
A Resilient Architecture for Low Latency
Communication in shared-L1 processor clusters

Mohammad Reza Kakoee
DEIS, University of Bologna
Email: m.kakoee@unibo.it

Igor Loi
DEIS, University of Bologna

Email: igor.loi@unibo.it

Luca Benini
DEIS, University of Bologna
Email: luca.benini@unibo.it

Abstract—A reliable and variation-tolerant architecture for
shared-L1 processor clusters is proposed. The architecture uses a
single-cycle mesh of tree as the interconnection network between
processors and a unified Tightly Coupled Data Memory (TCDM).
The proposed technique is able to compensate the effect of process
variation on processor to memory paths.

By adding one stage of controllable pipeline on the processor to
memory paths we are able to switch between two modes: with and
without pipeline. If there is no variation, the processor to memory
path is fully combination and we have single-cycle read and write
operations. If the variation occurs, the controllable pipeline is
switched to pipeline mode and by increasing the latency of the
read/write operation we mitigate the effect of the variations. We
also propose a configuration-time approach to conditionally add
the extra pipeline state based on detection of timing-critical paths.

Experimental results show that our speed adaptation approach
is able to compensate up-to 90% degradation in the request
path with less than 1% hardware overhead for a shared-L1
CMP with 16 processors and 32 memory banks. We show that
even if variation occurs on all processor to memory paths, our
approach can mitigate it with an average overhead of 20% on
the application’s runtime.

I. INTRODUCTION

Recently, several many-core architectures have been pro-
posed that leverage tightly-coupled clusters as a building
block. Examples include the HyperCore Architecture Line
(HAL) processors from Plurality [2], ST Microelectronics
Platform 2012 [3], or even GPGPUs like NVIDIA Fermi [4].
In a shared memory paradigm, these designs try to overcome
the scalability limitations encountered when increasing the
number of processing elements (PEs) that share a unique
interconnection and memory system [5] by creating a hier-
archical design where PEs are clustered into small-medium
sized subsystems. The small number of PEs makes it possible
to design a low-latency interconnect between processors and
L1 (in-cluster) memories, while scaling to larger system sizes
is enabled by replicating clusters and interconnecting them
with a scalable medium like a NoC.
The performance of most digital systems today is indeed

interconnect-limited, and the design of a high performance on-
chip interconnection network is crucial, as the performance
impact due to the latency of the interconnection network in
a many-core architecture can be as high as the cache miss
[6]. In this work, we focus on a fully combinational Mesh-of-
Tree (MoT) interconnection network proposed in [1] which is
suitable for tightly-coupled processor clusters. This network
provides single-cycle transfer from processor to memory and
round-robin arbitration for a fair access to memory banks, as
well as fine-grained address interleaving to reduce memory
bank conflicts.

Scaling down of process technologies has increased process
variations and transistor wearout. Because of this, delay vari-
ations increase and impact the performance of the design. The
interconnect architecture in a chip multiprocessor becomes a
single point of failure. A faulty processing element may be
shut down entirely, but the interconnect architecture must be
able to tolerate variations and aging in the circuit, provid-
ing graceful performance degradation [7], [8]. Conventional
inflexible designs often handle delay variations through con-
servative guard-bands in the operating frequency and voltage
to ensure error-free operation across a wide range of dynamic
and static variations over circuit lifetime [9]. Consequently,
these inflexible designs cannot exploit opportunities for higher
performance by increasing frequency or lower energy by
lowering Vcc under favorable operating conditions. Since most
systems usually operate at nominal conditions where worst-
case scenarios rarely occur, static worst-case design severely
limits performance and energy efficiency.

For the single-cycle interconnection network where achiev-
ing a satisfying working frequency is the key for the perfor-
mance, conservative guard-banding may ensure safe write/read
operation on shared-memory modules but with a high per-
formance and power cost (i.e. over-sized gates and buffers,
fast but leaky cells, etc.). Thus, over-design leads to a very
inefficient system. For this reason, a design which can detect
the variation and tune itself is desired to reduce guard-banding
while guaranteeing error-free operation. Some approaches in
the literature are based on the error detection sequential (EDS)
[10], [11], [12]. In these techniques a combination of a flipflop
and a latch can detect the errors in the critical path timing and
asserts an error signal. These techniques are suitable for the
pipeline stages, and the recovery mechanism is performed by
either instruction reply at a lower frequency or multiple-issue
instruction reply at the original frequency. Since our timing
path is fully combinational, we cannot use these techniques.
Moreover, if there is no variation they impose area, power
and delay overhead on the design. Post-silicon tuning at the
circuit level such as adaptive body biasing (ABB) and dual-
Vdd are other types of methods to face with the delay variation
[13], [14]. However, they impose leakage and dynamic power
overhead and special care should be taken during the design
to reduce these overheads. Moreover, since these techniques
are at the circuit level, it is very difficult to apply them only
on the critical paths.

