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Abstract—Checkpoint and Recovery (CR) allows computer systems
to operate correctly even when compromised by transient faults. While
many software systems and hardware systems for CR do exist, they are
usually either too large, require major modifications to the software, too
slow, or require extensive modifications to the caching schemes. In this
paper, we propose a novel error-recovery management scheme, which
is based upon re-engineering the instruction set. We take the native
instruction set of the processor and enhance the microinstructions with
additional micro-operations which enable checkpointing. The recovery
mechanism is implemented by three custom instructions, which recover
the registers which were changed, the data memory values which were
changed and the special registers (PC, status registers etc.) which were
changed. Our checkpointing storage is changed according to the bench-
mark executed. Results show that our method degrades performance by
just 1.45% under fault free conditions, and incurs area overhead of 45%
on average and 79% in the worst case. The recovery takes just 62 clock
cycles (worst case) in the examples which we examined.

I. INTRODUCTION

Electronic systems must be protected against transient faults, so
that they can be relied upon and used for longer periods [21],
[22]. As the feature size shrinks, transistors within an embedded
system become reportedly more susceptible to adverse effects such
as transient faults (e.g. soft errors) due to energized particle hits [3],
[16]. Addressing this problem firstly requires the ability to detect
errors (this has been intensively studied in [4], [17], [24]) and to
recover from errors When an error has been detected.

Checkpoint and Recovery (CR) has been studied as a viable
methodology for error recovery of transient faults [26]. The basic
concept of CR is to recover the current application process by
using the most recent checkpoint. A checkpoint, which is generated
periodically, is a set of data that keeps a copy of the verified system
state. Depending on the particular mechanism and implementation,
the checkpoint data size and checkpoint period vary. CR requires
additional resources for both generating checkpoint and committing
recovery. Recent research discusses two types of CR techniques. One
is software-based CR that typically has large code size or considerable
fault-free performance overhead 1 [12]. The other is hardware-based
CR (e.g. cache-based) that introduces specific modifications to the
microarchitectures of processors (e.g. cache replacement policy for
cache-based system) and are not systematic [30].

Since embedded systems usually have to meet stringent design
constraints (e.g. real-time, power, area, etc.), CR for embedded
systems have to be small, fast and energy efficient. Using existing
CR techniques will worsen size, time and energy constraints. Custom
instruction set processor, e.g. tensilica Xtensa [29], is a HW/SW
codesign methodology for designing embedded systems. In [13], [23],

1Fault-free performance is the speed while there is no fault happening. It
is an important factor in measuring the practicality of CR based systems.

the authors have explored building online code integrity checking
mechanisms via customizing instruction set for ASIP-based embed-
ded systems. Their studies have established a method of using custom
instruction set to augment the target system with fault-tolerance
techniques.

In this paper, we propose a technique called Reli, which is
a system-level error-recovery management scheme for ASIP-based
embedded systems. To the best of our knowledge, Reli is the first
of its kind. Reli reforms classic CR by leveraging custom instruction
set. Consequently, the cost in terms of execution time and area are
reduced significantly compared to existing systems.

The rest of the paper is structured as follows. Section 2 provides
a discussion of related work. Section 3 gives an elaboration on
the problem of designing CR techniques in context of embedded
systems. Section 4 and 5 depict the concept and implementation of
Reli technique respectively. Section 6 provides an experimental study
that is followed by a discussion in Section 7. Section 8 concludes
this paper.

II. RELATED WORK

Error-recovery techniques can be categorized into two: roll-
forward; and, roll-backward (i.e. CR). Roll-forward techniques typi-
cally adopt redundant computations to be able to compare or vote on
the fly to mitigate faults [2]. Roll-forward techniques incur additional
cost in terms of chip area and power/energy consumption, but are fast.

CR techniques trade recovery latency to gain area savings. The goal
of CR is to facilitate the regaining of normal functionality as soon as
possible after the occurrence of transient faults [26]. CR techniques
typically use additional storage to hold check point data, so that if
an error occurs, then they can be rolled back to a point where the
checkpointing was last performed. The additional storage for holding
checkpoint data and the hardware needed to rollback can impact on
the execution time in both the fault free scenario and in the recovery
scenario, Existing CR techniques fall into two categories, depending
on the manner in which they address the recovery problem.

