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Abstract—With the growing complexity of VLSI designs, func-
tional debugging has become a bottleneck in modern CAD flows.
To alleviate this cost, various SAT-based techniques have been
developed to automate bug localization in the RTL. In this context,
dominance relationships between circuit blocks have been recently
shown to reduce the number of SAT solver calls, using the
concept of solution implications. This paper first introduces the
dual concepts of reverse domination and non-solution implications.
A SAT solver is tailored to leverage reverse dominators for the
early on-the-fly detection of bug-free components. These are non-
solution areas and their early pruning significantly reduces the the
debugging search-space. This process is expedited by branching on
error-select variables first. Extensive experiments on tough real-life
industrial debugging cases show an average speedup of 1.7x in SAT
solving time over the state-of-the-art, a testimony of the practicality
and effectiveness of the proposed approach.

I. INTRODUCTION

Design errors are becoming increasingly common with the growing
complexity of VLSI designs. Design debugging is the process of
localizing the bug(s) in the RTL, based on a failing counter-example
trace. Today, bigger designs and longer traces have made debugging
a resource-intensive task, which consumes up to 60% of the total
verification effort [1].

As a result, various methodologies have been proposed to automate
design debugging and reduce its cost [2]-[7]. Due to advancements
in formal engines, most modern debugging techniques use Boolean
Satisfiability (SAT) solvers [5]. The problem is encoded as a SAT
instance, where each satisfying assignment corresponds to a potential
bug location, called a solution [8]. Each solution consists of a (set
of) circuit block(s) or RTL line(s), that can be modified to fix the
erroneous behavior in the counter-example trace. All-solution SAT-
based debugging guarantees that the root cause of the error is one
of these solutions, which greatly simplifies the task of identifying and
fixing the actual bug.

With typical design sizes exceeding the half-million synthesized
gates mark, the propositional formulas encoding design debugging can
have tens of millions of variables and clauses [7]. This underlying
complexity often presents a challenge even to modern SAT solvers.
The motivation behind this work is to prune the search-space of the
all-solution SAT solver in design debugging. This is done by leveraging
dominance relationships between circuit blocks. A block a is said to
dominate another block b if every path from every node in b to a
primary output passes through a node in a. Dominators have been
used to optimize various CAD tasks, e.g., test pattern generation and
verification [9]-[11]. Recently, dominance between circuit blocks has
been successfully used in an automated RTL debugger [12] to reduce
the number of SAT solver calls by introducing the concept of solution
implications.

This work makes use of the concept of reverse domination. In
more detail, we say that block b is a reverse dominator of block a
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if a dominates b. It is shown that if a is not part of any solution,
then all its reverse dominators can also be ruled out as non-solutions,
that is, as blocks that cannot be modified in any way to correct the
counter-example trace. Based on this idea, we tailor a SAT solver to
leverage reverse dominators for performing non-solution implications.
We present a new SAT branching scheme, where error-select [5], [13]
variables are decided upon first. This allows us to learn blocks that are
not part of any solution early in the solving process. Hence, the concept
of reverse domination could be used much more effectively.

The presented techniques are implemented in a SAT-based automated
RTL debugger, using MINISAT 2.2.0 as the back-end solver. An
extensive set of experiments on real industrial designs demonstrates
that performing both solution and non-solution implications results in
an average speedup of 1.7x in SAT solving time over performing only
solution implications [12]. These results demonstrate the effectiveness
and practicality of our contributions.

The paper is organized as follows. Section II contains background
on design debugging and block dominance. Section III presents the
theory for leveraging reverse block dominators to perform non-solution
implications. Section IV gives our SAT branching algorithm, which
makes non-solution implications effective. Section V shows experimen-
tal results and Section VI concludes the paper.

II. PRELIMINARIES

The following notation is used throughout the paper. Given a
sequential circuit C', the symbols x, y, and s respectively represent the
sets of primary inputs, primary outputs and state elements (flip flops)
in C. Let [ denote the set of all nodes (including nodes in x, y, s). For
each z € {l,x,y, s}, the Boolean variable z; denotes the ith element
of set z.

