
978-3-9810801-8-6/DATE12/ c©2012 EDAA

Fast Isomorphism Testing for a Graph-based Analog

Circuit Synthesis Framework

Markus Meissner, Oliver Mitea, Linda Luy, Lars Hedrich

Electronic Design Methodology, Department of Computer Science,

University of Frankfurt/Main, Germany

Email: {meissner, mitea, luy, hedrich}@em.cs.uni-frankfurt.de

Abstract—This contribution presents a major improvement for
our analog synthesis framework with an explorative character-
istic. The presented approach in principle allows the synthesis
of a wide range of circuits, without the limitation to specific
circuit classes. Defined by a specification of up to 15 different
performances, a fully sized, transistor level circuit is synthesized
for a provided process technology. The presented work reduces
the needed computational effort and thus drastically reduces the
synthesis time, while adding new abstraction into the framework
to provide an even wider range of synthesized circuits - demon-
strated in experimental results.

I. INTRODUCTION

Although analog modules often take only a small fraction

of the chip area on a modern integrated circuit, usually this

modules demand the most engineering effort and thus a lot

of development time of specialized and skilled designers. The

ongoing development in integrated process technology - not

only towards shrinking the structures - but also by developing

new concepts as 3D-structures or even carbon nanotubes,

further add new challenges to keep track with the always

present time-to-market pressure. Compared to digital design,

the analog synthesis flow has a low degree of automation.

Whilst recent approaches to parameter synthesis, or sizing

have shown the industrial usefulness of automated analog

synthesis tools, the topology synthesis still lacks industrial

awareness due to non existent, usable tools. This contribution

aims to provide a methodology, which could fill this gap,

by providing a fully automated flow for synthesizing the

topology and sizing of analog circuits with given industrial

specifications.

II. OUR CONTRIBUTION

The presented work is divided into two major parts. The

first one focuses on the generation of unique circuits during

synthesis to optimally utilize the available resources, as the

methodology exhibits the inherent property to generate dupli-

cates of circuits. This is the trade-off introduced by using basic

blocks instead of single transistor synthesis, which already

explodes in complexity by a transistor count of four. By

significantly reducing the design-space through the usage of

basic blocks instead of single transistors, the generation of

duplicates has to be accepted and thus targeted. Whereas the

This work was partly developed within the project SyEnA (project label
01 M 30 86) which is funded within the Research Program ICT 2020 by the
German Federal Ministry of Education and Research (BMBF).

second improvement to the framework is designated to the

quality of the synthesized circuits, by adding a new device

type and by further generalizing the methodology.

• An isomorphism algorithm handling a huge number of

circuits was developed and further optimized to scale

well on huge circuit counts. Further unique requirements

introduced by an explorative analog synthesis flow have

also been targeted.

• Capacitors, this leads to compensated circuits generated

by the framework.

• Further generalization of the constructive synthesis rules

to support an arbitrary number of signal paths.

III. RELATED WORK

There was a lot of early work about general graph isomor-

phism [1] and it was made clear that the graph isomorphism

is in NP, but not necessarily NP nor P-complete. Although

practical implementations of the algorithm behave quite well.

One of the first approaches was the Gemini algorithm proposed

by Ebeling et al., for which later was shown that there are

graphs for which the algorithm fails [2]. Further improvements

developed by Ebeling and Weisfeiler [3] are now the base

for many different general graph isomorphism algorithms as

nauty [4]. An extensive overview about common isomorphism

techniques and methods can be taken from [5].

This contribution presents various improvements to the

topology synthesis methodology initially shown at [6] and

[7]. At this point the methodology was undergoing a redesign

to fully rely on a graph-based circuit representation and

generation [8].

