
Performance-Reliability Tradeoff Analysis for

Multithreaded Applications

Isil Oz∗, Haluk Rahmi Topcuoglu†, Mahmut Kandemir‡, Oguz Tosun∗

∗Computer Engineering Department, Bogazici University, 34342, Istanbul, Turkey

{isil.oz, tosuno}@boun.edu.tr
†Computer Engineering Department, Marmara University, 34722, Istanbul, Turkey

haluk@marmara.edu.tr
‡Dept. of Computer Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA

kandemir@cse.psu.edu

Abstract—Modern architectures become more susceptible to
transient errors with the scale down of circuits. This makes
reliability an increasingly critical concern in computer systems.
In general, there is a tradeoff between system reliability and
performance of multithreaded applications running on multicore
architectures. In this paper, we conduct a performance-reliability
analysis for different parallel versions of three data-intensive
applications including FFT, Jacobi Kernel, and Water Simulation.
We measure the performance of these programs by counting
execution clock cycles, while the system reliability is measured
by Thread Vulnerability Factor (TVF) which is a recently-
proposed metric. TVF measures the vulnerability of a thread
to hardware faults at a high level. We carry out experiments
by executing parallel implementations on multicore architectures
and collect data about the performance and vulnerability. Our
experimental evaluation indicates that the choice is clear for
FFT application and Jacobi Kernel. Transpose algorithm for
FFT application results in less than 5% performance loss while
the vulnerability increases by 20% compared to binary-exchange
algorithm. Unrolled Jacobi code reduces execution time up to
50% with no significant change on vulnerability values. However,
the tradeoff is more interesting for Water Simulation where
nsquared version reduces the vulnerability values significantly
by worsening the performance with similar rates compared to
faster but more vulnerable spatial version.

Index Terms—Multi-Core Architectures and Support, Reliable
Parallel and Distributed Algorithms

I. INTRODUCTION

As technology scales and transistor sizes in modern archi-

tectures continuously decrease, transient error rates increase.

Soft errors are a kind of transient errors that result from a fault

in a single-bit and their rates keep increasing with current

design trends [1]. Recent research addressed the soft error

problem from both hardware and software perspectives [2],

[3], [4], which indicate that the reliability is an important

concern in computer architecture.

Chip multiprocessors (CMPs), which have been viewed as

the most promising option for the next generation computing

platforms, are more error prone due to their smaller transistor

sizes and more aggressive power modes [5], [6]. While prior

research on CMPs explored performance and power related

issues, reliability problem has relatively taken less attention.

Although many performance metrics for multicore archi-

tectures have been suggested in the literature [7], [8], there

is a lack of metric that quantifies the reliability of parallel

architectures. Program Vulnerability Factor (PVF) measures

the vulnerability of a program to the hardware faults [9],

but it is a metric only for single-threaded applications. A

recent study [10] has proposed Thread Vulnerability Factor

(TVF) which defines the vulnerability for multithreaded ap-

plications running on multicore architectures. TVF measures

the vulnerability of a thread (which is one of the threads of

a multithreaded application) to transient hardware faults by

considering the codes of the threads that communicate with

that thread as well as the code of the thread itself.

Our main goal in this work is to present a performance-

reliability analysis to provide the characteristics of different

multithreaded applications with alternative design choices. We

consider three data-intensive programs including Fast Fourier

Transform (FFT), Jacobian Calculation, and Water Simulation

in our evaluation. While we evaluate two different parallel

implementations of FFT algorithm, two different algorithms

of the water simulation benchmark are selected. We also apply

loop transformations to the standard parallel Jacobi implemen-

tation. While we use execution cycles as performance metric,

TVF metric is employed to quantify vulnerability. Our analysis

compares different implementations of the same program by

considering performance and reliability aspects.