For simplicity, we consider designs with a single clock-domain,
but the theory developed here is applicable to multiple clock-domain
designs using the results of [14]. Time-frame expansion is a modeling
technique for sequential circuits, which replicates (i.e., unrolls) the
combinational components of C' k times, such that the next state
of each time-frame is connected to the current state of the next
time-frame. For any variable z; (or set z), z; (or z') denotes the
corresponding variable (or set) in time-frame t. The behavior of C'
during the tth clock-cycle is dictated by the transition relation predicate
T(s',s'Tt x*,y"), which can be extracted from C' and encoded in CNF
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Fig. 1.

A Sequential Circuit



using Tseitin transformation with the auxiliary variables in I* (i.e., the
logic gates) [15].

Some of the nodes in [ are grouped into blocks. Each block consists
of the synthesized gates corresponding to an RTL “block™, such as an
if statement or an always block. Let B = {b1, b2, ..., b5} denote the
set of all blocks, where each b; C [. Note that the same node [; could
belong to more than one block because of the hierarchical nature of
RTL. The set out(b;) includes the outputs of block b;. In the unrolled
circuit, the set b} denotes set of nodes belonging to block b; in time-
frame t. Consequently, out(b!) is the set of outputs of block b; at
time-frame ¢.

A. Design Debugging

This section describes SAT-based design debugging and introduces
relevant notation. Given an erroneous design, a counter-example of
length k and an error cardinality /V, the goal of an automated design
debugger is to find all sets of /N blocks that can potentially be
responsible for the faulty behavior associated with the counter-example.
Each such set is referred as a solution of cardinality N. SAT-based
design debugging [5], [13] encodes the problem as a propositional
formula, where each satisfying assignment corresponds to a solution.
The encoding process consists of the following steps.

First, a set of error-select variables e = {e1,...,¢e|p|} is added to
the circuit, where each e; is associated with a block b;. The circuit is
modified such that setting e; = 1 disconnects the nodes in out(b;) from
their fanins, making them free variables, while setting e; = 0 does not
modify the circuit. Next, time-frame expansion is performed on this
enhanced circuit, such that out(b!) are controlled by the same error-
select variable e;, for all time-frames ¢. This allows the SAT solver to
modify the outputs of block b; across all time-frames by setting e¢; = 1
to “fix” any potential errors in b;.

Then, constraints are applied to the initial state, primary inputs and
primary outputs. These constraints ensure that given the initial state
®g(s') and primary inputs ®x (z', ....,2") from the counter-example,
the enhanced circuit produces the expected outputs ®y (y?, ....,y%).
Finally, an error cardinality constraint ®n(e) is added to enforce
Zli‘lei = N. Overall, the design debugging problem is encoded as:

k
Debug = /\ Ton(s', s 2" yf e) A Ds(s))A
t=1

Bx(x', ., ") Ay (Y. ") A B (e) (1)

where Ten (s, s, 2t y*, e) denotes the transition relation predicate
of the enhanced circuit at time-frame ¢.

Each assignment to e = {ei,...,e g} satisfying Debug (1)
corresponds to a debugging solution, and the SAT solver must find all
such satisfying assignments to e. This is normally done by iteratively
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Design Debugging Formulation

blocking each satisfying assignment using a blocking clause and re-
solving Debug until the problem becomes unsatisfiable or UNSAT.

Example 1 Consider the sequential circuit presented in Figure 1. We
are also given a two-cycle counter-example with initial state s1 = 1,
inputs {x1,x2,x3,x4) = ((1,1,0,1),(0,0,0, 1)) and expected outputs
(y1,y2) = ((1,1),(1,1)), demonstrating a mismatch in the second
time-frame at the output yi.

The corresponding design debugging formulation is illustrated in
Figure 2. As shown, each block b; is associated with an error-select
variable e;. The initial-state/input/output constraints are shown in
boxes. The constraint ®n is omitted for brevity. For N = 1,{bs}
is returned by the automated design debugger as the only solution. by
is indeed the buggy block and could be corrected by turning gate ga
into an OR gate.

B. Block Dominance

Block b; is said to dominate block b; if every path from a node in
out(b;) to a primary output contains a node in b;. The notation b;Db;
indicates that b; dominates b;, where D is referred to as the block
dominance relation. Furthermore, the set D(b;) = {b;|b;Db;} consists
of blocks that dominate b;.

Example 2 Consider the sequential circuit in Figure 1. Block bs
dominates block by while no other blocks dominate any other blocks.
This is because every path from out(b1) has to pass through gate g3
of bs to reach the primary outputs y1,y2. However, block by does not
dominate any blocks because there exist paths from bi,bs and bs to
primary output y2 that do not pass through by.

