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Abstract—Technology scaling has led to unreliable computing 
hardware due to high susceptibility against soft errors. In this 
paper, we propose an error-resilient architecture for Context-
Adaptive Variable Length Coding (CAVLC) in H.264/AVC. Due to 
its context-adaptive nature and intricate control flow CAVLC is 
very sensitive to soft errors. An error during the CAVLC process 
(especially during the context adaptation or in VLC tables) may 
result in severe mismatch between encoder and decoder. The 
primary goal in our error-resilient CAVLC architecture is to 
protect codeword/codelength tables and context adaptation in a 
reliable yet power efficient manner. For reducing the power over-
head, the tables are partitioned in various sub-tables each protected 
with variable-sized parity. Moreover, for further power reduction, 
our approach incorporates state-retentive power-gating of different 
sub-tables at run time depending upon the statistical distribution of 
syntax elements. Compared to the unprotected case, our scheme 
provides a video quality improvement of 18dB (averaged over 
various fault injection cases and video sequences) at the cost of a 
35% area overhead and 45% performance overhead due to the 
error-detection logic. However, partitioned sub-tables increase the 
potential for power-gating, thus bring a leakage energy saving of 
58%. Compared to state-of-the-art table protection, our scheme 
provides 2x reduced area and performance overhead. For function-
al verification and area comparison, the architecture is prototyped 
on a Xilinx Virtex-5 FPGA, though not limited to it. For the soft 
errors experiments, evaluation of error-resiliency and power 
efficiency, we have developed a fault injection and simulation setup. 

I. INTRODUCTION AND RELATED WORK 
The H.264/AVC coding standard [1] enables a wide-range of video 
recording applications (from high-end cinema to low-end mobile 
devices) as it provides double compression at the same visual quality 
compared to earlier coding standards [2]. However, the H.264 encoder 
has an approximately 10× higher computational complexity compared 
to the MPEG-4 advanced simple profile [2]. This increased complexi-
ty has been well countered by the advanced multimedia computing 
platforms (or coprocessors [29][30]) fabricated using modern process 
technologies. However, a serious side-effect of these smaller transis-
tors is their increased vulnerability to soft errors due to (i) lower-
threshold and operating voltages, (ii) particle strikes1 on the transis-
tors, and (iii) tight noise margins [3][4]. These soft errors manifest 
themselves as bit flips in the hardware and jeopardize a correct 
program execution. This gives rise to the need of considering the 
computational reliability as a critical design parameter [4][5], which is 
not only crucial for the current H.264/AVC video coding standard but 
also for the upcoming video coding standards like H.265/HEVC [20]. 

State-of-the-art error-resilient techniques in image and video 
processing have primarily exploited the inherent resilience of different 
parts of the image and video codecs. The works in [13] and [14] target 
fault tolerant JPEG2000, where in [14] aggressive voltage scaling is 
applied at the encoder side to save power at the cost of errors and 
error-concealment methods are applied at the decoder side. Authors in 
[15] explore the decoded picture buffer of an H.264 decoder for 
memory failures under very low operational voltages. The approach in 
                                                                                                                                 
1 High-energy neutron/proton from the cosmic rays or low-energy alpha 

particles from the packing materials [3]. 

[16] performs error classification based on application annotation and 
uses conventional correction methods like copying the neighboring 
pixel/block data in case an error is being detected. Authors in [5] 
propose a technique for H.264 encoder that computes the block 
checksum of the original and residual data of Macroblocks in order to 
protect the prediction path. The soft error tolerance of motion estima-
tion is investigated in [3][10]. These state-of-the-art techniques 
tolerate errors in either (a) main frame/picture buffer [13]-[16], which 
has inherent resilience as a bit flip in a pixel value of a frame is less 
visible; or (ii) motion estimation which is inherently resilient, as an 
error during the matching process may lead to a sub-optimal motion 
vector2 (i.e. more residual data), but not the wrong prediction. 