Our major contributions can be summarized as follows:

• We perform a performance-reliability analysis of different

multithreaded applications running on multicore archi-

tectures. We evaluate TVF values and gather execution

clock cycles of a set of parallel programs with different

versions. Specifically, we demonstrate the performance

and vulnerability behavior of two different parallel im-

plementations of FFT algorithm, two different algorithms

of water simulation and four versions of Jacobian cal-

culation each of which has an application of a loop

transformation.978-3-9810801-8-6/DATE12/ c©2012 EDAA

• We present the performance and vulnerability values of

parallel programs and discuss the effect of design choices

on the system performance and reliability by comparing

different implementations. We observe that the choice

is clear for FFT algorithm which has different vulner-

ability values with almost equal performance, and for

Jacobian calculation which, in contrast, has no significant

difference in vulnerability values but distinct performance

characteristics. However, the choice is not clear for water

simulation which demonstrates a performance-reliability

tradeoff with higher performance but higher vulnerability

as well.

II. BACKGROUND AND RELATED WORK

Since the reliability becomes an important concern in mod-

ern architectures, it is crucial to define suitable metrics to

evaluate the reliability of the system.

Architectural Vulnerability Factor (AVF) has been defined

as the probability that a fault in a processor will induce an

error in the program output [11]. In the AVF analysis, the

bits in the hardware structure (called as ACE bits) which have

visible effect in the program output have been distinguished

from the bits (called as un-ACE bits) which may affect the

program flow or performance, but have no effect in the final

output. ACE bits have been used in calculating the AVF of

the hardware structure.

Although AVF is well-defined and useful metric, it is diffi-

cult to evaluate the vulnerability of a program to a hardware

fault since it is a hardware-based metric. To define the vulner-

ability of a software to transient errors, Program Vulnerability

Factor (PVF) has been proposed [9]. This metric measures

the vulnerability of a program to the hardware faults in a

microarchitecture independent way and provides the relative

vulnerability of the programs to be able to make decisions

about the reliability of these programs. While calculating the

PVF, microarchitectural resources that are hardware dependent

are not considered only architectural resources are taken

account by the software’s view.

While PVF is a software-based metric, it is only useful for

single-thread applications. In a recent work, Thread Vulnera-

bility Factor (TVF) has been proposed as a reliability metric

for multithreaded applications on CMP architectures [10]. TVF

measures the vulnerability of a thread to transient hardware

faults by considering the thread itself and the threads that

communicate with that thread via memory operations. TVF

has two components including LVF and RVF, the former

holds the vulnerability caused by the code of the target thread

while the latter represents the vulnerability induced by the

communication between the target thread and the other threads

in the application.

In our performance-reliability analysis, we use the TVF

metric to evaluate the relative vulnerability of multithreaded

applications. TVF can be calculated as follows:

TV F (Ti) = [wL × LV F (Ti)] + [wR × RV F (Ti)],

where LV F (Ti) is the local vulnerability factor for thread i
and RV F (Ti) is the remote vulnerability factor for thread i
which iterates over all threads that sends data to thread i. wL

and wR are weight values for local and remote vulnerability

factors respectively.

TVF is evaluated for three hardware components including

register file, ALU unit, and memory (cache). The local vul-

nerability factor (LVF) term is calculated in a similar fashion

to PVF [9], where the vulnerability values of the resources in

the thread are combined and normalized by considering their

vulnerable intervals. The remote vulnerability factor (RVF)

term represents the vulnerability impact of the threads that

interact with the target thread in a multithreaded application.

RVF of thread i can be calculated as follows:

RV F (Ti) =

∑
rV F (Ti, Tj)

RV
,

where rV F (Ti, Tj) represents the remote vulnerability factor

for thread i induced by thread j which sends data to thread

i. RV F (Ti) iterates over all threads that sends data to thread

i. This is because these threads can pass a corrupted value to

thread i. The RV parameter represents the total number of

remote memory accesses on thread i.

Figure 1 represents a data sharing between three threads in

a multithreaded application, where TVF value of each thread

can be calculated as follows:

TV F (T1) = LV F (T1)

= LV F (A + B).

TV F (T2) = [wL × LV F (T2)] + [wR × RV F (T2)]

= [wL × LV F (T2)]+

[wR × (
rV F (T2, T1) + rV F (T2, T3)

2
)]

= [wL × LV F (C + D + E)]+

[wR × (
LV F (A) + LV F (F)

2
)].