Software-based CR techniques require no additional hardware [5],
[7], [8], [12], [15], [18], [31]. In [12] the authors modify compilers to
insert checkpoint routine code into native code. It is reasonably fast
but induces large checkpoint data size, and the static code size is in
increased. In [15], the authors propose a thread-level checkpoint and
recovery mechanism, which needs OS support. In [31], the authors
propose a loadable kernel module (RMK) to support application-level
checkpointing. In [5], [7], [8], [18], the authors propose different
approaches to perform checkpoint and recovery for parallel programs
on shared memory symmetric multiprocessors.

Hardware-based CR techniques2 use special customization and

2Also called Backward Error Recovery (BER).
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optimization in arbitrary microarchitectural components (mainly stor-
age components which contain process state) to implement CR [1],
[11], [20], [28], [30]. In [28], the authors propose a checkpoint and
recovery approach that uses memory (and cache) for multiprocessor
systems. However, no accurate experiment data is shown for recovery
latency. In [20], the authors propose a CR technique for shared
memory multiprocessor system , that has a rollback delay of 0.82 s for
80 ms checkpoint frequency in the worst case. The above CR scheme
involves modification of the directory controller of the memory
for recording (called ”logging”) the checkpoint data. Checkpointing
and recovery are controlled by timer-interrupt and the protocol is
implemented in software. In [1], [11], [30], the authors propose
Cache-based CR techniques for single- and multi-processor systems.
These techniques use specially designed cache as a buffer to hold
the temporary data for computation in the middle of checkpoints. In
addition, the register files are duplicated for backing up the register
file state. They lack the flexibility of selecting when to commit
checkpoint and are thus relatively unpredictable. In addition, the
cache replacement policy must be modified in hardware.

The software based systems [5], [7], [8], [12], [15], [18], [31]
checkpoint all necessary variable and thus incur enormous check-
pointing data size, slowing down recovery. Additionally, they need the
program to be modified to allow for CR functionality. The granularity
of the checkpoints of software based systems are quite large in the
order of milliseconds or even seconds.

Many of the hardware based techniques [1], [11], [20], [27], [28],
[30] thus far have either relied on register, cache, or memory to back
up checkpoint data. Register based techniques [27] can introduce up
to 1000 cycles for recovery time. Cache based techniques [1], [11],
[30] have to modify cache replacement policy and by its nature are
dependent on having a cache in the system. Memory based systems
[20], [28] are slow due to the fact that the checkpointing has to be
performed in memory.

Our proposed technique, namely Reli, is a system-level CR tech-
nique for embedded processors. In contrast to the previous methods
we integrate the CR algorithm with custom instructions into the
processor. In each instruction (the state modifying instructions)
the processor can commit checkpointing automatically. In addition,
checkpoints are assigned at a far finer granularity (i.e. instruction and
basic block level) than previously considered, so that the realtime
constraints can be more easily met compared to existing techniques.
Moreover the cost in terms of execution time (performance), recovery
latency, and chip area is reduced to a modest level. The contributions
of this paper are as follows:

(1) For the first time CR functionality is integrated into the instruc-
tions, such that the system is transparent to the programmer
(i.e., the programmer does not have to modify the code in any
way);

(2) CR is implemented at a finer granularity than previously
possible, allowing frequent checkpointing, and rapid recovery,
when needed;

(3) Any RISC architecture base system (with or without cache) can
be altered using the method described in this paper to achieve
a fast system with small area overhead.

III. PROBLEM STATEMENT

Given an embedded application, and a target RISC instruction
set, create a processor which can perform both checkpointing and
recovery with negligible performance reduction, and modest area
increase. The created system should also be transparent to the high
level programmer who uses this system.

A. Reli CR Model

Reli’s philosophy uses custom instructions to realize CR func-
tionality. The given application can be decomposed into multiple
instructions of a given processor. These instructions typically are
composed of micro-operations.

In this work we use the same instruction set of the given processor
(we have three additional instructions for recovery, but they are not
used in the application), but modify the micro-operations in those
instructions which change the state of the processor. Examples of
instructions which change the state of the processor are: instructions
which modify registers or instructions which modify data memory
values. At run-time, Reli instructions execute not only native func-
tionalities (e.g., adding two operands of the ADD instruction), but
also Reli functionality (e.g., generating checkpoint data of destination
register for ADD instruction).

Although in principle, the processor’s architecture needs to be
modified to support custom instructions, with architectural descrip-
tions, synthesis techniques (i.e. architectural synthesis) are available
which take the micro-operations of the instruction set and create the
processor itself. (e.g. extensible processor platforms) [14].

