Logic Encryption: A Fault Analysis Perspective

Jeyavijayan Rajendran Youngok Pino

Ozgur Sinanoglu Ramesh Karri

NYU-Poly Air Force Research Lab NYU-AD NYU-Poly
Brooklyn, NY Rome, NY Abu Dhabi, UAE Brooklyn, NY
jrajen01 @students.poly.edu youngok.pino @rl.af.mil ozgursin @nyu.edu rkarri @poly.edu

Abstract—The globalization of Integrated Circuit (IC) design
flow is making it easy for rogue elements in the supply chain
to pirate ICs, overbuild ICs, and insert hardware trojans; the
IC industry is losing approximately $4 billion annually [1], [2].
One way to protect the ICs from these attacks is to encrypt the
design by inserting additional gates such that correct outputs are
produced only when specific inputs are applied to these gates.

The state-of-the-art logic encryption technique inserts gates
randomly into the design [3] and does not necessarily ensure
that wrong keys corrupt the outputs. Our technique ensures that
wrong Kkeys corrupt the outputs. We relate logic encryption to
fault propagation analysis in IC testing and develop a fault anal-
ysis based logic encryption technique. This technique achieves
50% Hamming distance between the correct and wrong outputs
(ideal case) when a wrong key is applied. Furthermore, this 50%
Hamming distance target is achieved by using a smaller number
of additional gates when compared to random logic encryption.

1. INTRODUCTION
A. Motivation — Preventing IP Piracy

Globalization of Integrated Circuit (IC) design is making
IC/Intellectual Property (IP) designers and users re-evaluate
their trust in hardware [4]. As the IC design flow is distributed
worldwide, hardware is prone to new kinds of attacks such as
reverse engineering and IP piracy [5]. An attacker, anywhere
in this design flow, can reverse engineer the functionality of
an IC/IP. He/she can then steal and claim ownership of the IP.
An untrusted IC fabrication company may overbuild ICs and
sell them illegally. Finally, rogue elements in the fabs may
insert malicious circuits into the design without the designer’s
knowledge [4]. Because of these attacks, the semiconductor
industry loses $4 billion annually [1], [2].

If a designer is able to conceal the functionality of an IC
while it passes through the different, potentially untrustworthy
phases of the design flow, these attacks can be thwarted [3].

B. Logic encryption

Logic encryption' hides the functionality and the implemen-
tation of a design by inserting some additional circuit elements
into the original design. In order for the design to exhibit its
correct functionality (produce correct outputs), a valid key has

'Logic encryption of hardware does not mean encrypting the design
file by a cryptographic algorithm, instead it means hiding the hardware’s
functionality. Researchers have previously used ‘logic obfuscation’ [3], [6] for
this purpose. Obfuscation, however, has a different meaning in software. An
obfuscated program is difficult to reconstruct even if its functionality is known.
Obfuscation hides the implementation and not the function. To highlight this
difference we use logic encryption to denote that the functionality is encrypted
when the valid key is not applied to the design.

978-3-9810801-8-6/DATE12/ © 2012 EDA

to be supplied to the encrypted design. Upon applying a wrong
key, the encrypted design will exhibit a wrong functionality
(produce wrong outputs).

While it passes through the untrusted design phases, an
IC will be in an encrypted form so that its functionality is
not revealed; this prevents reverse engineering, cloning, trojan
insertion and overbuilding. The designer gives the valid key
to the end-user of the IC so that the end-user can enable the
IC to exhibit its correct functionality.

C. Criteria for logic encryption

In an encrypted design, a wrong key should result in a wrong
output for all input patterns. If a correct output is produced for
a wrong key, then the encryption procedure is weak and the
attacker will benefit. If a wrong key affects only one or a few
of the output bits, then the attacker might be able to tolerate
the wrong outputs. If all the output bits are affected, then the
wrong output is the complement of the correct output. Hence,
ideally, a wrong key should affect half of the output bits i.e.,
the Hamming distance between the correct and wrong outputs
should be 50% [7]. This 50% Hamming distance renders a
very high obscureness to an attacker.