In contrast, due to its context adaptive nature, complex bitstream 
structure, and multiple VLC tables, the Context-Adaptive Variable 
Length Coding (CAVLC) is highly susceptible to soft errors on 
advanced multimedia computing platforms: A soft error during the 
CAVLC may lead to significant visual artifacts due to encoder-
decoder mismatches. For instance bit flips in a codeword or part of the 
bitstream or a wrong table selection during CAVLC may result in 
wrong residual data (thus wrong reconstructed pixels) that may affect 
a complete Macroblock (MB, 16x16 pixel block) and propagate to the 
subsequent frames. Moreover, faults in certain syntax elements during 
the CAVLC may lead to decoder and/or encoder crashes (e.g., an 
abort due to an unrecognized codeword). Note: traditional error-
concealment methods from communication reliability domain may not 
efficiently cope with these artifacts, as they model data corruption as 
packet losses over a noisy channel [11]. Contrarily, in case of compu-
tational reliability for soft errors, the data is available but it has an 
incorrect value which might still be decodable but leads to visual 
artifacts [5][6] that propagate to other parts of the video frame or even 
the subsequent frames, i.e. an encoder-decoder mismatch (see Fig. 1). 
Furthermore, these soft errors may occur in all profiles (like High or 
Main profiles) which do not exhibit the error concealment algorithms. 

Conventional computational reliability techniques like dual or triple 
modular redundancy [4][5][7], pipeline protection [8], software level 
fault-tolerance [9] incur significant (≥2x) area, performance, and/or 
power overhead as they ignore the application-specific knowledge, e.g., 
the effect of quantization parameter on the vulnerability of CAVLC. The 
work of [17] provides error-tolerance for the header coding process in 
CAVLC. However, it does not provide comprehensive methods for 
reliable coefficient coding. Moreover, the work of [17] provides limited 
power-efficiency. In multimedia systems with advanced video codecs 
(like H.264), area and power are critical design parameters. Therefore, 
power-efficient error-resilience for H.264 CAVLC is desirable, 
especially for coding the transformed quantized coefficients which 
occupy the major portion of the coded bitstream data. 
A. Motivational Case Study: Soft Error Analysis of CAVLC 
We have performed a fault injection case study to analyze the effects 
of soft errors on the subjective video quality of various sequences (see 
details of the experimental setup in Section V). Faults are injected in 
the memory (storing VLC codeword and codelength tables) during the 
encoding of different syntax elements, i.e. level or quantized coeffi-

 
2 The probability of soft errors in the best motion vector is very low due to small 

amount of data. The work of [17]  provides protection mechanisms for this. 
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cients, run, number of total non-zero coefficients, trailing ones, and 
total zeros (see an overview of the H.264 CAVLC in Section II). Our 
experiments unveiled that some syntax elements (like trailing ones, 
total zeros) and variables for context switching are highly sensitive to 
soft errors and may result in decoder crash, because a wrong context 
switch leads to an incorrect codeword and disturbs the decoding of the 
subsequent syntax elements. Therefore, protection of these syntax 
elements and context switch information is of paramount importance. 

Akiyo Susie Rafting

 
Fig. 1 Excerpts from different video sequences showing the effect of soft errors 

on the subjective video quality (white lines encircle the corrupted regions) 

Soft errors in the VLC codeword and codelength tables during the 
coding of level and run values result in visual artifacts (see Fig. 1, 
encircled by the white lines) that may even propagate to the subse-
quent frames as the decoded data is used for prediction of subsequent 
frames. These artifacts are visually unpleasant to the end-user/viewer. 

Our analysis illustrates that computational reliability needs to be 
considered for advanced video codecs targeting future unreliable 
multimedia platforms. Especially, for an error-resilient CAVLC 
hardware, the protection of VLC codeword and codelength tables is of 
key importance, as they are highly sensitive to soft errors and may 
even become more vulnerable as they reside for a long time on the on-
chip memory3. The goal of our work is to provide power-efficient 
error-resilience in H.264 CAVLC with protected VLC tables, while 
exploiting the application-specific knowledge, like inherent properties 
of the CAVLC algorithm and the input video data. 