We assume a system with parameters specified as follows. The
system is compatible and ASIP based (we assume single core at
present). The baseline HW configuration (architecture) is assumed
to have: on-chip memory (data RAM and instruction ROM), integer
arithmetic unit (incl. multiplier and divider), RISC-compatible control
unit, and without floating point support, delay slot support. Though
the native instruction set is assumed to exclude floating point instruc-
tions, the same methodology can be applied to those instructions. We
could have the system with or without cache, though all examples
and experimentations in this paper did not use cache.

IV. RELI APPROACH

The entire approach can be divided into three parts. The checkpoint
generation (i.e. backing up of data points necessary for successful
recovery); the recovery (if an error has occurred, the data which
was stored has to be restored, and the execution should seamlessly
commence); and the testing and validation (where the system tests
for correctness). This work concentrates only on the checkpoint
generation and the recovery. The testing and validation have been
extensively covered by other researchers [17], [24].

The entire methodology is performed by changing the micro-
operations of instructions which change registers and data memory.
In addition, the micro-operations of control flow instructions are
changed. Three additional instructions are created which enable
recovery. Note however, that these three instructions do not interleave
within the legacy code. They are used in a separate routine which is
used for recovery.

A. Checkpointing

For checkpointing to be performed correctly, the registers, the
status registers and the data memory elements which are changed
since the last checkpoint have to be stored, as well as the program
counter.

To enable a scalable recovery system, we utilize two stacks. These
are used for storing the registers in the register file and for storing
the data memory values which are changed. At the start of a basic
block, the program counter and the status register are backed up in
their own backup locations.

Algorithm 1 shows the methodology used for backing up the
necessary components. For registers, the first time a register is
changed in a basic block, the old value of that register is stored



Algorithm 1 Algorithmic description of Checkpointing for register
file state

historyn: value in logging history table (boolean) of the register n
dist: destination register’s address decoded from the native instruction
stackp: a stack data structure that stores checkpoint data with pointer value p
valn: value of register n
datan: checkpoint data of register n
// After the decoding is finished, and dist is known to instruction layer.

1: if historydist = true then
2: do nothing
3: else
4: historydist ← true
5: datadist ← dist ∥ valdist
6: stackp ← datadist

7: p← p + 1
8: end if

(along with the name of the register). A subsequent change to that
register within the basic block does not affect the backup stack. The
reason for doing a single store of a register is to reduce the size
of the stack. To enable this we have a history flag for each register,
which is reset at the beginning of each basic block. For the particular
implementation that is shown in this paper, though the register file
contained 32 registers, the back up stack for the register file was only
16 locations. We profiled a number of applications (such as SPEC
INT 2006 and MiBench suites [9]), to find this number.

For data memory the old values are simply stored in the data
memory stack along with the address of the location. There is no
history flag for the data memory, as the number of flags would be
excessive. Every time a store instruction is encountered, the data
value and the address is pushed on to the stack. After profiling, we
found the maximum number of stack locations necessary was 66.

B. Recovery

If an error occurs, the the status registers and the program counter
are restored from their respective back up locations. The registers
checkpoint stack is popped out one by one, until the bottom of the
stack is reached (since the register name was also stored, we do know
where to restore it). The data memory checkpoint stack is also popped
out one by one until the stack is empty. Algorithm 2 describes how
the register file is restored.

C. Fault Response

Algorithm 3 shows the fault response mechanism. In this study we
assume there is a fail-free detection mechanism (e.g., those in [17],
[24]). If an error occurs a fault flag is set. At every control flow
instruction, the fault flag is checked. If there is no fault then a
new check point is established (the history table is reset, the stack
pointers to the backup stacks are reset, and the execution continues.
If there is a fault, the program counter jumps to a special location,
where the recovery starts. Three additional instructions are created,

Algorithm 2 Algorithmic description of recovery for register file state
valn: value of register n in register file
Ddist: destination register address extracted from checkpoint data
Dval: destination register value extracted from checkpoint data
data: checkpoint data
stackp: checkpoint data stack with pointer value p

1: if p = 0 then
2: end of recovery
3: else
4: p← p− 1
5: data← stackp

6: (Ddist, Dval)← data
7: valDdist

← Dval

8: go to Line 1
9: end if

Algorithm 3 Algorithmic description of fault response mechanism
f status: fault status information (0: number of fault = 0, 1: number of fault ≥
1.)
PC: PC register
r addr: recovery/rollback routine’s address

1: if f status = 0 then
2: establish the new checkpoint
3: clear logging history table and checkpoint data stack
4: else
5: flush the pipeline
6: PC ← r addr
7: end if

which restores the data memory, the registers and the status registers
(including PC), from the backup stores.