Furthermore, in another form of attack, end-users can col-
lude by sharing their valid keys. To prevent this collusion
attack, each IC should have its own unique key [8].

D. Previous work

Logic encryption techniques can be broadly classified into
two types—sequential and combinational. In sequential logic
encryption, additional logic (black) states are introduced in
the state transition graph [5], [6]. The state transition graph is
modified in such a way that the design reaches a valid state
only on applying a correct sequence of key bits. If the key is
withdrawn, the design, once again, ends up in a black state.
However, the effectiveness of these methods in producing a
wrong output has not been demonstrated.

In combinational logic encryption, XOR/XNOR gates are
introduced to conceal the functionality of a design [3]. Usually,
one of the inputs in these inserted gates serves as a ‘control
input’ which is a newly added primary input. One can con-
figure these gates as buffers or inverters using these control
inputs. The values applied to these control inputs are the keys.

Apart from sequential and combinational elements, memory
elements are also inserted into the design [7]. The circuit
will function correctly only when these elements are con-
figured/programmed correctly. However, the introduction of

(a) A faulty circuit

(b) An encrypted circuit with a wrong key (c) A circuit encrypted with three XOR gates (E1,
(K1 = 1) equivalent to the faulty circuit

E2, and E3)

Fig. 1: Relation between logic encryption and fault analysis in IC testing — fault excitation, propagation, and masking.

memory elements into the circuit will incur significant perfor-
mance overhead.

E. Our approach

In combinational logic encryption, XOR/XNOR gates are
introduced at random locations in a design [3]. We show that,
when gates are randomly inserted into the design, a wrong
key does not necessarily affect the output as its effects are
not propagated to the outputs. This is similar to an IC testing
scenario where the effect of a fault may not propagate to the
output. Our approach relates these two scenarios and ensures
that the effect of wrong keys always propagates to the outputs.

As traditional IC testing algorithms analyze the effect of
faults in a circuit and provide ways to propagate their effect
to the circuit outputs, we leverage them to perform logic
encryption. Our technique uses conventional fault simulation
techniques and tools [9] to guide the XOR/XNOR insertions
using and corrupts 50% of output bits for a wrong key.

In order to prevent collusion attack, Physical Unclonable
Functions (PUFs) are incorporated to produce unique user keys
for each IC even though all the ICs are encrypted with the
same valid key [3], [8]. To prevent a user getting access to the
valid key used for encryption, an RSA unit separates the user
key from the valid key. As an RSA unit has a huge overhead,
we have designed and used a simple Logic Encryption Cell
(LEC) which includes XOR/XNOR gates for encryption.

The contributions of this paper are:

« relating logic encryption to fault analysis in IC testing

« a fault analysis-based logic encryption algorithm

« design of a low-overhead logic encryption cell

II. FAULT ANALYSIS BASED LOGIC ENCRYPTION
A. Logic encryption from a fault analysis perspective

We will now describe how to encrypt a design using
XOR/XNOR gates in such a way that any wrong key causes
a wrong output. This is similar to the situation where a
circuit produces a wrong output when it has a fault that has
been excited and propagated to the outputs. The following
observations relate logic encryption and fault analysis in IC
testing. We will use these observations to insert XOR/XNOR
gates.

Fault excitation: Application of a wrong key can be
associated with the activation of a fault. For a wrong key,
either a stuck—at-0 (s—a—-0) or stuck—at—1 (s—a—1) fault will
get excited, when XOR/XNOR gates are used for encryption.

Example 1: Consider the C17 circuit encrypted with one
XOR gate (E1) as shown in Figure 1(b). If a wrong key (K1=1)
is applied to the circuit, the value of net B is the negated value
of net A. This is same as exciting a s-a-0 (when A=1) or s-a-1
(when A=0) fault at the output of G7 as shown in Figure 1(a).