Contribution. The main contribution of this work is the
development of a resilient single-cycle interconnection net-
work suitable for shared-L1 CMP that can tolerate delay
variations due to aging or static variations with a small
overhead on read/write latency. Our contribution is two-fold:978-3-9810801-8-6/DATE12/ c©2012 EDAA

CORE0

CORE1

MEM
 0

MEM
 1

MEM
 2

MEM
 3

Request Routing Tree
 Arbitration Tree
 Memory Banks
Processing

Elements

Fig. 1. Mesh of trees 2x4: empty circles represent routing switches and
empty squares represent arbitration switches.

first we propose an offline (i.e. boot time) technique which
can detect timing failures in the CMP. Our detection approach
is based on Test Pattern Generation and Diagnosis performed
in off-line mode and during start-up of the system. Then, we
propose a reconfiguration mechanism to be triggered after the
detection phase. In this phase, we reconfigure the design so
that it can overcome the timing failure by injecting pipeline
stage in the path and increasing the latency of the read/write
transaction. Note that, if there is no variation and therefore no
timing failure the network operates with single cycle latency.
Experimental results show that our speed adaptation ap-

proach can compensate up-to 90% degradation in the request
path and 55% in the response path. We also show that the
total area overhead of our approach is less than 1% for a
shared-L1 CMP with 16 processors and 32 memory banks.
The results show that if we use guard-banding technique, the
critical path and the leakage power increase by 19% and 21%,
respectively. In the worst case, if an extra stage is inserted on
all processor to memory paths, our approach imposes less than
1% runtime overhead on ALU-dominated applications and
50% on memory-dominated programs. However, performance
degradation is graceful: less than 10% application slowdown
is measured for memory-dominated programs when up to four
processors have degraded speed.

II. INTERCONNECTION ARCHITECTURE

A fully-synthesizable Mesh-of-Trees (MoT) interconnection
network suitable for shared-L1 processor clusters has been
proposed in [1], featuring single-cycle transfer from processor
to memory and vice versa. We use the architecture of this
logarithmic interconnection. Topology of MoT interconnection
which connects 2 processors to 4 memory modules (2x4) is
shown in Figure 1. The original interconnection [1], supports
non-blocking communication between the processing clusters
(PCs) and memories modules (MMs), within a single clock.
As shown in Figure 1, the MoT network connects N=2n

PCs and M=2m MMs. It contains Log2M levels of routing
primitives and Log2N levels of arbitration primitives. Each
memory request issued by PCs must pass through Log2M
levels of routing primitives to reach at one of MxN leaf nodes
in the arbitration switches; and arbitrates among Log2N levels
of arbitration primitives to reach at MM side. In reverse order,
memory responses propagate through arbitration and routing
levels to reach at PC side.

A. Network Operation

During a read/write operation, data and control signals,
asserted by the PCs, are routed through combinational routing

Logarithmic Interconnect

(16 x 32)

Bank 0
 Bank 31

TCDM
 (32 ports)

LEON 0

I$

LEON 3

I$

AHB
 0 (
4x2
)

LEON 12

I$

LEON 15

I$

AHB
 3 (
4x2
)

ROM
 ROM

AHB
 XBAR
 (
4x1
)

External

Memory

Slave 0
 Slave 31

Master 0
 Master 3
 Master 15
Master 12

.

.

.

.

. . .

. . .

. .

. . .

. . .

. .

Fig. 2. Mega-leon architecture.

switches, until they reach one of NxM ports of routing tree.
In order to reach the memory module the request must be
arbitrated among the other simultaneous requests for the same
memory module. After passing through all levels of arbitration
switches, the request reaches the memory module, and the
read/write operation can be performed. Once the request
reaches the last level of the arbitration tree and gets the grant,
a valid acknowledgement is asserted and propagated back to
the related PC through the routing switches (backward). By
receiving the acknowledgment signal, PC is able to issue the
next read/write operation at the next clock cycle, otherwise it
waits until it is received.