V. IMPLEMENTATION

We use SimpleScalar PISA instruction set architecture for the
native processor (32× 32 regfile, 64-bit instruction). The entire CR
functionality lies into both hardware and software implementations.
We use a commercial ASIP design platform [14] to do the high-
level synthesis, and generate the hardware description. This platform
provides a simple but sufficient set of predefined blocks (structural
component library) to compose a single-core in-order processor. The
main design entry of the platform includes: an architectural defi-
nition (pipeline stage attributes), and a micro-operation description,
ASIPmeister’s Architectural Description Language (ADL), for each
instruction of ISA. Micro-operation description allows defining data
transfers and processings (e.g. operations, read, write, etc.) in a
instruction.

The design flow is shown in Fig. 1. At first, the CR functionality
is allocated, and sequenced. Allocation is the process of choosing the
components for CR functionality (e.g. how to build the stack with
predefined blocks). The sequencing process determines the sequence
of each element in terms of instruction and pipeline stage. We use
as-soon-as-possible (ASAP) as the rule-of-thumb for the sequencing
process: putting the Reli micro-operations as early as possible for
each instruction as long as the hardware permits. These two stages
are done in iterations to avoid any data, resources, and control
hazards. Then, the CR functionality is mapped into micro-operations.
These CR-related micro-operations are then integrated into native
instructions’ micro-operations to form a complete ADL model of Reli
processor. At last, the ADL model of the processor is synthesized by
ASIPmeister and outcomes a HDL model3. Examples of Reli ADL
model in ASIPmeister micro-operation language are shown in Fig. 2
and Fig. 3. Fig. 2 shows the ADD instruction for a native processor as
well as for a processor which does checking and recovery. We have
omitted explaining this in detail, due to lack of space. Fig. 3 shows the
ADL description for three instructions necessary for recovery. Only
the stages which have micro-operations are shown in the figure. Once
again details are omitted due to limited availability of space. Micro-
operations in stage 1 are not shown since they are the same for all
instructions.

We modify the methodology proposed in [19] to do the memory
generation. The methodology inserts three extra instructions as the
recovery software routine into the native application code. The
recovery routine address is given to hardware design flow before
synthesis (micro-operation integration), so that the hardware and
software can co-work together.

3The detail of ASIPmeister synthesis methodology is given in [25].
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Stage1: IF

Stage2: ID:

1: tmp_source0 = GPR.read0(rs);

2: tmp_source1 = GPR.read1(rt);

3: source0 = FWU0.forward(rs,tmp_source0);

4: source1 = FWU1.forward(rt,tmp_source1);

5: flag_sel = rd;

6: pre_flag = bufflag.read();

7: a0 = flag_sel == “00000”;

8: a1 = flag_sel == “00001”;

...

9: a31 = flag_sel == “11111”;

10: var_flag = <a31,a30,.,a0>;

11: tmp_flag = var_flag | pre_flag;

12: cond0 = COMP32.cmp(tmp_flag,pre_flag);

13: cond1 = ~cond0;

14: reg00 = [cond1] RFC.read();

15: null = [cond1] RFC.inc();

16: reg01 = [cond1] GPR.read2(rd);

17: reg02 = [cond1] FWU4.forward(rd,reg01);

18: data64b = <rd,zero27b, reg02>;

19: null = [cond1] RFRAMreq.write(one1b);

20: null = [cond1] RFRAMrw.write(one1b);

21: null = [cond1] RFRAMaddr.write(one1b);

22: null = [cond1] RFRAMdout.write(one1b)

23: null = [cond1] bufflag.write(tmp_flag);

Stage2: ID:

1: tmp_source0 = GPR.read0(rs);

2: tmp_source1 = GPR.read1(rt);

3: source0 = FWU0.forward(rs,tmp_source0);

4: source1 = FWU1.forward(rt,tmp_source1);