B. Challenges and Our Novel Contributions 
Since the VLC codeword and codelength tables are accessed frequent-
ly during the CAVLC computation, performing row-based or column-
based or combined row-column-based block-wise parity (like in [12]) 
on a certain complete VLC table incurs significant delay, area, and/or 
power overhead due to parity computations and memory accesses as a 
result of large amount of data (see power savings in Section VI). 
Furthermore, this leads to a higher probability of parity mismatch as 
the soft error probability is higher in a large table due to an increased 
area and a soft error in a single value will always result in a mismatch. 
If only rows or columns are protected with parity, this might even 
lead to frequent reloading of data from the main memory which is 
power inefficient. 

Our analysis of the statistical distribution of different syntax ele-
ments (see details in Section III) shows that not all entries in the 
codeword and codelength tables are accessed with the same frequency 
during the CAVLC of a given video frame. The number of times a 
certain value from the table is accessed highly depends upon the 
texture and motion properties of the video data and the quantization 
parameter. Therefore, the challenge is to provide power-efficient 
reliability/error-resilience by partitioning the tables into multiple sub-
tables that can be protected using low-overhead row- or column-
based block-wise parity. Moreover, the unused tables can be predicted 
and power-gated in the state-retentive sleep mode4 (i.e. the contents of 
the tables are preserved while incurring low leakage) independently to 
obtain further power reduction. To guide such a partitioning scheme 
                                                                 
3 the probability of soft errors in memory elements is much higher compared to 

the combinatorial circuits due to the logical masking effects in the later [3]. 
4 Sleep transistors with multiple sleep modes provide the necessary physical 

infrastructure means for state-retentive power-gating [21][22]. 

and power-gating algorithm, knowledge of statistical distribution of 
syntax elements is the key. 
Our Novel Contributions: We propose a novel error-resilient 
CAVLC hardware for H.264/AVC that employs: 
1). parity-protected partitioned VLC codeword & codelength sub-tables 

(Section IV.A) for reduced delay/power overhead, obtained by, 
2). a design-time partitioning algorithm (Section IV.A) that exploits 

the design-time analysis of error probabilities and statistical dis-
tribution of different syntax elements coded using CAVLC (for 
various test video sequences and quantization parameters; Section 
III) to partition large VLC tables into multiple sub-tables. 

3). a run-time manager for error-resilience and power management 
(Section IV.B) that accesses the data from the partitioned sub-
tables, performs error detection using a reduced-sized block-wise 
parity, and reloads the data in case of a parity mismatch. Further-
more, it determines the power-gating decision for the unused VLC 
codeword & codelength sub-tables in the state-retentive sleep 
mode using the design-time analysis of statistical distribution and 
a run-time classification of Macroblocks. 

Our experimental results demonstrate that compared to the unpro-
tected case, our scheme provides on average 18 dB better PSNR at the 
cost of a 35% area and 45% performance overhead. However, parti-
tioned sub-tables and state-retentive power gating provide 58% 
reduced leakage energy. Compared to state-of-the-art table protection 
[12], our scheme incurs 2x reduced area and performance overhead.  

This is the first approach towards power-efficient reliability/error-
resilience in the H.264 CAVLC against soft errors that exploits inherent 
properties of the CAVLC algorithm and input video sequence. 

II. OVERVIEW OF THE H.264 CAVLC 
The main CAVLC process works on a 4x4 sub-block level. The input 
is the transformed quantized coefficients of a 4x4 block in a zigzag 
scanning order, see Fig. 2. Different syntax elements (SE) for a 4x4 
block are shown in Fig. 2. In CAVLC, values of syntax elements are 
replaced by codewords of a certain codelength. Shorter codes are used 
for frequently occurring values and longer codes are used for infre-
quently occurring values. CAVLC exploits the following properties: 
(i) the non-zero coefficients at the end of a zigzag scan are often 
patterns of +/-1, i.e. trailing ones, (ii) 4x4 blocks contain several 
zeros, (iii) there is a correlation in the number of total non-zero 
coefficients for the neighboring blocks. 

