
A Guiding Coverage Metric for Formal Verification
Finn Haedicke1 Daniel Große1 Rolf Drechsler1,2

1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{finn, grosse, drechsle}@informatik.uni-bremen.de

Abstract—Considerable effort is made to verify the correct
functional behavior of circuits and systems. To guarantee the over-
all success metric-driven verification flows have been developed.
In these flows coverage metrics are omnipresent. Well established
coverage metrics for simulation-based verification approaches
exist. This is however not the case for formal verification where
property checking is a major technique to prove the correctness
of the implementation.

In this paper we present a guiding coverage metric for this
formal verification setting. Our metric reports a single number de-
scribing how much of the circuit behavior is uniquely determined
by the properties. In addition, the coverage metric guides the
verification engineer to achieve completeness by providing helpful
information about missing scenarios. This information comes
from a new behavior classification algorithm which determines
uncovered behavior classes for a signal and allows to compute the
coverage of a signal. To measure the complete circuit behavior
we devise a coverage metric for a set of signals. The metric
is calculated by partitioning the coverage computation into a
safe part and an unsafe part where the latter one is weighted
accordingly using recursion. This procedure takes into account
that in practice properties refer to internal signals which in turn
need to be covered them-self. Overall, our metric allows to track
the verification progress in property checking and significantly
aid the verification engineers in completing the property set.

I. INTRODUCTION

Verification continues to dictate the overall costs of circuit
design and the projections see no end to this trend. Hence,
to keep up with the progress of fabrication technology the
verification approaches require continuous improvements.

Different verification methodologies have been developed
over the last decades. Simulation-based validation of assertions,
model checking and clever combinations from both worlds are
available today (see e.g. [1], [2], [3], [4]). In addition, methods
to estimate the verification quality have been proposed. A
rich set of methods has been developed for simulation-based
verification which essentially identify inadequately exercised
portions of the design. An overview on the respective coverage
metrics to qualify the testbenches can be found e.g. in [5].
However, these metrics cannot be used for coverage analysis
in formal verification because formal methods traverse the un-
derlying Finite State Machine (FSM) of the circuit exhaustively.
The first coverage methods developed for model checking –
which try to answer whether enough properties have been
specified – were based on mutations. The general idea is to
perform a small modification of the design (or the FSM) and
then to check if this is detected by the properties [6]. Many
papers followed this concept, e.g. [7], [8], [9], [10], [11], [12],
[13]. But still the main problem of these approaches is the
sheer number of possible mutations.

Alternative approaches have been devised to check that
the property set covers the whole functionality of a design
[14], [15], [16], [17]. Conceptually, these approaches an-
alyze whether each output is uniquely determined by the
properties. If there is a verification gap, a scenario can be

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project SANITAS under contract
no. 01M3088 and by the German Research Foundation (DFG) within the
Reinhart Koselleck project DR 287/23-1.

978-3-9810801-8-6/DATE12/ c©2012 EDAA

derived that is not yet specified. In this work we use [16]
to perform the coverage check. The approach generates a
coverage property for each circuit output. The coverage
property fails if the properties do not fully determine the
output. From the respective counter-example of the Bounded
Model Checking (BMC) proof an uncovered scenario can be
derived. But still the verification engineer wants to know:
“How much of the design behavior have I covered with my
properties?”

Existing approaches are not providing satisfactory answers
to this question. A metric based on minterm-counting has been
presented in [18] to analyze a property set without any circuit
implementation. However, there is no hint which functionality
is uncovered and a lot of manual work is necessary to associate
the minterms to scenarios. In contrast, [16] allows to generate
several specific uncovered scenarios by repeated execution
while blocking the previous counter-example. However, such
a procedure might become expensive for the following two
reasons: First, all possible values of datapath variables used
for computing the current output would be enumerated which
is infeasible for larger bit widths. Second, a significant manual
effort is required to identify the relevant signals of a scenario
which control the actual circuit operation. These signals are
required to specify the missing properties. Besides this, no
metric is available to precisely spot the current status and to
track the verification progress.