TV F (T3) = LV F (T3)

= LV F (F + G).

To calculate TVF of a thread, the vulnerability of each

thread on which that thread is dependent should be considered

to capture the effect of these threads on the vulnerability of the

thread investigated. Since T1 is not dependent on other threads,

its TVF is calculated using only its instructions. However,

the portion of T1 should also be considered to obtain TVF

of T2. Since T2 reads data written by T1 at the end of the

code fragment shown as A, the vulnerability of A affects the

vulnerability of T2. Similarly, the code portion F of T3 affects

the vulnerability of T1 as well. To calculate TVF of T3, only

the code segment of the thread itself is considered as in T1

since there is no remote thread.

T T

read X

write X
C

G

2 T31

A

write Y

read Y

B

E

D

F

Fig. 1. An example for representing data sharing between threads

III. EXPERIMENTAL SETUP

In this section, we present the details of our benchmark ap-

plications considered in our experimental evaluation, which is

followed by a brief information about our simulation platform.

A. Benchmark Applications

To evaluate performance and reliability behaviors of multi-

threaded applications, we select three data-intensive applica-

tions: Fast Fourier Transform, Jacobi, and Water Simulation.

Note that FFT and Jacobi are used in both high end and low

end computing.

1) Fast Fourier Transform: Fast Fourier Transform (FFT)

is an algorithm to compute Discrete Fourier Transform (DFT),

which is a mathematical transform requiring complex number

calculations and used in various applications including time

series, partial differential equations, and digital signal pro-

cessing [12]. There are several forms of FFT algorithm; in

this work, our focus is on one-dimensional, unordered, radix-2

FFT. The pattern of combination of input array elements used

in this calculation is represented by a butterfly network. In a

parallel algorithm, it is important to assign input elements into

threads by considering the communication cost which affects

both performance and reliability. We consider two parallel

algorithms defined in [13]: binary-exchange and transpose

algorithms. These two algorithms have different thread com-

munication pattern.

In the binary-exchange algorithm, the array elements which

are denoted as their binary representations are mapped to cores

such that elements with indices having the same d = logp most

significant bits are mapped into the same core where p is the

number of cores in the system. The elements that belong to

different cores are combined during first d iterations, while the

elements that belong to the same cores are combined in the

remaining iterations. The communication between the cores

only exists along these first d iterations.

The transpose algorithm which involves a matrix transpo-

sition operation requires smaller amount of communication

among cores. The input array with size n is arranged in an
√

n
x
√

n two dimensional array in row major order where FFT

calculation can be performed by applying FFT over the rows

and then applying FFT over the columns. These array elements

are mapped to p cores such that each core stores
√

n/p rows.

FFT over the rows requires no communication among the

cores. After transposition, FFT over the rows (old columns)

is computed to complete FFT operation. The communication

between the cores is needed for only transposition operation.

The input array in our calculations has 218 double numbers.
2) Jacobi Kernel: Stencil computation represents a com-

mon kernel for engineering applications including multimedia

processing, quantum dynamics, and electromagnetics [14]. The

performance optimization of computations has been exten-

sively studied and several code transformations have been

developed to improve data locality in the calculations [15],

[16], [17].

To illustrate the effect of the loop transformations, we

consider 2-dimensional Jacobi code which updates the con-

tents of grid elements by using neighbor elements in two

consecutive loop iterations. Our parallel implementation is

simply parallelization of two loops in the calculation.

The loop transformations used in our performance-

reliability analysis are loop unrolling which reduces the loop

overhead with smaller number of iterations, loop fusion which

replaces multiple loops with a single one, and loop interchange

which exchanges the order of two iteration variables. We

consider 512x512 grid size for Jacobi computations in our

experiments.
3) Water Simulation: The Water Simulation is N-body

molecular dynamics application which simulates forces and

potential energy of water molecules. The method of molecular

dynamics is widely used to analyze the atomic structures in

materials science, biochemistry, and biophysics [18].