Fault propagation: Not all wrong keys can corrupt the
output as the effects of a wrong key may be blocked for some
of the input patterns. This is similar to the scenario where not
all input patterns can propagate the effect of a fault to the
output.

Example 2: Consider the circuit shown in Figure 1(b). Let
a wrong key (K1 = 1) be applied to the circuit. For the input
pattern 00000, a s—a—0 fault gets excited at the output of El
and propagated to both outputs. The value at the output of the
gate E1 is O instead of 1, and the output is 11 instead of the
correct output 00.

For the input pattern 01110, even though the s—a—0 fault
gets excited at the output of El, the output is 00, which is the
same as the functional output, as the fault effects have been
blocked.

To propagate the effect of an excited fault, in our case the
wrong key, non-controlling values should be applied to the
other inputs of the gates that are on the propagation path of the
fault. Since not all input patterns guarantee the non-controlling
values on the fault propagation path, a wrong key will not
always corrupt the output.

Fault masking: Inserting a single XOR/XNOR gate and
applying a wrong key is equivalent to exciting a single stuck-
at fault. Inserting multiple XOR/XNOR gates and applying a
wrong key is equivalent to exciting multiple stuck-at faults.
However, when multiple faults are excited, they might mask
each others’ effect. Therefore, in logic encryption, when
multiple XOR/XNOR gates are inserted, the effect of one
XOR/XNOR gate might mask the others’ effect.

Example 3: Consider the encrypted circuit shown in Figure
1(c). When the key bits (K1, K2, and K3) are 000, the correct
functional output is 00 for the input pattern ‘00000°. However,
if the key bits are 111 (wrong key), the effect introduced by
the XOR gate E1 is masked by the XOR gates E2 and E3 and
produces a correct output 00. Thus similar to fault masking,
the effect of one XOR gate is masked by the effect of the
other two XOR gates.

Goal: Insert XOR/XNOR gates such that a wrong key will
affect 50% of the outputs. In terms of fault simulation, this
goal can be stated as finding a set of faults, which together

will affect 50% of the outputs for a wrong key.

Challenge: Fault simulation tools rely on the assumption
of a single stuck-at fault model (only one fault can be present
at any time). Thus, existing commercial fault simulation tools
can insert only one XOR/XNOR gate at a time.

We overcome this challenge by using a greedy iterative
approach where XOR/XNOR gates are inserted iteratively. In
each iteration, the fault that has the potential of propagating
to a maximum number of outputs dictates the location of the
XOR/XNOR gate to be inserted. For every iteration (except
the first iteration), the XOR/XNOR gates inserted at previ-
ous iterations are provided with random wrong keys thereby
emulating a multiple stuck-at fault scenario, and accounting
for all the previous XOR/XNOR insertions. An algorithm is
presented in the following subsection to perform this logic
encryption.

B. Fault impact

To insert an XOR/XNOR gate, we need to determine
the location in the circuit where, if a fault occurs, it can
affect most of the outputs for most of the input patterns. To
determine this location, we use the concept of fault impact
defined by Equation 1. From a set of test patterns, we
compute the number of patterns that detect the s-a-O fault
(No. of Test Patternsg_,o) at the output of a gate G, and
the cumulative number of output bits that get affected by
that s-a-0 fault (No. of Outputsg, ;). Similarly, we compute
No. of Test Patternsg , ; and No. of Outputs

s-a-1°
Fault impact = (No. of Test Patterns;,.0 X No. of Outputs_, ;)

+(No. of Test Patternss,; x No. of Outputs__, ;)
(M
Upon inserting the XOR/XNOR gate for encryption at the
location with the highest fault impact, an invalid key will likely
have the most impact on the outputs (i.e., the wrong outputs
appear).

