell, “Improvement
of data processing security by means of fault tolerance,” in Proceedings

of the 14th National Computer Security Conference, 1991, pp. 295–304.
[18] L. Lin, W. Burleson, and C. Paar, “MOLES: malicious off-chip leakage

enabled by side-channels,” in Proceedings of the 2009 International

Conference on Computer-Aided Design, ser. ICCAD ’09. New York,
NY, USA: ACM, 2009, pp. 117–122.

[19] Aeroflex Gaisler AB, “Leon3 multiprocessing cpu core product sheet,”
Feb 2010, http://www.gaisler.com/doc/leon3 product sheet.pdf.

[20] ARM Limited, “AMBA specification (Rev 2.0),” 1999, accessed
at http://www.arm.com/products/system-ip/amba/amba-open-specifica-
tions.php, 1 August 2011.