IV. ANALOG CIRCUIT SYNTHESIS FRAMEWORK

The presented work aims to be a flexible analog synthesis

framework based on basic building blocks as shown in Figure

1. Those building blocks are well known analog primitives

taken from standard literature [9] as also used in [10]. Those

blocks are grouped together as abstract basic blocks. Whereas

each abstract basic block group contains only basic blocks,

which share in principle the same input and output character-

istics. Those characteristics are described through ports, each

of them provides the following properties:

• Input or output port

• Voltage or current port with high or low impedance

• Negative or positive bias current direction (if applicable)

Fig. 1. Some example analog basic blocks

A. Graph-based Synthesis

The synthesis target is defined by a specification containing:

• Up to 15 performances (Gain, SlewRate, Area,. . .)

• Maximum allowed block count

• Input and output characteristics

To synthesize a topology, abstract basic blocks are connected

together according to various constructive rules:

• Only interconnect voltages and correctly directed cur-

rents. Connect voltages only to high and currents only

to low impedance ports. (Elementary-Electric-Rule)

• A current source or sink can be inserted to handle the

affected node as a voltage node. (Current-Source-Rule)

• Two correctly directed currents can be connected to create

a new node, which can also be handled as a voltage node.

(Current-Combine-Rule)

The graph-based synthesis now generates topologies by re-

peatedly applying constructive rules to the available abstract

basic blocks. Each generated topology that does not contain

more than the maximum block count and fulfills the specified

input and output characteristics is kept for further processing.

To finalize the generation process, the generated topologies

have to be expanded. This expansion is necessary, as the

abstract basic blocks are just groups of basic blocks - like black

boxes without a specific implementation. Circuit expansion

takes place either in a symmetric or asymmetric way. Same

abstract basic blocks are never expanded with two differing

basic blocks, if symmetric expansion is applied. Opposing

to asymmetric expansion, which expands each abstract basic

block with all its variants, thus leading to lot more circuits.

Throughout this paper symmetric expansion is used, further

details about the expansion method can be taken from [7].

After expansion, the resulting circuits are checked for

isomorphism (a destructive rule), which is described in detail

in the following section. This finishes the circuit generation

step as shown in Figure 2.

All generated circuits now get a bias circuit attached and

are enqueued for evaluation. The Circuit Database, as shown

in Figure 2, asynchronously assigns the tasks for symbolic

analysis to an arbitrary number of specialized application

servers, which communicate with minimal traffic over TCP/IP

to provide the most flexible scaling possibilities for the synthe-

sis framework. Once a symbolic analysis for a circuit results

in a good performance, the circuit is enqueued for sizing

on another type of application servers with WiCkeD [11].

More details about the symbolic analysis and sizing process

can be taken from [7]. Finally the synthesis process returns

fully sized transistor level circuits, which meet the specified

performances.

Fig. 2. Synthesis Flow

B. Compensation

The framework was extended to support a wider range of

operational amplifiers and thus improving the generated circuit

quality and flexibility. Capacitors can now be used and are

evaluated throughout the whole generation and sizing process.

This allows the placement of capacitors inside basic blocks for

circuit generation and furthermore the capacitance is used as a

design variable during the sizing, including a process specific

area calculation. Initially two basic blocks with an included

capacitor are provided to the synthesis process as shown in

Figure 3.

Fig. 3. Two basic blocks with miller capacitors

C. Arbitrary number of signal paths

The constructive Elementary-Electric-Rule and the Current-

Source-Rule have been extended to support an arbitrary num-

ber of signal paths during circuit generation. This further

generalizes the synthesis framework and allows to utilize the

interconnection of basic blocks that have multiple input and

output ports. In order to take advantage of this improvement,

new basic blocks, as seen in Figure 4 and their pMOS

counterparts, were added.

Fig. 4. DualCascode and DualCurrentSource blocks

V. GRAPH ISOMORPHISM FOR GENERATED CIRCUITS

Checking for isomorphism between two graphs is in general

an NP-hard [5] problem, which would lead to an exponential

complexity. Furthermore, the circuits have to be compared

pairwise, this means that the isomorphism algorithm has to be

applied up to O(|C|2) times, with C being the total number

of generated circuits. Additionally the term isomorphism has

to be extended in the context of circuit synthesis.