0 4 0 1
0 0 ‐1 0
‐2 0 0 0
1 0 0 0

0 4 0 ‐2 0 0 1 ‐1 0 1 0 0 0 0 0 0
Total Non‐Zero Coefficient (TC) = 5
TrailingOnes (T1) = 3
Total Zeros (TZ) = 5
Levels = 4, ‐1
Run = 1 (not coded, infered from TZ), 1, 2, 0, 1   

Fig. 2: An example showing syntax elements for a 4x4 block 

The following syntax elements are coded using CAVLC (details in [1]): 
• Total non-zero coefficients (TC) and trailing ones (T1) are jointly 

coded. The values of TC and T1 range from 0 to 16 and 0 to 3 
(additional '1's are represented as levels), respectively. The para-
meter N denotes the context switch used to select a row in the 
code/length tables and its value depends upon the TC in the upper 
(TCTop) and left (TCLeft) coded 4x4 blocks. N=(TCLeft+TCTop+1)/2 
if both blocks are available. N=TCTop or N=TCLeft if only the up-
per or left block is available, respectively. Otherwise: N=0. 

• Sign of Trailing ones: The sign of each trailing one is coded as 
one bit: '0' = positive and '1' = negative. 

• Levels: The sign and magnitude of the remaining non-zero 
coefficients (i.e. TC–T1) are encoded in reverse order (i.e. high 
frequency coefficients first). A large table with seven contexts 
(VLC0, …, VLC6) is used for encoding. The context switch de-
pends upon the value of the previously coded levels. 

• Total zeros: The number of zeros before the last highest-
frequency non-zero coefficient is encoded.  



• Runs: Finally, starting with the highest-frequency coefficient, the 
number of zeros before each (except the lowest-frequency) non-
zero coefficient is encoded as a Run value. 

III. ANALYSIS OF ERROR PROBABILITIES AND STATISTICAL 
DISTRIBUTION OF DIFFERENT SYNTAX ELEMENTS 

Now, we discuss the error probabilities for the CAVLC process to 
analyze its relationship with the number of total coefficients (TC). 
Since different syntax elements are statistically dependent, for a 4x4 
sub-block, we can represent the error probability (PE) of the coded 
data (cData) as the summation of the error probabilities of different 
syntax elements. 

PE(cData) = PE(TC) + PE(T1) + PE(Levels) + PE(TZ) + PE(Runs) 

TC and T1 are coded in one codeword (TC1) which depends upon TCLeft 
and TCTop. Therefore, the error probability of the TC1 codeword is given 
as the joint conditional probability: PE(TC1|TCLeft)+PE(TC1|TCTop). Since 
the number of levels and runs depends upon TC, the PE(Levels) and 
PE(Runs) error probabilities can be represented as: 

PE(Levels) = ∑i=1 to (TC-T1) PE(Leveli); PE(Runs) = ∑i=1 to (TC-T1) PE(Runi) 
Moreover, the context adaptation during the level coding (i.e. switching 
of VLC tables) results in a conditional probability for levels, since an 
error in a certain level value affects the coding of the subsequent levels. 

PE(Levels) = PE(Level1|TC,T1) + ∑i=2 to (TC-T1) PE(Leveli|Leveli-1) 

The total error probability of the coded data can be represented as: 
PE(cData) = {PE(TC1|TCLeft)+PE(TC1|TCTop)} (1) 

+ {PE(Level1|TC,T1) + ∑i=2 to (TC-T1) PE(Leveli|Leveli-1)} 
+ PE(TZ) + ∑i=1 to (TC-1) PE(Runi) 

From this equation, we can draw the conclusion that a higher value 
of TC leads to a higher probability of soft errors, thus leading to a 
greater degradation. The value of TC mainly depends upon the 
quantization parameter (QP) and the spatial/temporal properties of a 
given video. To demonstrate this fact, we have performed a statistical 
analysis of the distribution of different syntax elements for homoge-
neous (like in background objects) and textured MBs for several test 
video sequences (ranging from QCIF to HD1080p with slow to fast 
motion, e.g., Foreman, Tractor). A block is categorized using Eq. 2. 
TLV is the threshold for low variance and it is obtained using regres-
sion analysis [18]. µ denotes the average brightness of a given MB. 
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If MB properties are known, knowledge of the highly-probable and less-
probable values of syntax elements can be obtained from the probability 
density function (PDF) plots; see Fig. 3. Assuming these PDFs follow a 
Gaussian distribution, the zone of highly-probable values (with a 
probability of 0.975) is given as F(µ+3σ; µ, σ2) - F(0; µ, σ2), such that µ 
denotes the mean of distribution and σ denotes the standard deviation. 
For instance, the value of TC does not exceed '3' for a homogeneous 
MB. Correspondingly, it can be predicted which parts of the VLC tables 
for a given syntax element are more likely to be used. This prediction is 
helpful for table partitioning and power-gating of the unused tables. For 