The authors of [12] discuss why existing methods for computing
so-called single and multiple-vertex dominators are not applicable
in a design debugging setting, and present a fixpoint algorithm for
computing the block dominance relation D. The run-time of their
algorithm is O(c - |B] - |E|), where |B| is the number of blocks, |E|
is the number of edges in C' and c is called the loop-connectedness of
C.

Furthermore, [12] proves that given a solution {b;,,...,b;y} of
Debug (1), if /\7]:,:1(17]'” Db;,, ), then {b;,,...,b;, } is also a solution.
This allows them to leverage the block dominance relation D to perform
solution implications, which significantly reduces the number of SAT
calls and speeds up the debugging process.

IIT. NON-SOLUTION IMPLICATIONS USING REVERSE
DOMINATION

In this section, we first define reverse dominators and non-solution
blocks. Next, we prove that reverse dominators can be leveraged to
perform non-solution implications, given an original non-solution block.
In the following section, we present a branching heuristic which enables
the SAT solver to find original non-solutions much faster, leading to
earlier non-solution implications.

Definition 1 A block b; is a reverse dominator of block bj;, denoted as
b;D™b;, if and only if b;Db;.

Clearly, the reverse block dominance relation D™! is completely
determined by D, which can be computed using the algorithm in [12].
The set D™*(b;) = {b:|b;D~'b;} consists of reverse dominators of b;,
i.e., the blocks that b; dominates.

Definition 2 Given an erroneous design C, a counter-example of
length k along with the corresponding expected outputs and an error
cardinality N, b; is a non-solution block if and only if Debug A e; is
UNSAT.

In other terms, a non-solution block cannot be part of any solution of
cardinality N. If N = 1, then a non-solution block cannot be modified



in any way to correct the erroneous behavior in the counter-example
trace. We will prove that reverse dominators of non-solution blocks
are also non-solution blocks. In order to do so, we need to prove the
following lemma.

Lemma 1 Given an erroneous design C, a counter-example of length k
along with the corresponding expected outputs and an error cardinality
N, we have:

((Debug A e; is SAT) A b;Db;) = (Debug A e; is SAT)

Proof: Let w denote the satisfying assignment of (Debug A e;).
Assuming that b;Db;, we will construct an assignment 7’ satisfying
(Debug A ej).

We first construct 7' (e). Let the set of error-select variables assigned

to 1 in w(e) be {ei,€oy,...,€05_ 4} Where {o1,...,0n-1} C
(L, B[] — {d}.
1) If j € {o1,...,0n-1}, we let the set of error-select variables

assigned to 1 in 7' (e) be {ej, €0y, .-, €0n_1 }-
2) If j € {o1,...,0n-1}, we let the set of error-select variables
assigned to 1 in 7' (€) be {e;, €0y, .. €05 1 }-
In both cases, the number of error-select variables assigned to 1 in
7' (e) is N, satisfying ® .

Since b;Db;, any path from out(b;) to a primary output must
pass through out(b;). This makes it possible to partition the unrolled
enhanced circuit described in Subsection II-A into two parts: Let [
refer to the sub-circuit in the fan-out cone of out(b;) (that fans out
to out(b;)) and let J refer to the rest of the circuit (excluding error-
select variables). In Debug A e;, clearly 7'(e;) = 1 in both cases
shown above, effectively disconnecting out(b;) from its fanins. As
such, out(b;) is disconnected from the primary outputs. A node is said
dangling if there is no path from such node to the primary outputs.
Hence, out(b;) and becomes dangling logic. This means that I is
dangling (although J can fan-out to I). Since there are no external
constraints on I, 7'(I) can be computed by simply “propagating”
whatever 7'(out(b;)) and n’(J) are into I (using gate propagation,
which is effectively unit propagation in CNF). Hence, what remains is
to construct 7’ (J).