III. MEGA-LEON ARCHITECTURE

A complete multi-core system named Mega-Leon is de-
signed and implemented as a case study for applying our
approach. The Mega-Leon architecture is an evolution of the
Multi-core Leon developed by Gaisler [15]. It contains sixteen
SPARC-V8 processor cores which are connected through the
high-bandwidth logarithmic network described in the previous
section to a fast multi-banked, multi-ported Tightly-Coupled
Data Memory (TCDM). The number of memory ports in the
TCDM is equal to the number of banks to allow concurrent
accesses to different banks. Processors can synchronize by
means of standard read/write operations at logarithmic net-
work providing test-and-set semantics (hardware semaphores).
The cores are also connected to an AHB shared bus system to
access the external modules (external memory, ROM, debug
support unit and etc.). Figure 2 shows the diagram of this
architecture. The SPARC-V8 used in this platform has been
customized. Its memory controller has been modified to make
the interface with TCDM. The embedded data cache has
been removed and replaced with the TCDM which is shared
between 16 cores.
As mentioned before, the request and response paths from

processor to TCDM and vice-versa are single-cycle and fully
combinational. These paths are shown in Figure 3. It is shown
in Figure 3 that the request and response paths include not
only the interconnection network but also some logics in the
processor’s pipeline as well as the memory controller which
decodes the address and communicates with the network. To
better understand the behavior of the request and response

Fig. 3. Request and response paths from processor to TCDM.

Fig. 4. Detail timing of the read access from processor to TCDM.

paths, the timing diagram of a read access is shown in Figure
4. In order to provide a single-cycle communication, each
read/write request must be concluded within the clock period.
To achieve this goal, we assume that PCs and network (only
for round robin priority switching) are clocked with the main
clock CLK, whereas MMs are clocked with a skewed CLK
(same frequency and typically 90◦ phase shift) [1]. These two
signals are available at the input ports of the network, and
are generated through an external block (PLL). It is clear
that, for a given network configuration (NxM) and technology,
the forward and backward latencies are lower bounded for
maximum performances. By tuning the clock frequency, phase
shift and memory access time, it is possible to meet the target
frequency, thus avoiding timing violations.
However, in order to have a design working after fabrication

we need to consider static variations and transistor wearout
in the circuit which cause delay variations. Delay variations
which happen in the combinational paths from PC to MM
(and vice-versa) as well as the access time of the memory
may lead to the complete failure of the PC-MM/MM-PC com-
munication. In the next section we describe how we modify
the architecture so that it can detect the timing violation and
reconfigures itself to avoid communication failures.

IV. RELIABLE ARCHITECTURE

The paths from processors to TCDM and vice-versa are
fully combinational and have very tight timing constraints.
Due to this fact, a little variation on the delay can lead to the
complete failure of the processor-memory communication. In
the following we discuss on some conventional approaches to
face with this problem.

Fig. 5. Request and response paths with variability-compensation modules.

(i) The first solution is adding conservative and sufficient
margin for the delay variation. This can be achieved by
designing at the worst-case corner. However, this technique
limits the performance and energy efficiency of the system.
Synthesizing the design at the worst case corner increases both
area and power of the design due to using large and low-Vth
cells and still has lower MAX-frequency with respect to the
nominal corner.

(ii) Another solution is using methods which are based on
double-sampling with time-borrowing (DSTB) error-detection
sequential (EDS) [10], [11], [12]. These techniques require
at-least one stage of the pipeline on the path; while our path
is fully combinational and if we add a pipeline for that, it
increases the latency of the processor-memory communication
which limits the architecture performance in the favorable
mode when there is no delay variation.

(iii) Another technique is simply breaking the path and
putting one stage of the pipeline on it. As mentioned before,
this approach violates the main property of the architecture
which is having single-cycle latency and limits the perfor-
mance when there is no delay variation.

All the above techniques have performance penalty even if
there is no variation; but, we need a solution that imposes
speed overhead only if a failure happens in the timing of
the processor-memory communication. We propose a new
approach which is based on the reconfigurable pipeline.