instance, the less-probable values are stored in a separate sub-table that 
can be power-gated. The unused tables can then be predicted by 
analyzing the MB properties, which are typically obtained in a video 
preprocessing stage. Note, such an MB characterization and preprocess-
ing stage is also required for fast mode decision and adaptive motion 
estimation in an H.264 encoder [18][19]. Therefore, in this work, we 
assume MB properties are already available to the run-time manager and 
do not introduce any additional power overhead for CAVLC. The goal 
of partitioning is to provide a sub-table organization, such that sub-tables 
not accessed in a certain time window can be power-gated for a long 
time; see Section IV. 

Level ValueN (Context Value) Run ValueTrailing Ones (T1)Total Coefficients (TC) Total Zeros (TZ)
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Fig. 3 Statistical distribution of different syntax elements in CAVLC for various test video sequences (QCIF–HD1080p resolutions)  

Since the values of syntax elements also depend upon the QP, a 
highly-probable value of a given syntax element for homogeneous (H) 
and textured (T) MB can be predicted using Eqs. 3–8. These equations 
are obtained by computing the zone of highly-probable values (consider-
ing a Gaussian distribution) from various distributions obtained using 
various QPs and then applying a polynomial curve fitting. 
NH   =0.18QP2–6.16QP+69.34;  NT =0.24QP2–0.21QP+94.47 (3) 
TCH  =0.22QP2–7.33QP+81.98;  TCT =0.28QP2–9.61QP+109.6 (4) 
T1H  =0.11QP2–3.60QP+38.57;  T1T =0.14QP2–4.57QP+49.23 (5) 
LH   =0.18QP2–5.93QP+64.17;  LT =0.23QP2–7.55QP+82.36 (6) 
TZH  =0.28QP2–9.24QP+101.6;  TZT =0.35QP2–11.9QP+132.8 (7) 
RH   =0.17QP2–5.70QP+62.87;  RT =0.20QP2–6.84QP+76.92 (8) 

IV. ERROR-RESILIENT CAVLC ARCHITECTURE 
Our error-resilient CAVLC architecture receives the transformed 
quantized coefficients after the quantization process in H.264 encoder 
and outputs the codeword and codelength of different syntax elements 
to the bitstream writing module. It consists of three main parts: (i) 
core CAVLC modules, (ii) a run-time manager for error-resilience and 
power management, and (iii) partitioned VLC sub-tables; see Fig. 4. 
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Fig. 4 Overview of our error-resilient CAVLC architecture 

The core CAVLC modules compute the syntax values and their 
corresponding context. For instance, the TC/T1 coding module 
computes the number of total coefficients and trailing ones along with 
the context information N based on the values of TCLeft and TCTop (see 
Section II). The syntax value and the context information are then 
forwarded to the run-time manager that computes the address for the 
appropriate codeword and codelength sub-tables. The values from the 
partitioned sub-tables along with the pre-computed parity values are 
then extracted and forwarded to the parity modules. The computed 
parity is compared with the stored parity. In case of a mismatch, an 
error is detected, and the corresponding entries of the sub-tables are 