The SPLASH-2 benchmark suite [19] has two parallel

pthread versions of water simulation application: Water-

nsquared and Water-spatial. Water-nsquared is an improved

version of the original Water program in SPLASH [20] and

computes force and potentials in O(n2). The computation is

performed over a number of time steps by using a predictor-

corrector method. It improves the original version by using a

locking strategy in the updates which stores a local copy of the

particle accelerations as it calculates and sends to the shared

copy at the end. Water-spatial is a more efficient method and

uses an O(n) algorithm. It divides the molecules into a grid

of cells (processors) and employs spatial locality to calculate

inter-molecular forces by considering only molecules in nearby

cells. Our experiments for water simulation are conducted

for Water-nsquared and Water-spatial programs by considering

512 water molecules and default parameters provided by the

SPLASH-2 benchmark.

B. Simulation Platform

To evaluate performance and reliability of the multi-

threaded applications by measuring their execution times and

thread vulnerability factors respectively, we use the Simics

toolset [21]. Main characteristics of the simulated multicore

are given in Table I.

IV. RESULTS AND DISCUSSION

We measure execution clock cycles and calculate TVF of

each thread in target applications with respect to L1 caches,

L1 data cache 16K/core 2-way cache

L1 cache latency 1 cycle

L2 shared cache size 4MB 4-way cache

L2 cache latency 10 cycles

Memory latency 200 cycles

TABLE I
PARAMETERS OF THE SIMULATED MULTICORE ARCHITECTURE

register file, and ALU units. Unless otherwise stated, we use

equal local and remote vulnerability weights (wL = wR =
0.5). Our experiments are conducted by using the same number

of threads as the core counts (assign one thread per core) in

the target architecture.

Table II presents the vulnerability and execution time values

of our benchmark applications for two, four, eight, and sixteen-

thread (one thread per core) execution scenarios.

One can see from the FFT results that two parallel al-

gorithms have different TVF values. As mentioned in Sec-

tion III, the binary-exchange algorithm has more communi-

cation whereas the transpose algorithm does not have much

thread communication after transpose operation. However, the

transpose algorithm spends its execution cycles to transposi-

tion which requires more local resource usage. The effect of

this distinct characteristics of the algorithms can be observed

on the local vulnerability values as well as on the remote

vulnerability values. LVF values for transpose algorithm which

requires more computation are larger than LVF values for

binary-exchange, especially for register resources (e.g., binary-

exchange 1.27, transpose 1.56 for the 4-core case, binary-

exchange 2.53, transpose 3.13 for the 8-core case). Since

these parallel algorithms have different thread communication

patterns, RVF values which result from communication of

threads in a multithreaded application differ for these algo-

rithms as well. The binary-exchange algorithm which requires

thread communication for more iterations has larger RVF

(especially for memory resource) values than the transpose

algorithm which has thread communication only for one phase

(before transposition) of the algorithm (e.g., binary-exchange

0.87, transpose 0.75 for the 8-core case and binary-exchange

1.64, transpose 1.43 for the 16-core case). On the other hand,

the execution time values are not so distinct while binary-

exchange performs well for all core cases.

The results of the Jacobi kernel reveal that loop fusion and

loop unrolling improves the performance of the code by elimi-

nating loop overhead. On the other hand, loop interchange has

no significant effect on the execution time. While the fusion

increases the vulnerability values (for both local and remote)

which results in a tradeoff between performance and reliability,

the loop unrolling, which has the largest performance gain,

does not affect the vulnerability if compared with the original

version. The unrolled version has similar vulnerability results,

the values are even the same for some cases (1.00, 2.00,

4.03 for memory resources in the 2-core, 4-core and 8-core

executions respectively).