We add a reconfigurable module on the path so that it can
compensate the effect of the delay variation by inserting one
cycle of the latency on the request or response transaction
relaxing the timing constraints. This module does not increase
the latency in the normal mode (without delay variation) and
the read/write operation is completed in one cycle which is the
main property of the architecture. Our reliable architecture for
one processor is shown in Figure 5.

The reconfigurable pipeline is inserted in the middle of the
combinational path i.e. between memory controller and the
network. Every Processor has one delay fault tester which
can detect failures in the read/write operation. Detection is
performed off-line as described later. If the tester does not find
any timing error, it sends a no-error signal to the reconfigurable
pipeline. This module reconfigures itself in such away that
the processor-memory path becomes fully combinational by
selecting the second input of the Multiplexer (Figure 5); in this

Fig. 6. Detail timing of request path from processor to TCDM when there
is variation (2 cycles latency).

mode the Flip-flops are out of the path. If variation happens
and the tester finds an error, it asserts the related signal and
the controllable pipeline switches to use Flipflop in the path
by appropriate signaling with both memory controller and the
network. Therefore, an extra cycle of latency is added to the
read/write transaction. Figure 6 shows the timing diagram of
the request path in the presence of delay variations (Flip-flops
are in the path).
We should note: because both detection and reconfiguration

steps are offline, our approach is not suitable for dynamic delay
variations due to the temperature changes or Vcc droops where
the delay of the circuit changes dynamically when the system
is working. Techniques which are based on Error Detection
Sequential are very useful to mitigate these variations. Our
approach is best suited for static delay variations due to aging,
random variations such as doping related variations, variation
in transistor threshold voltage caused by density variations of
impurities in the transistor material, and systematic variations
such as exposure pattern variation in lithography process
or silicon surface flatness variations in the CMP (Chemical
Mechanical Planarization).

A. Detection Mechanism

To detect the timing failure in the read/write operation we
propose an offline technique which is based on functional test
pattern generation and diagnosis. Similar techniques have been
proposed in the literature to detect manufacture failures in the
chip after fabrication [16], [17].
We use a tester module which is responsible to send the

test patterns and to verify them. This module implements two
similar state machines which generate data and address for the
write and read transactions and verify the incoming data from
memories. We have only one tester which is replicated for all
processors. It gets the ID of the processor as an input.

The complete test is performed during M phases where M
is the number of memory banks. During each phase all testers
write the test pattern to the same bank but at different locations
and then read and verify them. Testers get the phase number
as an input and based on that generate the write/read address.
The related phases for 16 processors and 32 memory banks
are shown in Figure 7. The test pattern (data and address) is
chosen so that it can detect the timing failure in the read/write
operation. The test patterns contain two consecutive writes and
two consecutive reads. The first data that is written is All-zero
and the second data is 01010....01. The data are written at

Fig. 7. Test phases for 16 processors and 32 memories.

addresses ID and ID + 1 in the Memory bank I where ID
is the identifier of the processor and I is the number of the
testing phase. Since at each phase of the test all processors
write/read to the same bank, the maximum contention occurs
in the interconnection network and therefore all the arbitration
paths as well as routing paths from all processors to Bank I (in
Phase I) are tested. Tester writes data to the specified locations
of each bank and then reads the same locations. If it reads the
wrong data, it means one of the write or read operations or
both do not work correctly and tester generates an error signal
and reconfigurable module is switched to the pipeline mode.
After that we perform one extra test to see if after using the
pipeline in the path the test is passed or not. If the test is not
passed for the second time, we consider the related processor
as faulty.

V. EXPERIMENTAL RESULTS

In this section, we discuss the experimental results for the
resilient Mega-Leon architecture in terms of delay, power, area
and the latency. We quantify the cost of adding variation-
tolerant modules into the original design. To get these results,
we synthesized the whole architecture including 16 processors,
and the interconnection network on a general purpose 65nm
commercial technology library [19]. 32 memory banks of 8
KBytes (256 KB in total) are also obtained from the same
technology library. Using RTL simulation and the compiler
tool-chain of the SPARC-V8, we ran different applications
(C program) on our multi-core architecture to analyze the
effect of the compensation approach on the performance of
the applications.