In this paper, we present a guiding coverage metric for
formal verification and an algorithm for computing this metric.
The core component of our approach is a new behavior
classification algorithm: For a given signal this algorithm forms
a set of classes that describe certain functionality of the RTL
circuit. The classes are formed by a modified cone-of-influence
analysis and subsequent abstraction, which is executed on the
counter-examples from the coverage check. The abstraction
determines the common assignment of a class by removing
different data values such that only controlling values remain.
Then, the coverage of a signal can be computed by relating the
number of uncovered classes with all possible behavior classes
of that signal. However, a coverage metric should provide a
measure for the complete circuit. Therefore, we introduce a
coverage formulation for a set of signals, typically the circuit’s
outputs. Since properties for realistic designs often rely on
internal signals of the circuit this should also be taken into
account automatically. Hence, the proposed metric calculates a
safe coverage and an unsafe coverage which reflects properties
without and with dependencies, respectively. Using recursion
the latter one is weighted accordingly. If a signal is not
fully covered during the coverage computation, the determined
uncovered classes give a direct hint which circuit behavior
needs to be specified and hence guides the verification engineer.

The remainder of the paper is structured as follows: Sec-
tion II gives the preliminaries. The behavior classification
algorithm is presented in Section III. Section IV introduces
the guiding coverage metric and an example. In Section V
our approach is evaluated. Finally, the paper is concluded in
Section VI.

II. PRELIMINARIES

We assume that the reader is familiar with BMC [19]. In this
paper however, the states of the first time frame of the unrolled
circuit are not constrained during the SAT check which allows
to prove interval properties (for more details see e.g. [20]). For
property specification we use a subset of PSL [21].

A basic procedure for the proposed guiding coverage metric
is the coverage check presented in [16]. The approach generates
a coverage property for each output o of the circuit and
reduces the coverage problem to a BMC problem. If this
coverage property holds, the value of o is specified by at
least one property in any scenario. To perform the coverage
check a multiplexer construct is inserted into the circuit and
the coverage property basically states that the union of all
properties that involve o does not admit behavior else than
the one defined by the circuit. Note that this approach can
only decide whether an output is uniquely determined by the
properties or not (in the second case also a counter-example
is provided). But no metric is calculated.

III. BEHAVIOR CLASSIFICATION ALGORITHM

In this section the behavior classification algorithm is
presented. The general idea is as follows: The algorithm
uses traces (counter-examples) which activate a certain circuit
functionality to automatically determine behavior classes of
the circuit. Basically, a class is an active path in the circuit
and contains the respective controlling signals and values
assigned to them. A prerequisite for the proposed classification
algorithm is that we can distinguish between control and
datapath. For instance, “if” and “case” statements of an HDL
description are mapped to multiplexer structures that can be
recognized. Similar techniques have been used to scale formal
approaches, see e.g. [22], [23], [24].

In the next subsections we present the notation used through-
out the paper, the classification algorithm and a simple example
demonstrating the classification.

A. Notation and Algorithm
In the remainder of this paper the following general notations

are used:
• C denotes a circuit,
• E denotes a set of environment constraints,
• P denotes a set of properties, and
• s denotes a signal / S a set of signals.
The classification algorithm is based on two sub-algorithms:

A coverage checking procedure which determines for a given
set of properties and a considered signal an uncovered scenario
in form of a trace. We use [16] for this task where an uncovered
scenario is a counter-example of a failing coverage property.
The second sub-algorithm is a Modified Cone-Of-Influence
(MCOI) procedure: In case of a multiplexer construct, MCOI
adds only the data input to the cone which is currently activated
by the select input according to the given trace.

Before we present the classification algorithm, two main
data structures are introduced:
• SignalPath: describes a path of signals, i.e. the signals

are connected by standard circuit elements. A signal path
is the result of the MCOI procedure.