The execution time values of the water simulation applica-

tion are significantly different for two parallel versions. The

difference becomes more clear as the core count rises due to

−25

−20

−15

−10

−5

0

5

FFT

binary−exchange vs transpose

c
h

a
n

g
e

 (
%

)

2 core 4 core 8 core 16 core

RVF
mem

Execution time

Fig. 2. The change in percentage of RVF values and execution time for
versions of FFT

the communication overhead of the nsquared algorithm. Al-

though there is more communication overhead in the nsquared

algorithm, RVF values that result from remote read operations

are larger in the spatial algorithm. Since cache miss rates

are smaller for nsquared version due to the lack of spatial

locality, LVF values with respect to memory (cache) resources

are smaller as well. Therefore, RVF values calculated by

using local vulnerability become larger for the spatial version

which demonstrates that the faster spatial algorithm is more

vulnerable to soft errors with larger vulnerability values (e.g.,

nsquared 0.58, spatial 0.64 for the 2-core case and nsquared

1.01, spatial 1.20 for the 4-core case).

Since LVF values have been counted for RVF calculation

(RVF value of one thread is calculated by adding TVF values

of threads communicating with the target thread), only RVF

values are considered as the reliability metric by ignoring very

small LVF values that are not counted for RVF calculation. We

also examine the vulnerability values for the resource which

has the largest difference between different cases. For instance,

RVF values with respect to ALU and register resources are

not significantly different for two FFT algorithms (e.g., 2.21%

higher in transpose algorithm in the 2-core execution for the

ALU resource, 3.18% higher in binary-exchange algorithm in

the 4-core execution for the register resource). On the other

hand, the change in RVF values with respect to memory

(cache) resources is large enough to evaluate reliability mea-

sure in tradeoff analysis. To evaluate performance-reliability

tradeoff between different versions of our applications, we

demonstrate the change (in percentage) for both vulnerability

values and execution time of the applications (see Figure 2,

Figure 3, and Figure 4). The plots provide the behavior of the

applications in terms of both reliability and performance if we

choose a specific version.

Figure 2 reveals that if we use the transpose algorithm

instead of the binary-exchange algorithm, we should sacrifice

approximately 3% performance but gain 20% reliability with

lower RVF values in the 2-core case. This observation is valid

for any number of cores. We can say that one may prefer the

transpose algorithm rather than the binary-exchange algorithm

to work with much higher reliability by accepting little amount

of performance loss.

There is similar observation for the versions of the Jacobi

FFT WATER JACOBIAN

binary-exchange transpose nsquared spatial original fused interchanged unrolled

2 core

LVF
ALU 0.61 0.61 0.46 0.48 0.92 0.95 0.92 0.96

Register 0.62 0.76 0.84 0.91 0.51 0.51 0.51 0.51
Memory 0.55 0.53 1.26 1.32 1.00 1.14 0.99 1.00

RVF
ALU 0.44 0.45 0.43 0.42 0.90 0.91 0.90 0.94

Register 0.37 0.38 0.51 0.52 0.40 0.41 0.40 0.39
Memory 0.29 0.23 0.58 0.64 0.90 0.92 0.86 0.90

Execution time 32.61 33.35 9.78 8.27 13.52 10.87 13.85 9.19

4 core

LVF
ALU 1.21 1.22 0.93 0.96 1.83 1.90 1.83 1.92

Register 1.27 1.56 1.42 1.46 0.99 1.01 1.03 0.90
Memory 1.00 1.06 2.36 2.69 2.00 2.28 1.98 2.00

RVF
ALU 0.82 0.84 0.85 0.83 1.81 1.82 1.81 1.89

Register 0.68 0.66 1.05 1.03 0.91 0.86 0.91 0.90
Memory 0.52 0.41 1.01 1.20 1.82 1.84 1.73 1.82

Execution time 16.32 16.68 5.46 4.49 6.80 5.42 6.93 4.63

8 core

LVF
ALU 2.43 2.45 1.86 1.92 3.67 3.80 3.67 3.84

Register 2.53 3.13 2.63 2.77 2.02 1.99 1.89 2.06
Memory 2.00 2.12 4.40 5.05 4.03 4.55 3.99 4.03

RVF
ALU 1.66 1.63 1.69 1.64 3.66 3.64 3.63 3.80

Register 1.16 1.19 2.08 2.05 1.78 1.87 1.87 1.85
Memory 0.87 0.75 1.73 2.19 3.68 3.67 3.49 3.68