Fig. 5. Isomorphic circuits with swapped pins

Figure 5 shows two circuits with identical subcircuits de-

noted as A respectively B. The only difference between both

circuits are the swapped pins. From the graph point of view

they are indeed isomorphic, but as the generated circuits

are analyzed, simulated and optimized fully without human

interaction, it is necessary to classify the circuits in Figure 5

as not isomorphic. This guarantees that no two circuits are

not classified as isomorphic, if their only difference is an

unmatched pin.

A. Defining a circuit as a graph

A circuit c consists of i nets and j devices i.e. mos-

transistors, capacitors or any other component:

N := {net1, net2, . . . , neti} (1)

D := {device1, device2, . . . , devicej} (2)

these are always strictly connected to the opposite type through

edges:

E := {e1, e2, . . . , en} (3)

Thus the circuit is represented as a bipartite graph using (1),

(2) and (3):

c = (N,D,E) (4)

Finally the generated circuits for a given specification S using

a set of basic blocks B and a rule set R will be denoted as:

C = gen (S,B,R)

B. An Isomorphism Algorithm for Huge Numbers of Circuits

The used isomorphism algorithm is based on the Gemini

algorithm described in [3], including the improvements sug-

gested in [12], although it contains various modifications to

make it applicable to the requirements given by the represen-

tation of synthesized analog circuits.

The primary idea is to create a graph partition Pi for a

circuit ci,

Pi := {s1, s2, · · · , sk} (5)

which consists of k disjunctive subsets si containing all graph

nodes:

∀s, s′ ∈ Pi → s ∩ s′ = ∅ (6)

The number of nodes d inside a subset si is denoted as |si|,
while a subset of size one is a singleton. To check two circuits

c1 and c2 for isomorphism, the partitions P1 and P2 are

simultaneously refined to contain only singletons. Partitioning

is done implicitly by assigning a label to each node - identical

labeled nodes are inside the same subset. A label of a specific

node x is referenced as L(x) throughout this paper.

si := {∀n, n′ ∈ N ∪D : L(n) = L(n′)} (7)

Initial partitioning is done by labeling the device D and net

nodes N according to their node invariant. This node invariant

for device nodes is the type of the device and for net nodes it

is the degree of the node. Furthermore, if a device node has a

connection to a pin of the circuit, the node invariant for this

device node is altered depending on the pin it is connected to

and the edge which connects it to the pin.

In practice this leads to a partition, where most pMOS

devices are inside one subset, most nMOS devices are in

another subset and net nodes inside subsets according to their

degree.

The initial partitioning is one of the main improvements

compared to the Gemini approach. Instead of assigning labels

according to the device type only, the label is modified if the

device is connected to nets, which represent a pin. So devices

which are equally connected to one or more pins are handled in

a separate subset. In other words: If both circuits contain one

such device, those devices are matched from the beginning and

obviously, if only one of the circuits contains such a device,

those circuits cannot be isomorphic.

The algorithm consists of a preprocessing phase and the

main phase, during which the graphs are pairwise checked for

isomorphism. Algorithm 1 describes the full algorithm for a

given spec, a set of basic blocks B and rules R. Additionally

the fulliso() function is sketched out in Algorithm 2.

Algorithm 1 Unique circuits generator

C ← gen(spec, B,R)
DB ← ∅
∀c ∈ C : preprocess(c)
for all c1 ∈ C do

accept = true

for all c2 ∈ DB do

if ∀p ∈ PR : p(c1) = p(c2) ∧ fulliso(c1, c2) then

accept = false

break {identified c1 as isomorphic}
end if

end for

if accept then

DB ← c1 {add new unique circuit c1}
end if

end for

The preprocess() function takes a circuit as input, extracts

m properties

PR := {prop1, prop2, · · · , propm} (8)

and caches them for fast access during the main phase of the

algorithm. Once the preprocessing is finished, the main phase

starts. All generated circuits are checked for isomorphism

against all circuits in the database. If no isomorphism can

be proved, the circuit is added to the database. Since first all

properties of the two circuits are compared, it is not necessary

to execute the full isomorphism for each pair of circuits. Only

if all properties, extracted during preprocessing, are equal, the

full isomorphism algorithm has to be executed. This method

differs from the Gemini approach and speeds up the process

and is analyzed in the results section.