• Map SignalPath to Assignment: stores a mapping from a
signal path to a subset of assigned variables of this path.
This map is used to represent the behavior classes, the
final result of the algorithm.

Algorithm 1 shows the pseudo-code for the classification
algorithm. There, CC denotes an instance of the coverage

Algorithm 1: Behavior classification algorithm
Input: Circuit C, Environment constraints E, Property P ,

Signal s
Output: Set of behavior classes

1 Map SignalPath to Assignment cls ;
2 CC.init(C,P,E, s) ;
3 for n ← 1 to ncex do
4 Counterexample cex ← CC.find_uncovered() ;
5 if cex was not found then break ;
6 SignalPath sp ← MCOI(C, s, cex) ;
7 Assignment a ;
8 if sp ∈ keys(cls) then
9 a ← cls[sp] ;

10 foreach Signal s′ ∈ sp do
11 if cex[s′] 6= a[s′] then remove s′ from a ;
12 else
13 foreach Signal s′ ∈ sp do
14 a[s′]← cex[s′] ;
15 cls[sp]← a ;
16 CC.add_blocking_clause(a) ;
17 return cls;

checker. The input of the algorithm consists of the circuit, the
environment constraints, the property set, and the signal for
which the behavior classes are to be determined. The algorithm
starts with the initialization of the coverage checker (line 2)
and then performs the main loop. In each iteration, at first
a new counter-example (uncovered scenario) is determined
by the coverage checker (line 4). Then, the MCOI procedure
is executed for this counter-example to extract the signal
path for the considered signal. If we have seen this signal
path in any previous iteration, a class for this path already
exists. Therefore, we can extract the relevant signals and their
assignment (line 9). In the next step we abstract from the
specific assignment: For each relevant signal, we check if the
assignment differs from the corresponding assignment in the
current counter-example. If this is the case, we can safely
remove this signal since the operation of the current circuit
behavior is not controlled by this signal (line 11). Otherwise,
if we have not seen the signal path before, all assignments for
the contained signals form a new class (line 13 - 14). Now,
the updated or new assignments are stored (line 15). Before
the algorithm continues the next iteration, all relevant signals
of the signal path and their assignments are used to form a
blocking clause such that the exact same scenario will not be
found again (line 16). At the end, the classification algorithm
returns the determined classes.

Now, for a circuit, a set of environment constraints, a given
signal, and a property set we can compute the number of
uncovered classes as

#uncov_class(C,E, P, s) = |class_algo(C,E, P, s)|. (1)

We will use this result in the next section to define
the coverage for a signal. Before, we provide an example
demonstrating the classification algorithm.

B. Example and Observations
To illustrate the classification algorithm, a simple 32-bit

ALU as depicted in Figure 1 is used. The circuit either adds or
multiplies the inputs a and b, depending on the control input
sel. For this example, we assume no properties have been
specified (so P is empty). Hence, all 265 input combinations
are uncovered cases.

metric(C,E, P, S) =
∑
s∈S

safe coverage

cov(PExt
s , s)+

unsafe coverage(
cov(P, s)− cov(PExt

s , s)
)
·

unsafe weight

metric(P, signals(P Int
s))

|S|
(2)

a
32

b
32

sel

ADD

MUL

d1 1

d0
0

o
32

Fig. 1. A simple ALU

In the first iteration of the classification algorithm, the
coverage checker computed the counter-example a = 1 ∧
b = 3∧ sel = 0, which results in an multiplication with the re-
sult o = 3. Then, the algorithm executes MCOI for this counter-
example. The resulting active signal path is depicted as bold
lines in Figure 1. At the multiplexer, the cone is restricted to
the select input and the input activated by the counter-example.
The resulting path defines a new class and the assignment of the
active signals is stored (a = 1, b = 3, sel = 0, d0 = 3, o = 3).
From this assignment, a blocking clause is created, so that this
scenario can not occur again.