A. Design Flow of Resilient Architecture

To obtain the maximum frequency at which our Multi-core
architecture can operate we developed an advanced design
and synthesis flow. The synthesis stage is performed in two
passes: the first is a pure logic synthesis, and the network and
cores are synthesized without physical constraints. Synthesis
is performed at the nominal corner with 1.2V and 25◦C. In
order to reduce the power, we exploited multi-Vth design
where low-Vth cells are used for timing critical paths and
high-Vth cells for other parts of the design. The preliminary
output netlist is used in the back-end tool to perform the power
planning and floorplanning, and at the end of this step, the
physical information are exported in a “DEF” file and back-
annotated in the synthesis tool, with topographical features
enabled. The second synthesis run performs both remapping
and coarse placement plus physical optimization taking into
account physical geometries based on the back-annotated

floorplan. Using this methodology, good convergence between
post-synthesis and post-layout results is achieved early in
the flow. For routing global wires we used the technique
proposed in [18] during place&route. Using this design flow
we could achieve a frequency of 250 MHZ (critical path=4ns)
for our architecture which includes 16 processors, logarithmic
network and 32 memory banks (each 8KB).

To compare our approach with the guard-banding technique
where the design is synthesized with a very conservative
margin, we performed the synthesis on the same library but at
the worst-case corner (1.1V and 125◦C) and with the same
timing constraints. Table I shows the related results.

TABLE I
SYNTHESIS RESULTS OF NOMINAL AND WORST-CASE CORNERS

Multi Critical Path Area Leakage

Vth ns mm
2 mW

Nominal X 4 3.993 2.85
Worst-case X 4.75 4.078 3.44

Worst Case - 19% 3% 21%
overhead

As seen in Table I, by synthesizing at the worst-case corner,
which contains slower cells, the critical path increases by 19%.
This critical path was the best timing that we could get using
the worst-case corner. The leakage power increases by 21%
because the synthesis tool uses more low-Vth cells (which are
more leaky) to meet the timing. The area increases by 3%
because of using larger cells to meet the timing constraints.

After carefully reviewing the timing paths of the design,
as it was expected, we found that the most critical paths are
between processors and the TCDM. They start form the Integer
Unit (IU) of the processors, traversing the memory controllers
and interconnection network and ending at the memory banks.
We also found that the delay of the paths whose sources and
targets are inside the processors is almost 2/3 of that of the
critical path (PC to TCDM). Therefore, if any variation occurs,
those paths that are inside the processors have reasonable
margins to tolerate it. Thus, we have to take care of the paths
between processors and memories.

To do so and to apply our variation-tolerant approach, we
had to find a suitable location on the critical path to insert the
reconfigurable pipeline. By carefully investigating all critical
paths (processors to memories) of the whole architecture,
we figured out that the best position is exactly before the
interconnection network and after the memory controller. That
location was about 2.1ns away from the beginning of the
request path and 1.5ns from the end of it. It was 2.6ns away
from the beginning of the response path and 1.1ns from the
end of it. We put our reconfigurable pipeline exactly before the
network. Putting the pipeline at this location creates a large
margin for the delay variation and enables us to compensate
a degradation of 90% ((4− 2.1)/2.1) on the request path and
55% ((4− 2.6)/2.6) on the response path. In other words, if
the variation causes that the delays of the request and response
paths increase by 90% and 55%, respectively, we are still able
to compensate it by switching to the pipeline mode.

To realize the range of the variation that can occur on
the design, we performed worst-case timing analysis on the
design synthesized at nominal corner. We calculated the delay
of the request and response paths in both corners. Table II
shows the results. Note that, for these results the design is

synthesized at the nominal corner but the timing analysis is
performed at both nominal and worst-case corners. It is shown
that the maximum variations on the request and response paths
are 66% and 30% respectively. Therefore, our approach can
compensate the delay variations of both request and response
paths if the design is in the worst-case mode.
Based on the results of Tables I and II, if we synthesize

our design at the nominal corner we would get a reasonable
speed without a huge synthesis effort and power and area
overhead. Then at the run-time we can re-adjust the design by
adding the pipeline stage if we are in the worst case condition.
Since the worst case is very rare, this will impact only very
few chips. Moreover, although using the pipeline mode in the
presence of the variation increases the latency of read and
write transactions, it does not change the working frequency
of the whole architecture and processors are still running at
the full speed.