Stage3: EX

Stage4: MEM1

Stage5: MEM2

Stage6: WB

Stage3: EX

Stage4: MEM1

Stage5: MEM2

Stage6: WB

native ADD 

instruction

Reli ADD 

instruction

Stage1: IF

Fig. 2. Illustration of native and Reli ADD instructions (micro-operation
description)

VI. EVALUATION AND RESULTS

Experiments were conducted in a server with the following config-
uration: Intel Xeon X7560 CPU (2.27 GHz), 24576 KB cache, and
256 GB main memory. The RTL simulation environment used was
Mentor Graphics ModelSim (HDL simulator). The logic synthesis
used was Synopsys Design Compiler (hardware synthesis). The appli-
cation binaries (from MiBench benchmark suite [9]) were compiled
using SimpleScalar PISA compiler [6]. Before going through evalu-
ation, the baseline processors were generated, and their functionality
was verified prior to experimentation.

Our evaluation methodology consists of three basic flows demon-
strated in Fig. 4(a): 1) Fault-free RTL simulation providing the cycle-
accurate fault-free execution time (Section VI-A), 2) Fault injection
test [10] examining fault recovery time, and 3) Logic synthesis
showing hardware cost that is bound to a real-world fabrication
technology. In each of the flows, the results of baseline and Reli are
compared, to observe Reli’s overhead for each testcase application
described in Fig. 4(b). The baseline processor is defined as the
processor shares the basic system model with a Reli processor and

Stage1: IF

Stage2: ID:

1: bs_addr = crc.read();

2: ret_addr = PC_head.read()

3: <nxt_addr,flag> = ALU1.subu(bs_addr, 

eight32b);

4: bneqz = bs_addr != 0;

5: m8neqz = nxt_addr != 0;

6: tmp00 = <bneqz,m8neqz>;

7: cond_ret0 = tmp00 == “11”;

8: cond_ret1 = ~ bneqz;

9: cond_ret = cond_ret0 | cond_ret1;

10: cond_loop = tmp00 == “11”;

11: null = [cond_loop] crc.write(nxt_addr);

12: null = [bneqz] req2buf.write(one1b);

13: null = [bneqz] rw2buf.write(zero1b);

14: null = [bneqz] addr2buf.write(nxt_addr);

15: data_tmp = [bneqz] data2mem.read();

16: data2mem = data_tmp[31:0];

17: addr2mem = data_tmp[63:32];

Stage3: EX:

18: addrerr = [bneqz] Dmem.s_32(addr2mem, 

data2mem);

19: null = [cond_loop] CPC.write(ret_addr);

20: null = [cond_ret] 

MASKREG0.write(zero1b);

21: null = [cond_ret] EOI_OUT.write (one1b);

22: null = [cond_ret] bufflag.reset();

23: null = [cond_ret] crc.reset();

24: null = [cond_ret] RFC.reset();

25: null = [cond_ret] PC_head.write(ret_addr);

26: null = [cond_ret] HI_flag.reset();

27: null = [cond_ret] LO_flag.reset();

Stage1: IF

Stage2: ID:

1: bs_addr = RFC.read();

2: <nxt_addr,flag> = ALU1.subu(bs_addr, 

eight32b);

3: bneqz = bs_addr != 0;

4: m8neqz = nxt_addr != 0;

5: tmp00 = <bneqz,m8neqz>;

6: cond_loop = tmp00 == “11”;

7: cond_ret1 = ~ bneqz;

8: cond_ret = cond_ret0 | cond_ret1;

9: cond_loop = tmp00 == “11”;

10: null = [cond_loop] RFC.write(nxt_addr);

11: null = [bneqz] RFRAMreq.write(one1b);

12: null = [bneqz] 

RFRAMaddr.write(nxt_addr);

13: null = [bneqz] RFRAMrw.write(zero1b);

14: d64bin = [bneqz] RFRAMdin.read();

15: addrin = d64bin[63:59];

16: datain = d64bin[31:0];

Stage3: EX:

17: null = [bneqz] GPR.write0(addrin,datain);

18: null = [cond_loop] CPC.write(tmp_pc);

Stage1: IF

Stage2: ID:

1: hi_tmp = HI_bak.read();

2: lo_tmp = LO_bak.read();

Stage3: EX:

3: null = HI.write(hi_tmp)

4: null = LO.write(lo_tmp)
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Fig. 3. Three new recovery instructions (1: Register File State Recovery,
2: Data Memory State Recovery, and 3: Special Register State Recovery
Instructions, each of which uses three pipeline stages.)
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Application Description

ADPCM.enc
Encode part of ADPCM. 