Execution time 8.17 8.35 3.29 2.59 3.49 2.78 3.56 2.42

16 core

LVF
ALU 4.87 4.89 3.73 3.83 7.33 7.60 7.33 7.67

Register 5.14 6.35 4.97 5.29 3.96 3.94 4.00 3.99
Memory 2.86 4.23 8.55 9.73 8.13 9.08 8.06 8.13

RVF
ALU 3.26 3.25 3.36 3.28 7.28 7.29 7.28 7.61

Register 2.22 2.18 4.19 4.13 3.78 3.78 3.78 3.73
Memory 1.64 1.43 3.15 4.33 7.47 7.34 7.10 7.46

Execution time 4.09 4.18 2.35 1.69 1.99 1.51 2.02 1.45

TABLE II
TVF VALUES AND EXECUTION TIME OF OUR BENCHMARK APPLICATIONS

codes, in that case the choice is clear for the performance.

Since the loop unrolling gives the best performance among

the other loop transformations, we evaluate the vulnerability

and performance change if one prefers loop unrolling instead

of other versions. Figure 3 presents the change in both RVF

and execution time values for loop unrolling and other code

versions (original, fused, and interchanged respectively). The

vulnerability values do not differ much for each case. Specif-

ically, the values are smaller than 5% even there is almost no

change if we compare the original version with the unrolled

one. On the other hand, the performance gain is obvious if

the unrolled version is used. For instance, if one employs the

unrolled version instead of the interchanged one, about 50%

speedup is possible by sacrificing only 5% reliability.

Although the choice is clear for two applications in terms

of performance and reliability, water simulation application

reveals more interesting results which yield a tradeoff be-

tween performance and reliability concerns. Figure 4 demon-

strates this tradeoff between two different water simulation

algorithms. While spatial has larger performance advantage,

nsquared is more reliable with similar rates. For the 8-core

execution, one should trade 27% performance gain with 21%

reliability loss if he selects spatial algorithm. We cannot

easily conclude that one version satisfies both performance

and reliability constraints. While the safety-critical systems

with higher reliability needs may prefer the nsquared version

by sacrificing some performance, the systems for which the

performance is the most crucial factor may opt for the spatial

version, which has higher performance but is much more

vulnerable to hardware errors. However, it is difficult to trade

the vulnerability with performance for the systems which do

not have evident performance and reliability needs.

V. CONCLUSION

In this paper, we perform a performance-reliability analysis

of different multithreaded applications running on multicore

architectures. While the performance of the applications is

measured by execution clock cycles, we use Thread Vul-

nerability Factor metric to evaluate the relative reliability

of multithreaded applications. Using these values gathered

from experimental evaluation, we conduct a performance-

reliability tradeoff analysis which compares the different par-

allel versions of three applications in terms of reliability as

well as performance. Our results indicate that the choice is

clear for FFT and Jacobi Kernel. The transpose algorithm

for FFT calculation results in less than 5% performance loss

while the vulnerability increases by 20% instead of binary-

exchange algorithm. One can prefer transpose algorithm for

better reliability by sacrificing little performance. The unrolled

Jacobi code reduces execution time up to 50% by not effecting

vulnerability values. However, the tradeoff is more interesting

for Water Simulation application. While nsquared version

reduces the vulnerability values significantly, it increases ex-

ecution time with similar rates compared to spatial version.

One should trade performance with reliability to choose one

version of the application.

−50

−40

−30

−20

−10

0

jacobi

unrolled vs original
c
h

a
n

g
e

 (
%

)

2 core 4 core 8 core 16 core

RVF
mem

Execution time

−20

−15

−10

−5

0

5

unrolled vs fused

c
h

a
n

g
e

 (
%

)

2 core 4 core 8 core 16 core

RVF
mem

Execution time

−60

−50

−40

−30

−20

−10

0

10

unrolled vs interchanged

c
h

a
n

g
e

 (
%

)

2 core 4 core 8 core 16 core

RVF
mem

Execution time

Fig. 3. The change in percentage of RVF values and execution time for loop
transformations of Jacobi code

ACKNOWLEDGMENT

This research was supported by The Scientific and Tech-

nological Research Council of Turkey (TUBITAK) with a

research grant (Project Number: 108E035).