C. Algorithm to insert XOR/XNORs

Algorithm 1 greedily selects the best ‘N’ locations in a
circuit to insert the XOR/XNOR gates. The location with
the highest fault impact is calculated and an XOR/XNOR
gate is inserted at that location. The algorithm considers the
previously inserted XOR and XNOR gates in this calculation.

Input : Netlist, KeySize
Output: Encrypted netlist
for i + 1 to KeySize do
foreach gate j € Netlist do
‘ Compute FaultImpact;
end
Select the gate with the highest FlaultImpact;
Insert XOR gate and update the NetList;
Apply Test Patterns;

end
Algorithm 1: Fault analysis based logic encryption.

The algorithm terminates on inserting the maximum number
of XOR/XNOR gates.

Accessiblel

Not accessible to user
to user

2D

Pehatienge—} Prﬂ’weﬁi I KD

P

(a) Before encryption

Kuser =— — — —

(b) After encryption

Fig. 2: Logic encryption cell (dotted components): A primitive
for encrypting logic.

D. Logic encryption cell

We incorporate a PUF circuit into each IC to produce
a unique key for that IC. To make an encrypted design
functional, two keys, Kyser and Pepalienge, are given to the
user [3]. Pepalienge 1s applied as a challenge to the PUF. The
response from the PUF, P.c5ponse, is used as a decryption key
in an RSA decryption unit. K, s, is used as the cipher text
to the RSA decryption unit and the resultant plain text will be
Kp, the key to make the encrypted design functional [3]. The
RSA unit prevents the user to determine Kp from the user
keys, Kuser and Pchallenge-

An RSA decryption unit uses 10,000 gates resulting in a
huge area overhead [3], [10]. This problem can be overcome
by using a simple Logic Encryption Cell (LEC) shown in
Figure 2. We replace the RSA decryption unit with a set
of XOR gates to obtain Kp from K4, and Presponse, the
response from the PUF. In this LEC, to determine Kp, the
attacker should have access to Ky ser and Presponse. However,
the attacker cannot determine Prcsponse fTom Pepgiienge due
to the PUF circuit’s characteristics. Thus, the LEC comprising
of a PUF and XOR/XNOR gates provides a security level
equivalent to the logic encryption mechanism that uses a PUF
and an RSA unit with XOR/XNOR gates.

ITI. RESULTS
A. Experimental Setup

The effectiveness of the proposed technique is analyzed
using ISCAS-85 combinational benchmarks. We used the
HOPE fault simulation tool [11] to calculate the fault impact
of each gate. We applied 1000 random input patterns to a
netlist and observed the true outputs. We set the key size as
128 bits. We then calculated the fault impact for all possible
faults in the circuit. We applied valid and random wrong keys
to an encrypted netlist and determined the Hamming distance
between the corresponding outputs. The area, power, and delay
overhead were obtained using the Cadence RTL compiler.

B. Analysis of Hamming distance

Fault analysis based approach is compared with the random
insertion approach [3] and the corresponding results are shown
in Figure 3. When the XOR/XNOR gates are randomly
inserted, 50% Hamming distance is not achieved except for
the smallest benchmark C17. Masking of faults is the main
reason for this poor performance. The effect of wrong keys
are blocked for most of the input patterns as discussed in

60

C17
C432
C499

C7552

C880
C1355
C1908

C3540
C5315
C6288

60

C7552

50 - 1 AW
40

30

20

W VN s WSS WV Vv, e |
it A A RN e T

based insertion approach. The third and fourth columns show
the corresponding Hamming distance of the random and fault
analysis based logic encryptions, respectively, for the number
of XOR/XNOR gates listed in the second column. It can be
seen that, on average, the fault analysis based logic encryption
achieves a Hamming distance value which is twice that of the
random insertion (except for the smallest benchmark C17).
This is because fault analysis based logic encryption identifies
more effective locations to insert the gates than the random
insertion based logic encryption.

TABLE I: The number of XOR/XNOR gates required to
achieve 50% Hamming distance using fault analysis based
logic encryption and the corresponding Hamming distance for
random insertion based logic encryption.