Computation intensive.

ADPCM.dec Decode part of ADPCM.

blowfish.enc
Encrypt part of  blowfish. 

Computation intensive.

blowfish.dec Decrypt part of blowfish.

CRC32
32-bit cyclic redundancy 

check. Control intensive.

stringsearch

Searchs for given words in 

phrases. Control and 

memory intensive.

(b) Testcase applications

Fig. 4. Evaluation methodology overview (D: detection mechanism)

only performs native instruction set.

A. Fault-free Execution Time

Baseline processor (without any recovery mechanism installed)
and the Reli processor are compared for fault free performance.
Fig. 5 shows the fault-free execution time penalty of processors
equipped with Reli technique for five applications. We compared
Reli’s performance with that of the baseline processor for each
application. The worst case is 2.4% in additional penalty for CRC32
while the best case was 0.6% for the ADPCM.dec. The average
overhead was 1.45%.

B. Fault Recovery Time

1) Fault Injection Test: We used a single bit-flip as the fault model
for this study. To yield statistically significant results, the number
of fault injections was 1000 for each application. We injected one
fault for each iteration. The test had three procedures: 1) Injecting a
fault at compile time to the instruction memory data file; 2) Invoking
the HDL simulator to run the application; 3) Collecting the run-
time behavior from the simulation transcript. The test environment is
largely implemented via Python scripts. To inject a fault, a random
address of the instruction memory is chosen for each iteration. Then
a random bit of the chosen address is flipped to the opposite binary
value. To make the simulation as close as possible to a realistic one,
we implement a detection technique similar to IMPRES [23] to work
with Reli. The detection mechanism monitors bit-flips of instructions,
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ADPCM.enc 15.9 1.4
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blowfish.enc 31.1 1.0

blowfish.dec 31.1 1.0

CRC32 14.1 2.4

stringsearch 10.4 2.3
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Fig. 5. Fault-free execution time (kcc: 103 clock cycle; ∆T : time overhead
over baseline)

TABLE I
STATISTICS OF A THOUSAND TIMES FAULT INJECTION TEST

Application TR [cc]
T̄R [cc]min max

ADPCM.enc 5 50 13.8
ADPCM.dec 5 47 14.2
blowfish.enc 6 60 17.7
blowfish.dec 5 62 17.9

CRC32 5 47 16.0
stringsearch 8 35 13.9

and communicates to Reli at the end of every basic block. Since
library code is difficult to modify, the faults in library code were
excluded in this test.

2) Result Discussion: Table I shows the impact of the proposed
technique on performance when faults occur. We have six categories
for six selected applications. For each category, the average latency of
recovery (T̄R), and the minimum and maximum latency of recovery
(TR) are provided.

Among the six applications, blowfish.dec has the highest average
recovery latency, i.e. 17.9 clock cycles. Whereas ADPCM.dec has
the smallest average recovery latency (13.8 clock cycles). The worst
recovery latency (62 clock cycles) is observed in blowfish.dec, while
the best case (5 clock cycles) is found in ADPCM.enc, ADPCM.dec,
blowfish.dec and CRC32. Importantly, all the effective faults are
successfully recovered by the proposed scheme in the test. This result
suggests Reli is capable of recovering from all occurrences of faults
from the fault model.

C. Core Results

We obtained synthesis results with TSMC 65nm library using the
Synopsys logic synthesis environment. To yield results which were
comparable, no optimizations were applied in this process. The results
are shown in Table II and discussed below in terms of area and
leakage power between seven typical prototypes.

1) Impact on Area and Leakage Power: We compare the baseline
processor with: (1) Six Reli processors, each targeting one of the
six applications selected from MiBench benchmark suite, and (2),

combined single processor with multi-applications, which is used
to examine the the worst case. In each application, the size of
checkpoint stacks is specific and determined by that application’s
behavior (the number of writes in basic blocks), as explained in
Section IV. These stacks contribute significantly to the area and
leakage power increase (particularly in the worst case scenario).
To decide the worst case, we have analyzed SPEC-INT2006 and
MiBench applications, from which the largest numbers of register file
and data memory writes are calculated within a basic block. These are
found in H264 and GCC applications. The worst-case result aims to
show the cost when a random application from embedded application
domain is executed. The overhead in percentage is calculated against
the baseline processor. As is shown, without optimization, Reli costs
from 37.8% to 52.0% more area for the examined applications and
79.3% for the worst case; while 39.6% to 52.4% more leakage power
for examined applications and 77.8% at the worst case.