Note that every error-select variable ej other than e; or e; is
assigned to the same value in 7 and 7', as shown in both cases above.
Furthermore, since 7'(e;) = 1, we are free to set 7’ (out(b;)) =
m(out(b;). In addition, recall that out(b;) has no effect on J since
I is dangling. As such, since 7' (e) = m(ey) for all other ey, for all
nodes v € out(by) N J, we can simply set 7' (v) = m(v). As a result,
7'(J) = mw(J). Since 7(J) satisfies all the constraints in Debug, so
does ©’(J). Finally, since 7'(e;) = 1, 7’ satisfies Debug A e;.

|

The following theorem proves that reverse dominators can be used

to perform non-solution implications.

Theorem 1 Given an erroneous design C, a counter-example of length
k along with the corresponding expected outputs and an error cardi-
nality N, if b; is a non-solution block of Debug and biDilb‘j, then b;
is also a non-solution block of Debug.

Proof: To clarify the presentation, let us define the predicates ®;
and ®;, as follows:

®; = Debug A e; is SAT ®; = Debug N ej is SAT
Using Lemma 1, we have:

(q)l A bJDbz) = q’j

=P, V- (b] Dbl) \Y q)j

-d;, « (b]' Db; A ﬁij)

& (binlbj A ﬁ<1>j) = ~®,

=
=

Example 3 Consider the sequential circuit in Figure 1 and the de-
bugging problem presented in Example 1. We know that block b3 is a
dominator of block by from Example 2. If bs is known to be a non-
solution, using Theorem 1, we know that by is also a non-solution. We
can therefore automatically add the clause (—e1) to prune the search-
space of Debug.

Next, we explain how to make use of Theorem 1. An all-solution
SAT solver returns when a solution is found, making it possible to imply
its dominating solutions [12] without modifying the SAT solver, add
them to Debug using blocking clauses and continue solving. However,
the SAT solver usually does not learn non-solution blocks until the
end of the solving process. This hinders the application of Theorem 1.
As such, it is necessary to tailor the SAT solver to recognize when a
non-solution block has been learned.

Watching for learned clauses of the form (—e;) is not desirable
because the SAT solver rarely learns such unit clauses. Instead, learned
clauses are much more complex and usually involve many other
variables along with error-select variables. Another way to realize that
a block is a non-solution is to examine the forced assignments of unit
propagation (BCP) after each solver restart (when the decision stack is
empty). If some e; = 0 by unit propagation given an empty decision
stack, then the solver has “learned” that b; is a non-solution block.
However, from our experience, using a generic SAT solver, virtually
all non-solution blocks are learned during the last solver restart in
the last call to the all-solution SAT procedure (after all solutions have
been found), leaving little room for improvements using non-solution
implications.

The following section shows how to modify the branching scheme
of the SAT solver to overcome this problem.

IV. SAT BRANCHING SCHEME FOR EARLY NON-SOLUTION
LEARNING

In this section, we describe a new SAT branching scheme for
design debugging, where error-select variables are decided upon first.
This allows the early learning (and simple detection) of non-solutions,
making non-solution implications using reverse dominators useful.

A. SAT Branching Scheme

The decision tree in a SAT solver gives the order in which variables
are decided upon. The first motivation for assigning the error-select
variables early in the decision tree relates to their importance and their
impact on other variable decisions in the SAT solving process. For
example, when e; = 1, the internal nodes of block b; become dangling,
and therefore they are don’t-cares. As such, assigning the nodes in b;,
as well as their fanouts, is useless if e; is later assigned to 1.

A second, and more important, reason for assigning the error-select
variables early is that it allows the solver to learn non-solution blocks
much faster. This in turn enables non-solution implications due to
reverse dominance to prune the SAT search-space earlier and therefore
more effectively. Subsection IV-B discusses how to detect learned non-
solutions using our branching scheme.

As a result, we force the SAT solver to first decide on all error-
select variables (e). Furthermore, we force the solver to always assign
error-select variables that are decided (i.e., not forced due to ®n) to 1
before trying to set them to 0. The reason for doing this is to learn non-
solutions, and is explained in detail in Subsection IV-B. Once all the
error-select variables are assigned, the solver uses the standard decision
heuristics (e.g., VSIDS [16]) for the remaining variables.

In addition, modern SAT solvers have periodic restarts, usually after
a certain number of conflicts. We take advantage of this as follows. If
no non-solutions have been learned during a solver restart, we generate
a random number 7 (1 < r < |BJ), and move all the error-select
variables above level 7 in the decision tree under those that are below
level r. The reasoning behind this is to avoid being engaged in parts
of the search-space where it is hard to learn new non-solutions.