TABLE II
TIMING ANALYSIS OF DIFFERENT PATHS ON DESIGN SYNTHESIZED AT

NOMINAL CORNER

Nominal Worst-case Variation

corner corner
Path delay (ns) delay (ns) %

PC-Network 2.10 3.5 66%
Network-TCDM 1.57 2.4 52%
TCDM-Network 2.6 3.38 30%
Network-PC 1.1 1.3 18%

B. Hardware and timing overhead

Our approach requires a few hardware modules including
the tester and the reconfigurable pipeline to be added to the
original design. These additional blocks are per processor.
Therefore, we have 16 tester and pipeline modules for the
whole system. We also need one global controller which
controls the flow of the testing and synchronizes different
test phases. Table III shows the hardware overhead of these
modules.

TABLE III
AREA OVERHEAD OF OUR RESILIENT ARCHITECTURE

Module Area Overhead on Overhead on

µm
2 one processor Mega-leon

Tester 2250 2% 0.8%
Reconfigurable pipeline 1200 1% 0.5%

Global controller 957 - 0.01%
All 4407 - 1.3%

As can be seen in this table, the total area overhead of our
approach on the whole Mega-Leon architecture is less than
2% which is very small for our resilient architecture.
The reconfigurable pipeline adds one Multiplexer on the

critical path and it may increase the delay even if there is no
variation. We calculated this additional delay and it was around
20ps (0.5% of the critical path (4ns)). This small additional
delay had no effect on the target frequency since the synthesis
tool was able to optimize it.

C. Testing time

As mentioned before, each test sequence contains two
writes and two reads. All processors perform at-least one test
sequence during each phase. If the first test sequence fails
then the related reconfigurable pipeline is switched to use the

extra stage and another test sequence is initiated. Therefore,
each processor performs a maximum of two test sequences in
each phase. During each phase, the first test sequence takes
4 clock cycles in the tester, and 4 cycles in the processor
to memory communication (8 cycles in total). The second test
sequence (if the first one fails) takes 4 more cycles (12 cycles)
due to having pipeline in the path. Therefore, each processor
needs a maximum of 20 clock cycles for each test phase.
Since during each phase all processors communicate with the
same bank of the memory, maximum congestion happens in
the interconnection network. In the worst case processors can
get grant sequentially. Therefore, each phase of the test takes
320 clock cycles (16 ∗ 20). Since we have 32 different phases
the testing procedure requires 32 ∗ 320 = 10240 clock cycles.
We consider some other cycles for synchronization between
different phases. At the worst-case we need 11000 clock cycles
for the testing procedure to be finished. With a clock period
of 4ns, the complete detection process takes 44µs. We should
again note that, the testing procedure is performed offline and
during start-up of the system.

D. RTL simulation and performance analysis

As described, our speed adaptation technique increases the
latency of read and write operations. This may slow-down
the applications running on the processors. The amount of
the slow-down depends on the type of the application. If the
application is ALU-dominated and has a few transactions with
the memory then the slow-down is very small. However, if the
program is memory-dominated and has a lot of load and store
instructions, the slow-down is higher.
To evaluate the effect of our approach on the application’s

run-time, we created some benchmark programs with the
help of SPARC-V8 tool-chain. These programs are written so
that they can cover a range of applications from very ALU-
dominated to very memory-dominated. For accurate evalua-
tion, we did not use any high level simulation, but we used
the real RTL model with a commercial RTL simulator.
Figure 8 shows the results of our speed adaptation approach

on four applications. The curves in the figure show the
completion time of each program. X axis is the number of
processors for which our speed adaptation technique is applied.
As can be seen, for an application like Fibonacci that is

ALU-dominated the overhead of our approach on the run-time
is almost negligible. For memory dominated applications like
Matrix Multiplication and Transpose, if variation occurs on
up-to four processor-memory paths, the overhead is very small
(less than 10%). If the variation occurs on more than 8 paths,
the overhead is from 20% to 50% for memory dominated
programs. Even this overhead is reasonable since the working
frequency of the design does not change and we are able to
run the whole system under the original frequency even in the
presence of the variation.