Algorithm 2 fulliso(c1, c2)

P1 ← initialPartitioning(c1)
P2 ← initialPartitioning(c2)
Q← {(s1, s2) : ∀s1 ∈ P1 ∧ ∀s2 ∈ P2 : min(|si|)}
{smallest subsets, assuming only one node |s1| = |s2| = 1}
while Q 6= ∅ do

node1, node2 ← Q.pop()
next1, next2 ← getNeighbors(node1, node2)
for all n1 ∈ next1 ∧ n2 ∈ next2 do

if n1 ∈ N1 ∧ n2 ∈ N2 then

L(ni) = L(ni) +
∑

e∈E(ni)
L(D(e))

else

L(ni) = L(ni) +
∑

e∈E(ni)
L(N(e)) · L(e)

end if

Q.push ((n1, n2))
end for

if not singletonsMatch(P1, P2) then

return false

end if

end while

return true

With E(x) representing the set of edges connected to the

node x, and D(y) or N(y) representing the set of devices

respectively nets connected to the edge y. L(x) as previously

denoted, returns the current label of the passed node x. Q has

to be a queue to go over the graph with a breadth-first-search.

The fulliso() function primarily implements the Gemini al-

gorithm [3] to determine whether two circuits are isomorphic.

First the smallest available subset of the partition is chosen - it

always exists for both circuits as the partitions were checked

to be equal. At this point it is assumed that both subsets only

contain one node, so the algorithm starts at this node in both

circuits.

For this node all neighbors are acquired and enqueued for

further analysis, because of the bipartite nature of the graph,

these are only net nodes for a device node and vice versa. For

each neighbor of both circuits n1 and n2 now a new label

L(ni) is calculated.

The node is now deleted from its original subset and added

to the new subset determined by the newly computed label.

On continuation the partitions are checked for singletons, these

will be marked so that they will not be relabeled again. Once

the number of singleton subsets differ for both circuits, the

isomorphism check returns a negative result. Now the process

is repeated for the previously enqueued nodes until all nodes

are relabeled and all subsets are singletons. For symmetric

circuits the case occurs that, after all enqueued nodes are

processed, still subsets exist, which are not singletons. The

nodes from these subsets are again enqueued and the process

is repeated again.

It can easily be shown that, after refining both partitions to

only contain singletons, c1 is isomorphic to c2.

if ∀s ∈ P1 ∧ ∀s
′ ∈ P2 : s = s′ ∧ |s| = 1 (3)

→ c1 isomorphic to c2

It was previously assumed, that the initially chosen subsets

only contain one node each. Obviously the smallest subset may

contain more than one node. For this case the isomorphism

is not disproved, if the partition equality check fails after

relabeling. This process must be repeated for all pairs of nodes

from the initial subsets to disprove or prove isomorphism.

C. Accelerating the algorithm

With a rising number of circuits n the algorithm starts to

struggle with the complexity, due to its O(n2) nature. The

circuit count rises exponential with the number of maximum

blocks, what even adds another class of complexity. So a

very important optimization for speed up was applied to the

algorithm.

The target is to reduce the O(n2) complexity - this could be

achieved by reducing the number of circuits the algorithm has

to compare a new circuit with. A well known algorithm for

the general isomorphism problem is the nauty [4] algorithm.

It is based on calculating a canonical representation of a

given graph. This would allow a runtime of O(n · logn) in

our approach, if the representation would be used as a hash

and all circuits could be stored inside a tree with the key

being the hash. Unfortunately this would introduce a major

disadvantage: the calculation of this canonical representation

takes exponential time. This would lead to an explosion of

time inside the preprocessing step.