Algorithm 1: SAT Solver for Design Debugging

input: CNF Debug, Dominator relation D, set e

1 foreach ¢; € e do Priority(e;) «— oo;
2 learned « true;
3 result — BCP ();

4 while result # (SAT/UNSAT) do

5 heap <« buildHeap (Priority) ;

6 if learned = false then

7 r < genRandom (1, |B|);

8 heap « reorderHeap (7);

9 end

10 learned « false;

11 numConf — 0;

12 e; < heap.firstErrorSelect ();
13 while numConf < maxConf do

14 if result = (SAT/UNSAT) then return ;
15 if result = Conflict then

16 numConf ++;

17 resolveConflict ();

18 end

19 next <— heap.pop ();

20 if next € e then next.assign (1);
21 else next.assign (polarity ());
2 if (e;.value() =0) then

23 // b; is the block e; represents
24 foreach e¢; € D(b;) do

25 | Debug — Debug A (—e;);

26 end

27 e; < nextErrorSelect ();
28 learned «— true;

29 end

30 result < BCP ();

31 end

32 end

B. Detecting Learned Non-Solution Blocks

To simplify the presentation of this subsection, let us assume without
loss of generality that the variable at the root of the decision tree is e.
According to our branching scheme explained in the previous section,
the SAT solver first assigns e; = 1. If the solver later switches toe; = 0
without finding a satisfying assignment under e; = 1, this means that
e1 = 1 cannot be extended to a satisfying assignment. Hence, e; = 0 is
true for all satisfying assignments (if any exist). In other terms, (—e1)
has been learned and b; is a non-solution block.

This observation is not applicable to all non-root variables in the
decision tree. Consider variable es in the subtree under e¢; = 1,
switching from es = 1 to ez = 0 without finding a satisfying
assignment does not imply that (—e2) has been learned. However, it
is possible to learn about non-root variables in some circumstances, as
shown by Lemma 2.

Lemma 2 Using the branching scheme given in Subsection 1V-A, until
a satisfying assignment is found, all the error-select variables set to
0 along the right-most path of the decision tree correspond to non-
solution blocks.

Proof: Assume that the error-select variables are decided in the
order of (e1,...,e p|). Recall that our branching scheme forces the

Fig. 3. Non-solution blocks using our branching scheme

solver to first set each error-select variable to 1 before trying to set
it to 0. Also assume that e; = 0,...,e; = 0 have been set along
the right-most path of the decision tree and no satistfying assignment
has been found yet. Then by construction, all other assignments to

e1,...,e; have been examined and setting any of them to 1 cannot be
extended to a satisfying assignment. In other terms, each of Debug A
e1,...,Debug A e; is UNSAT. By Definition 2, this means that each
of b1,...,b; is a non-solution block. |

Note that forced variables (due to BCP) are not part of the decision
tree. Using Lemma 2, as soon as the SAT solver switches from e; = 1
to e; = 0, as long as all its ancestors in the decision tree are assigned
to 0 and no satisfying assignment has been found yet, we can be sure
that b; is a non-solution block. This scenario is shown in Figure 3.
Using this, we can imply that every block b; € D™*(b;) is also a non-
solution, by Theorem 1, and therefore add the clause (—e;) for each
reverse dominator.

C. Overall Modified SAT Algorithm

Algorithm 1 presents the pseudocode of our modified SAT solver. All
unassigned variables are already assumed to have been assigned priority
values, which set their order in the decision tree. Our algorithm assigns
error-select variables very large priority values on line 1, in order to
guarantee that they will be at the top of the decision maxheap [17] built
on line 5, which is used to pick the next decision variable.

On line 12, the unassigned error-select variable with the highest
priority is stored in e;. The next variable is popped from the heap on
line 19. If this variable next is an error-select line, then it must be first
assigned to 1 (line 20), otherwise the function polarity() decides the
polarity of next using heuristics such as VSIDS [16] (line 21). Later,
if e; is assigned to 0, block b; is learned as a non-solution block. As
a result, each b; that is dominated by b; is also learned as a non-
solution block and the unit clause (—b;) is added (line 25). After b;
is learned as a non-solution, e; is updated so that new non-solutions
can be learned (line 27). Other functions of the SAT engine such as
BCP() and resolveCon flict() are not modified.