Benchmark No. of Hamming distance (%)
XOR/XNOR gates | Random | Fault analysis
C17 6 42 51
C432 17 29 50
C499 40 26 50
C880 28 19 50
C1355 42 26 50
C1908 28 26 50
C3540 22 23 50
C5315 97 15 44
C6288 27 32 50
C7552 89 13 46

(b)
Fig. 3: Comparison of (a) random insertion based logic encryp-

tion and (b) fault analysis based logic encryption for different
ISCAS-85 benchmark circuits.

Example 4. However, fault analysis based insertion achieves
50% Hamming distance for all benchmarks except for two
— C5315 and C7552. The number of outputs in benchmarks
C5315 and C7552 is 123 and 108, respectively which is very
high and hence it is hard to achieve the 50% mark. However,
the fault analysis based approach performs well in all the other
benchmarks as it takes the fault masking effects into account.

The slope of the lines in Figure 3(a) and 3(b) indicate
the performance of the random and the fault analysis based
insertions. If the line is steeper, 50% Hamming distance is
achieved with a smaller number of additional encryption,
hence performance overhead will be smaller. Fault analysis
based logic encryption has a smaller overhead than the random
insertion as it uses a smaller number of additional gates to
achieve the target Hamming distance.

In fault analysis based logic encryption, once a design
achieves the 50% mark, its Hamming distance value does not
deviate more on inserting more gates. Hence, one can increase
the key size without deviating from the 50% Hamming dis-
tance mark.

Table I compares the Hamming distance between the ran-
dom and fault analysis based logic encryptions. The second
column shows the number of XOR/XNOR gates to be inserted
to achieve 50% Hamming distance using the fault analysis

C. Resiliency against attacks

Even though a logic encryption technique may meet a
security criterion, it can be susceptible to several attacks which
are described below.

1) Brute-force attack: In this attack the attacker applies
all combinations of key bits and tries to figure out the
correct key. Increasing the key size to a large value such
as 128 makes this attack computationally infeasible for
an attacker. However, increasing the key size should not
degrade other security properties. While increasing the
key size decreases the Hamming distance for random
insertion based logic encryption, the Hamming distance
value is not degraded for fault analysis based logic
encryption as depicted in Figure 3(a) and Figure 3(b).

2) Collusion attack: In this attack, the attacker uses the key
meant for /C'x on ICy. However, when the ICx’s key
is used on ICy, the resulting response from PU Fy will
be different from the PU F'x. A wrong value is applied
to the key inputs of the encrypted design in ICy and
the circuit will not produce correct outputs.

3) LEC removal attack: The attacker can attempt to re-
move the LECs from the encrypted netlist and replace
them randomly with a buffer or an inverter. How-
ever, the attacker cannot easily distinguish between the
XOR/XNOR gates used for encryption and the gates in
the original netlist as a logic synthesizer will merge the
XOR/XNOR gates with the original gates in the netlist.

80
Random XXX

Fault-analysis

70 -

60 -

40

R
X

X
<

T
2

30 -

%
3K

005%
o205

23S
0%

7
o5

o5
20

% Power-delay product overhead

%
X

%!

2
5

Cc432
Fig. 4: Power-delay product overhead of random and fault
analysis based logic encryptions.

D. Power and delay overhead

Figure 4 shows the power-delay product overhead of
the benchmarks that are encrypted with the number of
XOR/XNOR gates listed in the second column of Table 1. The
overhead for the C17 circuit is 262% and 480% using the ran-
dom insertion and the fault analysis based logic encryptions,
respectively. For the benchmarks C499, C1355, C3540, and
C5315, the fault analysis based logic encryption inserts the
XOR/XNOR gates at the critical path of the design thereby
increasing the delay of the circuit. For the benchmarks C6228
and C7552, the XOR/XNOR gates are inserted in paths with
high slack. Hence the impact on the power-delay product is
low. Even though for some of the benchmarks, the random
insertion based logic encryption has a smaller overhead, it
achieves only half the Hamming distance value achieved by
the fault analysis based logic encryption.