Inspired by the idea of a hash-able representation of a

circuit, a hash h is computed for every circuit c during

preprocessing based on the previously calculated properties

from (8):

h =
∏

p∈PR

p(c) mod
(

232 − 5
)

The number 232−5 is the largest prime number representable

by a 32-bit unsigned integer and thus spans up a prime residue

class, which behaves better on multiplicative operations to

avoid collisions. This seems to be the best trade-off between

simplicity of calculation and avoiding collisions.

As h is obviously not sufficient to verify isomorphism, at

least equality is necessary for two circuits to prove isomor-

phism, because all properties have to be the same for two

isomorphic circuits. So this hash is used to store circuits with

the same hash inside a ordered tree structure. This allows to

search for circuits with a given hash in O(log n), this reduces

the overall complexity of the proposed pin-aware isomorphism

algorithm for big amounts of circuits to a worst case runtime of

O(n·logn). The tremendous speed up this approach introduces

to the algorithm is evaluated in the results section.

VI. RESULTS

This section evaluates the contributions to the methodol-

ogy. Starting with an analysis of the performance of the

isomorphism algorithm and an evaluation of the efficiency

of the hashing approach to reduce the complexity and thus

the runtime of the algorithm. Followed by an evaluation of

the synthesized circuits, which are classified into types of

operational amplifiers. Finally the improvements to extend the

range of synthesized circuits is analyzed.

Throughout this whole evaluation an Intel Core2 Quad

2.4Ghz server with 8GB RAM was used to generate the

results. The analog synthesis framework synthesizes single-

ended operational amplifier circuits based on a 180nm process

technology and if not specifically mentioned the maximum

block count is four. The software is implemented in C++ on

a Linux platform, with Maple [13] to apply symbolic analysis

and the commercial tool WiCkeD [11] to size the circuits

using the Spectre simulator from the Cadence Suite [14] as

simulation backend - all together in a fully automated flow.

A. Performance of the isomorphism algorithm

The unique requirement for the isomorphism algorithm

inside this analog synthesis framework is to perform well, even

for thousands of circuits. The isomorphism algorithm designed

to fulfill these requirements, strongly relies on pre-calculated

circuit properties. The analysis how often a specific property

triggers and thus avoids the two circuits are being passed

to the full isomorphism check, shows that more than 99%

of the circuit isomorphisms can be decided through property

comparisons.

For the results generated in Table I and II, a synthesis run

with compensation, dual current sources, and dual cascode

blocks was used. The maximum number of allowed blocks was

set to three, four and five. Table I shows the absolute numbers

of comparisons, generated/unique circuits and fulliso() checks

done during the comparisons.

Max Generated Unique Circuit fulliso() Iso.

Blocks Circuits Circuits Comparisons runs runtime

3 192 88 16.928 136 0.68s

4 1.744 658 1.392.346 2.074 28.42s

5 16.112 4.643 114.339.702 23.753 2245.94s

TABLE I
ABSOLUTE COMPARISON COUNTS

One can clearly see that the chosen properties perform quite

well on their task to avoid unnecessary full isomorphism runs.

But unfortunately also the quadratic complexity is obvious,

leading to a very high count of comparisons and thus runtime,

what can be seen in Figure 6. This was, as mentioned in

the previous section, the reason to generate a hash out of the

properties and store circuits according to their hash inside a

tree data structure. The absolute numbers after applying this

improvement and repeating the synthesis process, can be taken

from Table II.

The reduction of done comparisons is enormous and directly

correlates with the runtime (Figure 6). Interestingly the number

of comparisons does not match the number of of applied

Max Generated Unique Circuit fulliso() Iso.

Blocks Circuits Circuits Comparisons runs runtime

3 192 88 136 136 0.42s

4 1.744 658 2.074 1.930 3.57s

5 16.112 4.643 33.347 23.753 38.22s

TABLE II
ABSOLUTE COMPARISON COUNTS FOR HASH METHOD

isomorphism runs. The presented hashing algorithm focuses

on a fast calculation of the hash, so as a trade-off, the number

of collisions is higher, compared to a real hashing algorithm.