Assuming that the next counter-example also triggers the
multiplication, e.g. a = 1 ∧ b = 4 ∧ sel = 0, the same active
path is calculated and the assignment for this class is updated.
In this case b, d0 and o differ and are therefore dropped from
the class assignment, which is now a = 1 and sel = 0. This
actual assignment is used to build the blocking clause and
hence excludes any combination of b with these values. With
a final counter-example for this class, also a will be dropped
and only sel 6= 0 will be used as blocking clause. Hence, no
more multiplication counter-examples will be generated and
this class is completed with the signal path and the controlling
assignment sel = 0.

The addition operation can also be classified with a maxi-
mum of 3 counter-examples, so altogether only 6 uncovered
counter-examples had to be generated to completely classify
the behavior of this ALU.

In general, no more counter-examples than the number of
inputs in the MCOI need to be generated for a class to be
completely classified. The order in which the counter-examples
are generated is not relevant as the classes are only identified
via their respective active signal path.

Please recall that the proposed classification algorithm
requires multiplexer elements to be explicitly available in the
circuit representation. But this is not a practical limitation since
our approach can be applied before logic optimization. The
resulting complete property set can be used for any circuit
representation.

IV. GUIDING COVERAGE METRIC

This section introduces the proposed guiding coverage
metric. At first, we describe how to compute the coverage
of a signal. Using this result, the recursive formulation of our
coverage metric is given. We illustrate the metric by means
of an example. Finally, the workflow to achieve full coverage
using the proposed metric is presented.

A. Coverage of a Signal
Based on the behavior classification algorithm as introduced

in the previous section we can compute the coverage of a
signal as follows:

cov(C,E, P, s) = 1− #uncov_class(C,E, P, s)

#uncov_class(C,E, ∅, s)
(3)

The denominator in the fraction uses no properties (P is
empty) and hence the number of all behavior classes for s
is determined. The numerator represents the number of classes
which are not covered. Overall, complementing this fraction
gives the coverage of s by P . Furthermore, it is easy to see if a
class is covered (by a single property or in combination through
several properties), this class is not found by the classification
algorithm anymore since no counter-examples exist. Therefore,
this class does not appear in the numerator. In the best case,
if the signal is completely described by the properties, the
numerator becomes 0 and hence the overall result becomes 1.

In the following, we introduce our coverage metric based
on this result.

B. Coverage Metric
Our coverage metric meets two practically very important

requirements: First, a single number is computed for a set of
signals (typically the set of circuit outputs is used). Second,
our metric takes into account if properties use internal signals
and ensures that theses signals also have to be covered since
otherwise the overall coverage cannot become one.

The following notations are required for our metric:
• P Int: refers to a set of properties with dependencies on

internal signals,
• PExt: refers to a set of properties without dependencies

on internal signals, and
• Ps: denotes a set of properties specifying the signal s.
Equation (2) gives the recursive formulation of our coverage

metric.1 The metric is computed for the circuit C, the environ-
ment constraints E, the property set P and the set of signals S.
For each signal s from S its resulting coverage is determined
and added up. The coverage for s is calculated on the basis
of safe coverage, unsafe coverage, and unsafe weight. Safe
coverage accounts for the coverage of the signal s where only
external properties determine the value of s, i.e. no internal
signals are used to constrain the behavior of the current signal
(neither in the antecedent nor in the consequent of the property).
Thus, this number can be used without additional justification.
In contrast, unsafe coverage (first part of the second addend)
refers to the coverage fraction where dependencies on internal
signals exist. The unsafe coverage is computed as overall
coverage minus safe coverage but weighted accordingly (see
unsafe weight). To determine the weight, the metric is evaluated
again, but now instead of the signals S we use all internal
signals occurring in the properties (denoted as signals(P Int

s)).
As a result, we ensure whether a new property is specified for
a certain signal and this property uses an internal signal, this
internal signal itself needs to be covered. If this is not done,
the respective weight can not become 1 and hence the overall
coverage can not become 1.