VII. DISCUSSION

Comparison — Due to the fact that extensive data does not exist
for previous techniques, we have tried to compare with existing
techniques as much as it is possible. Reli outperforms most of existing
CR techniques (e.g., up to 20% for software-based 4) for fault-free
execution. Our system increases time by just 2.4% clock cycles in
the worst case. On the recovery time, Reli takes at most 64 clock
cycles, and is faster than others (e.g., 1000 cycles in [27], 0.1 to 1
seconds in [20]). In addition, Reli’s checkpoint data size (624 bytes
in the worst case) is much smaller compared to others (e.g. mega
bytes for software-based techniques).
Impact on Clock Period — Reli increases the number of data
transfers and operations for every instruction of the native instruction
set. Therefore, it is intuitive to hypothesize that Reli might incur a
certain amount of overhead on the minimum achievable clock period
of the circuit. However, our synthesis result, which is obtained before
placement-and-routing, shows the target processor’s clock period (52
ns, obtained without optimization) can be achieved even without any
delay optimization for Reli. If optimizations are considered during
synthesis, Reli’s impact on clock period could well be negligible. It
is likely that many of the micro-operations are performed in parallel.
And the critical path is not affected by any of the added micro-
operations.
Reliability — When a fault occurs in Relis checkpoint stacks, given
the fact that such memory units are error-prone to soft errors, rapid
error correcting techniques (e.g., ECC) can be considered to improve
the reliability of checkpoint stacks. Moreover, similar techniques
(e.g., two-time-recovery) used in the recovery mode in IBM G5 [27]
can be adopted in Reli’s framework to guarantee that the recovery is
executed correctly.
Scalability — Reli currently is studied on a uni-processor system.
However, this technique can be scaled to multi-processor system-on-
a-chip (MPSoC) systems by adding taking a communication mech-
anism into consideration. Further experiment on MPSoC systems
would be necessary.

VIII. CONCLUSION

In this paper we have presented a novel approach for recovering
embedded applications from transient faults by using custom instruc-
tions. We have realized a classic recovery algorithm, checkpoint and
recovery (CR By integrating CR functionality into native instructions,
we build custom instruction set processors that have built-in CR
functionality. This allows CR to be executed at a finer granularity

4Data for the techniques in [1], [11], [27] are not available.



TABLE II
SYNTHESIS RESULT WITH TSMC 65nm TECHNOLOGY (SDM : SIZE OF THE DATA MEMORY STACK. SRF : SIZE OF THE REGISTER FILE STACK SIZE.

Astack : AREA OF DATA MEMORY AND REGISTER FILE STATE STACKS. Atotal : AREA OF TOTAL PROCESSOR. ∆: OVERHEAD COMPARED TO BASELINE. P:
LEAKAGE POWER. WC: WORST CASE.)

Processor SDM SRF Astack Atotal ∆A Pstack Ptotal ∆P
[byte] [byte] [um2] [um2] [%] [uw] [uw] [%]

Baseline 0 0 0 120981 0.0 0 613 0.00
ADPCM.enc 88 48 12322 171661 41.9 56 879 43.4
ADPCM.dec 88 48 12322 171661 41.9 56 879 43.4
blowfish.enc 192 80 24600 183931 52.0 112 934 52.4
blowfish.dec 192 80 24600 183931 52.0 112 934 52.4
CRC32 72 48 10951 170294 40.8 50 872 42.3
stringsearch 40 40 7401 166737 37.8 34 856 39.6
WC(h264/gcc) 528 96 58015 209474 79.3 263 1090 77.8

than previously possible, such that the checkpoint data size is reduced
greatly. To implement our approach, we have used a commercial
ASIP design tool to handle the ADL to RTL synthesis. We have
simulated our approach using assembly code that are compiled using
the SimpleScalar PISA tool set from MiBench benchmark suite.
Experiment results show that the fault-free performance overhead is
only 1.45% on average. From the fault injection test, we also found
that in the worst case the recovery delay is only 62 cycles. Our
approach costs 44.4% area and 45.6% leakage power overhead in
average, and 79.3% and 77.8% in the worst case found in SPEC INT
2006 and MiBench suites.
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