As mentioned in Subsection IV-A, in order to direct the solver
towards parts of the search-space where it is easier to learn non-
solutions, we use the variable learned. If learned = false on line 6,
the SAT engine has spent a full iteration under e; = 1 without learning
any new non-solutions (or finding a solution). In this case, the heuristic
is applied to reorder the heap such that the SAT engine would not
pick e; first in the next restart. A random number r (1 < r < |B]) is
generated, and all the error-select variables above level r in the decision
tree move below the ones under level r.

V. EXPERIMENTAL RESULTS

This section presents the experimental results for the proposed
framework on industrial design debugging problems. All experiments



TABLE 1
DESIGN DEBUGGING SAT SOLVER RESULTS

Instance Info dbg-dom dbg-dom+rev dbg-dom+rev+RR
instance k [1] |B] # time time #1impl | imprv time #impl | imprv
sols (s) (s) non-sols (x) (s) non-sols (x)
rsdecoderl 112 13543 2044 | 430 T/O || 6955.90 1192 [e'S) 5502.49 1211 00
rsdecoder2 112 13564 2044 | 396 33.35 20.46 941 1.6x 19.11 798 1.7x
usb_functl 32 35158 3425 | 422 53.17 45.46 631 1.2x 48.15 941 1.1x
usb_funct2 53 35350 4201 | 576 134.46 117.83 1167 1.1x 110.65 1487 1.2x
wb_dmal 35 | 191386 7896 | 468 123.89 97.26 2100 1.3x 81.34 1823 1.5x
wb_dma2 7 | 299838 8460 | 205 49.14 36.90 3384 1.3x 34.92 2357 1.4x
wb_dma3 28 | 299862 8836 | 526 304.18 182.09 5135 1.7x 179.51 3241 1.7x
vgal 423 89412 1593 128 434.81 172.51 145 2.5x 200.75 192 2.2x
vga2 423 89402 1741 84 106.98 147.95 2717 0.7x 66.33 135 1.6x
ucrc_par 155 1056 63 20 7.97 3.94 0 2.0x 6.38 0 1.3x
mem_ctrll 581 48006 3355 23 12.53 24.67 567 0.5x 7.13 63 1.8x
mem_ctr]2 1180 48006 3355 9 11.76 4.78 0 2.5x 4.76 0 2.5x
mips7891 153 30711 953 49 22.08 13.51 53 1.6x 15.80 34 1.5x
opensparc_ddr21 29 58399 2792 | 373 48.45 33.42 1072 1.4x 29.81 1190 1.6x
opensparc_ddr22 27 64915 2791 | 509 44.11 39.39 1138 1.1x 36.57 1394 1.2x
designl-1 71 | 499325 | 20204 69 53.40 25.08 40 2.1x 20.15 556 2.7x
designl-2 26329 | 499705 | 20211 | 117 72.54 38.27 5073 1.9x 38.62 5886 1.9x
designl-3 5343 | 499696 | 20209 | 120 39.63 31.69 210 1.3x 29.52 199 1.4x
designl-4 467 | 499705 | 20211 | 150 100.89 45.69 5854 2.2x 42.42 5882 2.4x
designl-5 177 | 499705 | 20211 98 73.72 27.04 5760 2.7x 29.28 5665 2.6x
design2-1 26 45632 5507 61 18.47 14.59 543 1.3x 9.89 17 1.9x
design2-2 5 | 203706 7416 50 7.38 4.23 53 1.7x 4.76 59 1.6x
design2-3 20 2082 185 62 0.13 0.08 65 1.6x 0.09 72 1.4x
design3-1 56 5454 495 | 129 3.03 2.07 187 1.6x 1.94 153 1.6x
design3-2 144 2333 144 28 0.083 0.07 52 1.2x 0.066 19 1.3x
AVERAGE [ [ [ [ [ 7317 ]| 47.03 | [ [ 4249 | [
are run using a single core of a i5-2400 3.1 GHz workstation with 8GB 1 T T T T T
of RAM and a timeout of 7200 seconds. The presented techniques are
implemented on top of a state-of-the-art SAT-based debugger [5], [12], @
[13] with a Verilog front-end to allow for RTL diagnosis. We tailor the -% 08 r
debugger’s back-end solver, MINISAT 2.2.0 [18], to leverage reverse 8
dominators for performing non-solution implications as described in S o6}
this work. z
Eight industrial Verilog designs from OpenCores [19] and three E
commercial designs provided by our industrial partners are used in g o04r
our experiments. For each design, several debugging instances are s
generated by injecting different designer mistakes such as wrong state Q
o ? . . . T 02F
transitions, incorrect operators or incorrect module instantiations. The i
erroneous designs are then verified using industrial verification tools. A
failure is detected and a counter-example is recorded and passed to the 0
debugger. Experiments are conducted with three different versions of 0 5 10 15 20 25
the SAT solver, the original MINISAT (dbg-dom), our enhanced version Debugging Instances
without the randomization heuristic after restarts (dbg-dom+rev), and
our enhanced version with error-select variable order randomization Fig. 4.  Ratio of implied non-solutions to all non-solutions using dbg-
at restarts (dbg-dom+rev+RR). Note that solution implications are = dom+rev+RR