REFERENCES

[1] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in Proc. International Conference on Dependable
Systems and Networks, 2002.

[2] T. M. Austin, “Diva: A reliable substrate for deep submicron mi-
croarchitecture design,” in Proc. 32nd Annual ACM/IEEE International

Symposium on Microarchitecture (MICRO-32), 1999.

[3] P. M. Wells, “Mixed-mode multicore reliability,” in Proc. International

Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2009.

[4] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“Swift: Software implemented fault tolerance,” in Proc. International

Symposium on Code Generation and Optimization, 2005.

−30

−20

−10

0

10

20

30

40

water

nsquared vs spatial

c
h

a
n

g
e

 (
%

)

2 core 4 core 8 core 16 core

RVF
mem

Execution time

Fig. 4. The change in percentage of RVF values and execution time for
versions of water simulation

[5] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang,
“The case for a single-chip multiprocessor,” in Seventh International

Symposium Architectural Support for Programming Languages and
Operating Systems (ASPLOS VII), 1996.

[6] D. Gizopoulos, M. Psarakis, S. V. Adve, P. Ramachandran, S. Kumar,
and S. Hari, “Architectures for online error detection and recovery
in multicore processors,” in Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2011.

[7] M. L. S. Gal-On, “Measuring multicore performance,” IEEE Computer,
vol. 41, no. 11, 2008.

[8] M. Kulkarni, V. Pai, and D. Schuff, “Towards architecture independent
metrics for multicore performance analysis,” in Proc. SIGMETRICS,
2010.

[9] V. Sridharan and D. R. Kaeli, “Eliminating microarchitectural depen-
dency from architectural vulnerability,” in Proc. IEEE 15th International

Symposium on High Performance Computer Architecture, 2009.
[10] I. Oz, H. R. Topcuoglu, M. Kandemir, and O. Tosun, “Quantifying

thread vulnerability for multicore architectures,” in Proc. 19th Euromicro

International Conference on Parallel, Distributed and Network-Based

Computing (PDP), 2011.
[11] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A

systematic methodology to compute the architectural vulnerability fac-
tors for a high-performance microprocessor,” in Proc. Annual IEEE/ACM

International Symposium on Microarchitecture, 2003.
[12] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation

of complex fourier series,” Mathematics of Computation, vol. 19, no. 90,
1965.

[13] A. Gupta and V. Kumar, “The scalability of fft on parallel computers,”
IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 8,
1993.

[14] H. Dursun, K.-I. Nomura, L. Peng, R. Seymour, W. Wang, R. K. Kalia,
A. Nakano, and P. Vashishta, “A multilevel parallelization framework
for high-order stencil computations,” in Proc. International Euro-Par

Conference on Parallel Processing, 2009.
[15] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,

A. Rountev, and P. Sadayappan, “Effective automatic parallelization
of stencil computations,” in Proc. Programming language design and

implementation (PLDI), 2007.
[16] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick,

“Implicit and explicit optimizations for stencil computations,” in Proc.

Workshop on Memory system performance and correctness, 2006.
[17] L. Renganarayana, M. Harthikote-Matha, R. Dewri, and S. Rajopadhye,

“Towards optimal multi-level tiling for stencil computations,” in Proc.

Parallel and Distributed Processing Symposium, 2007.
[18] D. Frenkel and B. Smit, Understanding Molecular Simulation: From

Algorithms to Applications. Academic Press, 2001.
[19] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2

programs: Characterization and methodological considerations,” in Proc.

22nd Annual International Symposium on Computer Architecture, 1995.
[20] J. P. Singh, W. Weber, and A. Gupta, “Splash: Stanford parallel appli-

cations for shared-memory,” in Technical Report, Stanford University,
1991.

[21] S.Magnusson, M.Christensson, J.Eskilson, D.Forsgren, G.Hallberg,
J.Hogberg, F. Larrson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” IEEE Computer, vol. 35, no. 2, 2002.