reloaded from the main memory5. Furthermore, based on the know-
ledge of MB categorization, the run-time manager predicts the unused 
sub-tables and puts them in the state-retentive sleep mode. In the 
following, we explain the table partitioning algorithm and the opera-
tional flow of the run-time manager for error-detection and power-
management. The core CAVLC modules are simple state-machines 
implementing the standard compliant functionality [1]. 
A. Table Partitioning and Zero Value Elimination 
The VLC codeword and codelength tables are partitioned into sub-
tables using a partitioning algorithm (see Fig. 5) that employs the 
knowledge of the statistical distribution of different syntax elements 
(SE). The loop iterates over all syntax elements, i.e. TC1, Levels, TZ, 
and Runs. First, highly-probable values of the context switching 
parameters and syntax values are estimated using equations 3–8 for 
homogeneous and textured MBs (see lines 3–4). The average values 
are computed (line 5), which are then used to determine the number of 
horizontal and vertical table partitions (lines 6, 8). Symmetric parti-
tioning is required in order to enable a simple design of block-based 
parity hardware and to maximize the potential of power-gating. The 
codeword and codelength tables of a given syntax element 'se' are 
partitioned horizontally (i.e. row-wise) using the average highly-
probable value of the context switching parameter, like N in case of 
tables for coding TC/T1 and VLCnum (VLC0-VLC6) in case of level 
coding (lines 6–7). Afterwards, tables are partitioned vertically (i.e. 
column-wise) using the average highly-probable value of the syntax 
element (lines 8–9). Since the entries of codeword and codelength 
tables for a given syntax element are accessed from the same index, 
both tables of the given syntax element are merged (line 10). 

1. PartitionTable (Syntax Elements SE, Quantization Parameter QP) 
2.  se SE | SE={TC1,Levels,TZ,Runs}       {∀ ∈

  // Estimate highly-probable values of context switch and syntax values 
3.   (csH,csT) := est imateContextSwitch(QP, se);  // Eq.3,4,7  
4.   (svH,svT) := est imateSyntaxValue(QP, se);  // Eq.4–8  
5.   cs=(csH+csT)/2;  sv=(svH+svT)/2; 
    // Horizontal Partitioning 
6.   numPartHz :=  numRows/cs ; ⎢ ⎥⎣ ⎦
7.   {THzCod, THzLen} := part it ion(se.get(TCod, TLen), numPartHz); 
    // Vertical Partitioning 
8.   numPartVt :=  numCols/sv⎢ ⎥⎣ ⎦ ; 
9.   {TVtCod, TVtLen} := part it ion({THzCod, THzLen}, numPartVt); 
10.   Tse := merge(TVtCod, TVtLen);  // Merge codeword & codelength tables 
    // Eliminate sub-tables with all Zero values 
11.   T’ := Ø; 
12.   set T∀ ∈  
13.     numZE := 0; 
14.      c 1 t getNumCols( )   numZE+=isAllZeros(t.getCols(c));∀ ∈ , ..., .
15.     numZeroTablePart it ions :=  numZE/4⎢ ⎥⎣ ⎦ ; 
16.     {t’} := part it ion(t, numZeroTablePart it ions); // only, the sub-

tables with non-zero entries are returned 
17.     T’ := T’ U {t’}; 
18.   se.store(T’); 
19. } 

Fig. 5 Pseudo-code of the table partitioning algorithm 

Our analysis shows that there are several zero values in the sub-tables 
that can be eliminated by intelligent partitioning (see an example in 
Fig. 7). Therefore, for each partitioned sub-table, columns of all zero 
entries are determined (line 14). In case all columns of a sub-table are 
all-zero-entry columns, the complete sub-table is eliminated. Other-
wise, the sub-tables are further partitioned in such a way that the 

                                                                 
5 Note, main memory is ECC protected, which is a well-established practice in 

various research and industrial projects (IBM [23], AMD [24]). 

number of sub-tables with all zero entries is maximized while preserv-
ing the symmetry and parity format used by other sub-tables (line 15–
17), thus leading to a reduced leakage. To enable a fast access by the 
parity hardware, the sub-tables are rotated and a dedicated 50-bit wide 
port to the on-chip memory is provided to fetch 4 values of codeword 
and codelength each. Different sub-tables contain values of different 
bit widths. Therefore, variable-sized parity modules are provided to 
reduce the dynamic power overhead of parity computation. Moreover, 
a small block-size in the parity computation due to less number of 
table values (like, 4 values in Fig. 6) also results in low power for 
parity computation and a low probability of parity mismatch. 

On overall, our proposed scheme reduces power by (i) reduced-sized 
parity computations, (ii) lesser number of table row/column values used 
for parity computations, (iii) reduced memory requirements and leakage 
energy due to zero value elimination, and (iv) power-gating the unused 
VLC sub-tables in a state-retentive sleep mode. 