applied in all experiments.

Table I shows the results of all our experiments. The first column
gives the instance name. The next four columns respectively show the
length of the counter example k, the number of nodes || in C, the
number of blocks |B|, and the number of solutions, # sols. Column
dbg-dom gives the total run-time of the original MINISAT 2.2.0.
Columns seven (time), eight (# impl non-sols) and nine (imprv) under
dbg-dom+rev respectively give the total run-time of dbg-dom+rev,
the number of implied non-solutions and the speed-up compared with
dbg-dom. The following three columns show the same numbers for
dbg-dom+rev+RR.

Figure 4 plots the ratio of implied non-solutions to all non-solutions
using dbg-dom+rev+RR for each instance, sorted in increasing order.
It can be seen that up to 75% of all non-solutions blocks are implied
early and 25% of all non-solutions blocked are implied on average. As
a result, the search-space of the SAT solver is pruned early, resulting

in significant speed-ups.

Figure 5 plots the number of solutions versus run-time for dbg-dom
and dbg-dom+rev+RR for rsdecoder2. Clearly, dbg-dom+rev+RR
outperforms dbg-dom by discovering solutions at a significantly faster
rate. In addition to this faster rate, dbg-dom+rev+RR returns earlier
solutions faster than its average rate (i.e., its solutions plot is concave).
This is beneficial because it allows the designer to examine those
solutions earlier while the debugger continues to run.

Figure 6 plots the number of implied non-solutions versus run-time
for dbg-dom and dbg-dom+rev+RR for rsdecoder2. In this figure, each
implied non-solution found during the search is recorded at the time the
SAT solver returns the next solution. Although dbg-dom+rev implies
more non-solutions overall compared to dbg-dom+rev+RR, the latter
learns non-solution blocks earlier. This is true in general, with slightly
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more non-solutions being implied on average in dbg-dom+rev (28%)
than in dbg-dom+rev+RR (25%). However, non-solution implications
in dbg-dom+rev+RR are usually found earlier than in dbg-dom+rev
because the former tries to actively go into parts of the search-space
where it is easier to learn non-solutions. Returning non-solutions early
is favorable because it helps the SAT solver prune the search-space
faster.

The average speed-up in total SAT run-time compared to dbg-dom
is 1.68x for dbg-dom+rev and 1.70x for dbg-dom+rev+RR, showing
significant improvement. The difference between dbg-dom+rev and
dbg-dom+rev+RR is small, however the latter is more consistent and
shows improvement over dbg-dom in all cases. In some instances,
such as for rsdecoderl, both versions of our solver terminate, while the
original solver times out. In rare cases, such as ucrc_par and mem_ctrl2,
no non-solutions are implied. However, our solvers still show significant
speed-ups over dbg-dom due to our branching scheme which decides
error-select variables first. Finally, Figure 7 plots the SAT run-times
of our solvers dbg-dom+rev and dbg-dom+rev+RR versus those of
dbg-dom on a logarithmic scale, demonstrating the effectiveness of
our method.

VI. CONCLUSION

This work shows how to leverage reverse dominators in a circuit
to speed-up SAT-based automated design debugging. This is done by
performing non-solution implications, consisting of the early pruning of
non-solution areas of the problem search-space. A new SAT branching
strategy is also proposed for design debugging, which expedites the
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learning of non-solutions by the solver. Finally, an extensive set of
experiments on real industrial designs demonstrates the robustness and
practicality of the presented framework.
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