30

Random XXX
Fault-analysis

20

XXX
]

XXX
K

~
&L

—
ofole

XX
555

% area overhead
BRI

X3S
2%

%
X

—
ool

%
X

—
ofole

%
X

—
et

[
L

C432 C499
Fig. 5: Area overhead of random and fault analysis based logic
encryptions.

0
C880 C1355 C1908 (3540 C5315 C6288 C7552

E. Area overhead

Figure 5 shows the area overhead of the benchmarks that
are encrypted with the number of gates shown in the second
column of Table I. Here, we do not include the overhead due
to the PUF and XOR gates in the LEC as both techniques
will use the similar LEC structure. Even though same num-
ber of XOR/XNOR gates are inserted in both the methods,
depending upon the inserted XOR/XNOR gates’ location, the

logic synthesizer merges the inserted XOR/XNOR gates and
the gates in the original netlist. Hence, the area overhead
is different for fault analysis based logic encryption and
random insertion based logic encryption. However, for a given
overhead (number of gates) the fault analysis based logic
encryption has better security properties (Hamming distance)
than random insertion. The RSA decryption unit used in [3]
has an overhead of 10,000 gates [3], [10]. We replace this
RSA with 128 XOR gates without reduction in security.

1V. DISCUSSION
A. Beyond Hamming distance criterion

Satisfying the Hamming distance criterion does not neces-
sarily mean that the encryption technique is strong. Hence,
Heys et al. described the avalanche criterion for a stronger
evaluation [12]. An encrypted function/design satisfies the
avalanche criterion, if changing one key bit changes half of
the output bits. The avalanche factor of a design with IV key
bits and M outputs is defined as

M N
1
Avalanche factor = T aw < Z Z aij 2)

j=11i=1
where a; ; is ‘1’ if flipping the key input ‘i’ flips the output
bit ‘. When ‘N’ is large, then a random set of patterns
from 0 to 2V is selected and applied. According to the
avalanche criterion, the avalanche factor has to be 50%. Strong
encryption techniques such as AES and DES [12], [13] have
an avalanche factor of 50%.

N 1/P-O/P connectivity-Fault-analysis Xxxxx3
1/P-O/P connectivity-Random E====3-
Avalanche factor-Fault-analysis Exzzzza
N Avalanche factor-Random XXxxx3

70

O

% Avalanche factor
XXHKHXXXXKXX

>

XX

K>
Avg. % of output connected to each key bit

Fig. 6: Avalanche factor for the random and the fault analysis
based logic encryptions.

Let us now assess the strength of the random and fault
analysis based logic encryption techniques in terms of the
avalanche criterion. Figure 6 shows the avalanche factor for
the benchmarks. Only the smallest benchmark, C17, achieved
the 50% target for the avalanche criterion when encrypted
using the fault analysis based approach. For all the other
benchmarks, neither of the techniques achieved the 50% target
for the avalanche criterion. The avalanche factor is low in both
types of encryption because the key bits are not connected to
all output bits.

The average percentage of output bits connected to each
key bit is plotted in Figure 6. It shows that the connectivity,

on average, is 45% and 18% for random insertion and fault
analysis based logic encryption techniques, respectively. Even
though random insertion based logic encryption has a better
connectivity between outputs and key bits, it has a lower
avalanche factor than fault analysis based logic encryption.
This is because in random insertion based logic encryption, the
propagation of faults to the outputs are blocked whereas fault
analysis based logic encryption enables the fault propagation.

B. Beyond XOR/XNOR gates

One can also use other gates such as the AND, the OR, the
inverter, and the multiplexer to perform logic encryption. The
security properties of the design may vary depending upon the
type of gates used for encryption.