VI. CONCLUSIONS

We proposed a resilient architecture for shared-L1 processor
clusters. The architecture uses a single-cycle interconnection
network between processors and a unified Tightly Coupled
Data Memory (TCDM). By adding one stage of the control-
lable pipeline on the processor to memory paths we are able to
mitigate the static delay variations. If there is no variation, the
processor to memory path is fully combination. If the variation

Fig. 8. Performance overhead due to the speed adaptation on 4 benchmark
programs.

occurs, the controllable pipeline is switched to the pipeline
mode and by increasing the latency of read/write operation
we mitigate the effect of the variations.

ACKNOWLEDGMENT

This work is supported by JTI (ENIAC) Modern project
(GA n. 120003).

REFERENCES

[1] A. Rahimi, I. Loi, M.R. Kakoee, L. Benini “A Fully-Synthesizable Single-Cycle
Interconnection Network for Shared-L1 Processor Clusters ,” in Proc. of the
ACM/IEEE DATE, 2011.

[2] Plurality Ltd. The HyperCore Processor. www.plurality.com/hypercore.html
[3] ST Microelectronics and CEA. Platform 2012: A Many-core programmable

accelerator for ultra efficient embedded computing in nanometer technology. 2010.
[4] NVIDIA. Next Generation CUDA Compute Architecture: Fermi - WhitePaper.

www.nvidia.com/content/PDF/
fermi white papers/NVIDIA Fermi Compute Architecture Whitepaper.pdf,
2010.

[5] Tilera Corp. Product Brief. Tilepro64 processor. 2008.
[6] S. Akram, R. Kumar, D. Chen, “Workload adaptive shared memory multicore

processors with reconfigurable interconnects,” in Proc. of the 7th IEEE Symposium
on Application-Specific Processors, SASP, July 2009, pp. 7-14.

[7] S. Mitra, K. Brelsford, Kim Young Moon, et al., “Robust System Design to
Overcome CMOS Reliability Challenges,” Emerging and Selected Topics in
Circuits and Systems, IEEE Journal on , vol.1, no.1, pp. 30-41, March 2011

[8] S. Borkar,“Designing reliable systems from unreliable components: the challenges
of transistor variability and degradation,” IEEE Micro, Vol. 25, No.6, pp. 10-16,
2005.

[9] K. Bowman, et al., “Circuit techniques for dynamic variation tolerance,” in
ACM/IEEE DAC, pp. 4-7, 2009.

[10] K.A. Bowman, J.W. Tschanz, et.al, “A 45 nm Resilient Microprocessor Core for
Dynamic Variation Tolerance,” Solid-State Circuits, IEEE Journal of , vol.46, no.1,
pp.194-208, Jan. 2011

[11] D. Bull, S. Das, et al., “A Power-Efficient 32 bit ARM Processor Using Timing-
Error Detection and Correction for Transient-Error Tolerance and Adaptation to
PVT Variation,” Solid-State Circuits, IEEE Journal of , vol.46, no.1, pp.18-31, Jan.
2011.

[12] D. Ernst, et al., “Razor: A Low-Power Pipeline Based on Circuit-Level Timing
Speculation,” in Micro-36, pp. 7-18, 2003.

[13] M. R. Kakoee, L. Benini, “Fine-Grained Power and Body-Bias Control for Near-
Threshold Deep Sub-Micron CMOS Circuits,” Emerging and Selected Topics in
Circuits and Systems, IEEE Journal on , vol.1, no.2, pp.131-140, June 2011.

[14] A. Ghosh et al., “A centralized supply voltage and local body biasbased compen-
sation approach to mitigate within-die process variation,” in ACM/IEEE ISLPED,
2009, pp. 45-50.

[15] http://www.gaisler.com
[16] M.R. Kakoee, V. Bertacco, L. Benini, “A distributed and topology-agnostic ap-

proach for on-line NoC testing,” Networks on Chip (NoCS), 2011 Fifth IEEE/ACM
International Symposium on , pp. 113-120, 1-4 May 2011.

[17] E. Cota, F.L. Kastensmidt, et al., “A High-Fault-Coverage Approach for the Test
of Data, Control and Handshake Interconnects in Mesh Networks-on-Chip,” IEEE
Trans. on Computers, Vol. 57, No. 9, pp. 1202-1215, 2008.

[18] M.R. Kakoee, Igor Loi, L. Benini, “A new physical routing approach for robust
bundled signaling on NoC links,” Proceedings of the 20th symposium on Great
lakes symposium on VLSI, pp. 3-8, 2010.

[19] http://www.st.com