These collisions can be calculated by subtracting the number

of full isomorphism runs from the total comparisons. In

practice they do not change the runtime significantly, because

they are quickly discarded as they are still checked for all

properties. This reduction of comparisons and runtime could

be confirmed in all runs presented in this results section and

shows itself as very stable and reliable.

 0

 500

 1000

 1500

 2000

 2500

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e
 f

o
r

Is
o

m
o

rp
h

is
m

 (
s
e

c
o

n
d

s
)

Generated Circuits

Hashing
Simple

Fig. 6. Absolute isomorphism runtime vs. circuit count

Finally a runtime comparison of the simple and the hash-

driven isomorphism algorithm is presented in Figure 6. The

drastic increase of runtime renders the simple algorithm use-

less starting at some thousands of circuits. The additional time

taken by the hashing algorithm is barely visible. The quadratic

behavior of the simple algorithm is clearly visible, but also that

the hash based algorithm nearly has a linear runtime. Nearly,

because there is overhead introduced by the preprocessing and

other administrative steps.

B. Synthesis Results

The isomorphism algorithm now allows a detailed analysis

of the circuits being synthesized by the framework. Table

III shows the generated and unique circuit count for differ-

ent configurations of the synthesis. Compared to our prior

contributions [8], one can see, that the generated number of

circuits was 976 for four blocks, which is now represented

by the (SIMPLE) run without compensation and arbitrary

signal paths. Other presented configurations are: included

compensation (COMP), compensation, dual current sources

and dual cascodes all together (COMP2CS+CASC) and finally

a run with only a maximum of three blocks (3BLOCK).

To benchmark and compare the different runs, a quite easy

specification, as seen in Table IV, was chosen to generate many

nominal successful circuits.

Generated Unique Full Nominal

Configuration Circuits Circuits Runtime Successful

SIMPLE 976 361 2h 46min 17

COMP 1024 385 3h 08min 22

COMP2CS+CASC 1744 658 4h 55min 31

3BLOCK 192 88 23min 5

TABLE III
GENERATED/UNIQUE CIRCUITS FOR DIFFERENT CONFIGURATIONS

The efficiency and thus runtime win introduced by the

isomorphism algorithm can be directly seen by comparing the

time for the SIMPLE run with our prior work [8], which state

a runtime of below 24 hours - this time was undercut by the

factor of eight and can be further decreased by adding more

application servers to evaluate circuits.

C. Analyzing The Synthesized Circuit Classes

First the SIMPLE run is analyzed, as this one is directly

comparable to our prior work. Table III shows how nearly
2
3 (63%) of the circuits were identified as isomorphic. The

17 nominal successful, unique circuits can be classified into

seven OTAs (4x pMOS input stage and 3x nMOS input stage),

two (uncompensated, nMOS input stage) Miller-OpAmps and

eight quite unusual circuits. Except for the circuit shown in

Figure 7(b) and Table IV the 3BLOCK run only returns four

additional unusual circuits.

(a) Folded cascode (b) Three block circuit

Fig. 7. Two synthesized circuits

The occurrence of only two Miller-OpAmps already gives

a hint about the lack of a correctly placed and sized compen-

sation capacitance. This drawback was eliminated by adding

compensated blocks to the basic block library as seen in

Figure 3. This addition to the library generates not only, the

previously mentioned, two nMOS input stage Miller-OpAmp

with compensation. Furthermore, now three Miller-Opamps

with pMOS input stages are also successfully sized and made

available.

As presented in Figure 4, to demonstrate the usefulness

of the arbitrary signal path extension, so-called dual-blocks

were added into the library to support an even wider range

of circuits. Most notably this leads to the synthesis of folded-

cascode operational amplifier topologies. In detail there are

two folded-cascode circuits with an nMOS input stage as seen

in Figure 7(a) including its performances in Table IV and also

one folded-cascode circuit with a pMOS input stage. Moreover

six, again very strange circuit topologies, are generated, which

can not be clearly identified as a classic circuit from circuit

design literature.