C. Beyond PUFs

While PUFs are a low-cost security primitive to provide
unique per-chip keys, their stability is affected by device
aging and operating conditions. Thus, they need special error
correcting mechanisms [14]. Instead of PUFs, one can use
simple fuse-based RAMSs and program the keys into them in
different ICs to create unique keys for each chip.

V. CONCLUSION

Fault analysis based logic encryption achieved 50% Ham-
ming distance between the correct and the corresponding
wrong outputs when an invalid key is applied to the design.
However, our technique does not achieve 50% avalanche
factor. This is because not all key bits are connected to all
outputs. One can develop a similar insertion algorithm to
achieve the avalanche criterion. In this work, we took the
average Hamming distance as the criterion. To overcome the
problems of averaging, one can perform insertion by giving
more weighs to the number of inputs that affect the key.

Since we have used a single fault simulator, we developed
an iterative algorithm to determine the fault impact in the pres-
ence of fault masking. Logic encryption can also be performed
non-iteratively by using a fault simulator that supports multiple
stuck-at fault models to account for fault masking effects. To
encrypt a large design such as C7552, our algorithm takes
two hours. The algorithm can be scaled to large designs by
applying it on smaller partitions in these designs

VI. ACKNOWLEDGEMENT

This material is based upon work funded by AFRL under
contract No. FA8750-11-2-0274. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of AFRL.

REFERENCES

[1] KPMG, “Managing the risks of counterfeiting in the information
technology,” www.agmaglobal.org/press_events/press_docs/Counterfeit_
WhitePaper_Final.pdf, 2006.

[2] SEMI, “Innovation is at risk as semiconductor equipment and materials
industry loses up to $4 billion annually due to IP infringement,” www.
semi.org/en/Press/P043775, 2008.

[3] J.Roy, F. Koushanfar, and I. Markov, “EPIC: Ending Piracy of Integrated
Circuits,” Proceedings of the IEEE/ACM Design, Automation and Test
in Europe, pp. 1069-1074, 2008.

(7]

(8]

9]

[10]

(1]

[12]

[13]
[14]

“Defense Science Board (DSB) study on High Performance Mi-
crochip Supply,” http://www.acq.osd.mil/dsb/reports/ ADA435563.pdf,
Feb. 2005.

Y. Alkabani and F. Koushanfar, “Active hardware metering for intellec-
tual property protection and security,” Proceedings of USENIX security,
pp. 291-306, 2007.

R. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based
SoC Design Methodology for Hardware Protection,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 10, pp. 1493-1502, 2009.

A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC Piracy Using
Reconfigurable Logic Barriers,” IEEE Design and Test of Computers,
vol. 27, no. 1, pp. 66-75, 2010.

G. Suh and S. Devadas, “Physical Unclonable Functions for Device Au-
thentication and Secret Key Generation,” Proceedings of the IEEE/ACM
Design Automation Conference, pp. 9-14, 2007.

M. L. Bushnell and V. D. Agrawal, “Essentials of Electronic Testing for
Digital, Memory, and Mixed-Signal VLSI Circuits,” Kluwer Academic
Publishers, Boston, 2000.
“Sciworx RSA Co-Processor,”
cryptography/rsa-co-processor.html.
H. Lee and D. S. Ha, “HOPE: An Efficient Parallel Fault Simulator
for Synchronous Sequential Circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 15, no. 9, pp.
1048-1058, 1996.

H. Heys and S. Tavares, “Avalanche characteristics of substitution-
permutation encryption networks,” IEEE Transactions on Computers,
vol. 44, no. 9, pp. 1131 -1139, 1995.

“Specification for the Advanced Encryption Standard (AES),” Federal
Information Processing Standards Publication 197, 2001.

M.-D. Yu and S. Devadas, “Secure and Robust Error Correction for
Physical Unclonable Functions,” IEEE Design and Test of Computers,
vol. 27, no. 1, pp. 48-65, 2010.

http://www.sci-worx.com/products/