An Example: We discuss an example of partitioning the VLC table for 
coding the Total Coefficients (TC) and Trailing Ones (T1). This table 
consists of 2x204 values (as specified in the standard [1]) with the 
largest value represented with 5 bits (Fig. 6). The access to this table is 
controlled by three parameters. The choice of a horizontal line is 
controlled by the parameters N and T1 (see Section II). Referring to Fig. 
3, in case of homogeneous and textured MBs, the values of N are 3 and 
6, respectively, with a probability of 0.975. This leads to a horizontal 
partition of size '4' (see line 6 of Fig. 5). The access to a column is 
controlled by the value of TC. Fig. 3 shows that the TC values for 
homogeneous and textured MBs are 2 and 7, respectively, with a 
probability of 0.975. It gives a vertical partition of size '4' (see line 8 of 
Fig. 5). This leads to a partitioned sub-table organization of Fig. 6 (the 
last horizontal partition contains only two sub-tables as its access 
probability is low). Each partitioned sub-table is stored in a small 
memory. Each memory entry has (i) 4x5-bit codelength information plus 
parity and (ii) 4x5-bit codeword information plus parity. Similarly, the 
sub-tables for total zeros (Fig. 7), level values6, and run values are 
partitioned. In case of total zeros six sub-tables with all-zero values (see 
grey boxes in Fig. 7) are eliminated to save the storage requirements. 

Codeword Codelength

 
Fig. 6 Tables for coding Total Coefficients and Trailing Ones 

Codeword Codelength

 
Fig. 7 Tables for coding Total Zeros 

B. Run-time manager for error-resilience & power management 
Our error-resilient CAVLC architecture is equipped with a run-time 
manager (Fig. 8) that performs the following tasks: 
i) Loading the codeword and codelength values: The context informa-

tion and the values of syntax elements from the CAVLC core modules 

                                                                 
6 Although the maximum value of level can be represented in 16-bits, for 

embedded video applications, our statistical analysis for various sequences 
shows that the value of level ranges from -14 to +14 due to the quantization 
effects for QP values ≥20. Note QP=20 is a typical for high-quality encoding. 



are forwarded to the run-time manager for computing the address 
parameters: sub-table identifier IDsubTable, line identifier IDLine, specific 
value IDValue. These address parameters are used to fetch the appropriate 
codeword & codelength values from the respective sub-tables. 
ii) Error-detection and data reloading: four data entries and one parity 
value are extracted for each of the codeword and codelength parts. 
Afterwards, respective parity values are computed using variable-sized 
parity modules and are compared to the stored parity values. In case of a 
parity match, the requested codeword and codelength values are ex-
tracted and output. In case of a mismatch, the address of the sub-table 
entry in the external memory is calculated (using the address generation 
unit) and the data values are reloaded. 
iii) Power-gating the temporarily unused VLC sub-tables: in the last 
step, the run-time manager employs a power-gating algorithm (see 
Fig. 9). First the MB is characterized as homogeneous or textured 
(line 2). Afterwards, for all syntax elements, a prediction of the VLC 
sub-tables is performed by exploiting the statistical distribution of the 
syntax element and properties of the current MB (lines 4–6). After-
wards, the unused sub-tables are set into the state-retentive sleep 
mode, while evaluating the energy benefit to amortize the wakeup 
cost (line 7–9). Alternatively, the tables are kept in the power-on state. 

 
Fig. 8 Operational flow of the run-time manager 

1. PowerGateSubTables(SE, QP, MB) 
2. CMB := evaluateMBCategory(MB);  // Eq.2 
3.  se SE | SE={TC1,Levels,TZ,Runs}       {∀ ∈
4.   csMB := predictContextSwitch(CMB, QP, se);  // Eq.3,4,7  
5.   svMB := predictSyntaxValue(CMB, QP, se);  // Eq.4–8  
6.   TID := getUsedTableID(se.get(T’), csMB, svMB); 
7.    t se.get(T')∀ ∈
8.     If ((t.ID!=TID)&((t.PLeakxLCAVLC4x4)>EWakeup)) powerGate(t); 
9.     else powerON(t); 
10. } 