Name Specifications Fig. 7(a) Fig. 7(b)

Area < 5000µm2 2420µm2 2920µm2

Gain > 50dB 51.41dB 66.74dB
OutputVoltRange > 2V 2.13V 2.21V
Offset −10mV · · · 10mV 7.98mV 4.37mV
Ft > 4MHz 4.09MHz 4.07MHz
Power < 2mA 612µA 566µA
PhaseMargin > 45 deg 74.4 deg 73.5 deg
SlewRateFall > 1MV/s 1.56MV/s 1.63MV/s
SlewRateRise > 1MV/s 1.58MV/s 1.54MV/s
PSRR > 50dB 51.4dB 57.55dB
CMRR > 50dB 58.8dB 51.42dB
OvershootRise < 30% 7.53% 6.52%
OvershootFall < 30% 5.18% 6.15%
SettlingRise < 1µs 228ns 363ns
SettlingFall < 1µs 245ns 375ns

TABLE IV
SPECS AND THE CIRCUITS’ PERFORMANCES FOR A 180NM TECHNOLOGY

VII. CONCLUSION

By further improving the presented graph-based, explorative

analog synthesis methodology it is now possible to synthesize

an operational amplifier circuit for a given specification in

under three hours. This leads to a 8 times speed up compared

to our prior work. More complex circuits with up to 30

transistors could now be synthesized overnight. The designer’s

task is now, to choose from the synthesized circuits to find

a topology that fits to his requirements. This allows the

exploration of many different topologies at once, instead of

building and sizing a topology by hand, which usually results

in one topology, without taking other (maybe better) topologies

into account.

REFERENCES

[1] M. Goldberg, The graph isomorphism problem, Handbook of graph

theory, Discrete Mathematics and its Applications, chapter 2.2, pages

6878. CRC Press, 2003.
[2] R. Mathon, “Sample graphs for isomorphism testing,” Congressus Nu-

merantium, 21:499517, 1978.
[3] C. Ebeling, Gemini II: A Second Generation Layout Validation Tool. In

Proceedings of the IEEE International Conference on Computer Aided
Design (ICCAD-88), 1988.

[4] B. D. McKay, “The nauty page,” Computer Science Department, Aus-

tralian National University, 2004 http://cs.anu.edu.au/bdm/nauty/, 2004.
[5] J. L. L. Presa, “Efficient algorithms for graph isomorphism testing,”

Ph.D. dissertation, Licenciado en Informatica Madrid, 2009.
[6] X. Wang and L. Hedrich, “An approach to topology synthesis of analog

circuits using hierarchical blocks and symbolic analysis,” in Proceedings

of the 2006 Asia and South Pacific Design Automation Conference.
IEEE Press, 2006, p. 705.

[7] O. Mitea, M. Meissner, and L. Hedrich, “Automated Constraint-driven
Topology Synthesis for Analog Circuits,” in Proc. of the Conference on

Design, Automation and Test in Europe, 2011.
[8] M. Meissner, O. Mitea, and L. Hedrich, “Graph-based framework for

explorative topology synthesis of analog circuits,” in FAC11, 2011.
[9] B. Razavi, Design of analog CMOS integrated circuits. McGraw-Hill,

Inc. New York, NY, USA, 2000.
[10] H. Graeb, S. Zizala, J. Eckmueller, and K. Antreich, “The sizing rules

method for analog integrated circuit design,” ICCAD ’01, 2001.
[11] MunEDA GmbH, “www.muneda.com.”
[12] M. Ohlrich and C. Ebeling, “SubGemini: Identifying SubCircuits using

a Fast Subgraph Isomorphism Algorithm,” DAC ’93: Design Automation

Conference, pp. 31–37, 1993.
[13] Maplesoft, “www.maplesoft.com.”
[14] Cadence Design Framework, “www.cadence.com.”