Fig. 9 Pseudo-code of the power-gating algorithm 

V. FAULT INJECTION AND SIMULATION SETUP 
Though not limited to FPGAs, we have prototyped our error-resilient 
CAVLC architecture on a Xilinx Virtex-5 FPGA. Since, commercial 
FPGAs do not support power-gating features; the prototype is only 
used for area comparison and functional verification. For the final 
product, the whole system is envisaged to be implemented using an 
ASIC flow. For soft error analysis, fault injection, and power compar-
ison, we have developed a fault injection and simulation method, see 
Fig. 10 (see further details in [28]). The inputs are: (i) transformed 
quantized coefficient data from the H.264 encoder, (ii) hardware 
footprint, power, and frequency information obtained after implemen-
tation and place & route for FPGA fabric (see TABLE I for hardware 
results) or from the ASIC flow, (iii) fault configuration in terms of 
fault rate (in #faults/MB). The fault rate is computed from the neutron 
flux (N in particles/mm2/sec, [25]; it provides the flux information 
based on the coordinates of a city/location), fault probability (PFault), 
hardware area (ACAVLC in mm2), MB rate (MBR in MBs/sec): 

NFaultsCAVLC = (N × PFault × ACAVLC) / MBR 
For a given city’s coordinates and three different altitude values 
(covering Terrestrial and Ariel use cases, also used by prominent 
related work [26]), three different fault rates are computed as R=1fault 
per 'N' MBs with N=5, 10, 20. Single bit-flip faults are randomly 
injected in hardware during the processing of syntax elements. The 
outputs of the simulator are the fault-free bitstream and faulty bit-
stream, which are then decoded using the H.264 decoder [27] to 

obtain the decoded videos. The error logs maintain the point of 
mismatches and the decoded videos are used for the objective and 
subjective video quality experiments, see Section VI. CIF (Akiyo, 
Rafting) and HD1080p (Tractor, Pedestrian) sequences are used for 
the experiments as they exhibit slow-high motion content. Other test 
conditions are GOP=IPPP…, QP={20,25,30,35,40}. For the on-chip 
memory, we deploy the model of a 65nm SRAM with multiple sleep 
states [22] due to its reduced wakeup latency (3 cycles for a transition 
from the state-retentive sleep to the power-on mode). 
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Fig. 10 Fault Injection and Simulation Environment 

VI. RESULTS AND DISCUSSION 
Fig. 11 and Fig. 12 illustrate the objective and subjective quality 
comparisons between the fault-free case (Original), our error-resilient 
CAVLC at N=20, and unprotected cases with different faults rates 
(N=5, 10, 20). The rate-distortion (RD) curves in Fig. 11 show that 
our error-resilient CAVLC provides video quality results closer to the 
fault-free case. Since only tables are protected in the case (which 
occupy a major part of the hardware footprint), slight quality degrada-
tion are due to the faults during the computational hardware modules. 
Fig. 11 shows that our scheme provides a significant PSNR improve-
ment (up to 10dB at N=20, 18 dB at N=5) over the faulty cases. The 
effect is also visible in the subjective quality results, Fig. 12. 

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350 400 450

25

Akiyo

PS
NR

 [d
B]

35

45

100 200 300 400

Bitrate [Kbps]

1 3 5
20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000

Rafting

2 4

10

15

20

25

30

35

40

45

50

0 5000 10000 15000 20000 25000 30000 35000 40000

20

Pedestrian

PS
NR

 [d
B]

30
40

1000 2000 3000 20 40 80
20

25

30

35

40

45

50

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Tractor

60

50

10

Bitrate [Mbps]

Original Our Error‐Resilient CAVLC N=20 N=10 N=5

 
Fig. 11 Comparing RD-Curves with Original & Unprotected Cases 

 
Fig. 12 Subjective quality comparison of various excerpts in the Pedestrian test 
sequence: PSNR of Our with red border= 40.22 vs. PSNR of Unprotected case 

with red dotted border=26.40) 

Fig. 13 shows the leakage power savings of our partitioned VLC sub-
tables with power-gating compared to the un-partitioned tables for 
various video sequences using different QP values. On average, our 
partitioned table scheme provides 58% leakage savings. High-textured 
sequences (Mobile, Tractor) provide lower leakage savings compared 
to the slow motion sequences, as more sub-tables are used frequently 
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