Due to the structure of the properties it might happen that
the dependencies form a loop, e.g. the coverage of a signal
s directly or indirectly depends on a signal t which again

1Note that in cov(. . .) C and E are omitted for readability.

din
16

par

even

we

14 : 0
15

parity

concat 1
0 FF0

1 dout
16

Fig. 2. 16 bit memory element with optional parity generation

depends on s. In such a case the coverage of s would be used
to calculate the weight for s. Therefore, the plain coverage
cov(C,E, P, s) (see (3)) is returned if the calculation detects
a loop. The plain coverage is an upper bound since this
is the maximum possible coverage for s given P (ignoring
dependencies). This upper bound is now used to calculate the
coverage of t and finally for the weighted coverage of s. This is
correct because full coverage can only be obtained if this upper
bound is 1 and also all signals along the loop are fully covered.
If s or any signal in the loop is not completely covered, the
metric will detect and reflect this with a value less then 1.

Altogether, the recursive formulation guarantees that the veri-
fication engineer covers all depending signals by reducing these
signals finally to inputs or covered states. As described, the
recursive coverage computation is necessary for the depending
signals. Since the metric is based on the circuit classification
algorithm to determine the uncovered circuit behavior classes,
control signals and their respective assignments are calculated
and available. This allows to easily specify the remaining prop-
erties and to achieve full coverage. In that sense the verification
engineer is guided during the property specification process
with target-oriented information. However, it is important to
note that the determined classes should only be used as a
reference point for property specification. Creating a property
one-to-one from a class may leads to weak properties which
are too design dependent.

C. Example
We illustrate our guiding coverage metric for a 16 bit

memory element with optional parity generation (see Figure 2).
If parity is enabled (input par) and data is written into the
memory (by input din), the MSB of the data is replaced by
the parity calculated from the data bits 0 to 14. The parity
computation can be controlled to be odd or even via the input
even.

When running the classification algorithm for the output
dout with no environment constraints and the empty property
set, i.e. executing uncov_class(C, ∅, ∅, dout), four classes are
found:

1) No data is written: we = 0
2) Plain data is written: we = 1 ∧ par = 0
3) Odd parity data is written: we = 1∧par = 1∧even = 0
4) Even parity data is written: we = 1∧par = 1∧even = 1
A naive iteration of the coverage check for dout using the

empty property and blocking each returned counter-example
would generate 254 counter-examples in total (3+16 bit inputs
over two cycles plus 16 bit for the state).

For the circuit at hand, the three properties shown in Figure 3
have been specified. Performing a coverage check for dout
using [16] gives the result that no uncovered scenarios exist.
However, applying the developed metric the result is only
a coverage of 50% for dout as can be seen in the upper
part of Table I. The table gives the necessary information
to follow the steps of the recursive calculation. The first
column gives the current set of signals, while the next two
columns provide the external and internal properties for the
actual signal s, respectively. The next three columns give

property pWri teP =
always (

we == 1
&& p a r == 1

) −> (
next (dou t) == (p a r i t y , d i n [1 4 : 0])

) ;

property pWriteW =
always (

we == 1
&& p a r == 0

) −> (
next (dou t) == d i n

) ;

property pNoWrite =
always (

we == 0
) −> (

next (dou t) == dou t
) ;

Fig. 3. Initial property set PI for memory element

TABLE I
COVERAGE METRIC FOR MEMORY ELEMENT

S PExt
s P Int

s safe unsafe unsafe
weight

depends
∑

dout pWriteW,
pNoWrite

pWriteP 50% 50% 0 parity 50%

parity ∅ ∅ 0% 0% 0 – 0%

dout pWriteW,
pNoWrite

pWriteP 50% 50% 0.5 parity 75%

parity pParityOdd ∅ 50% 0% 0 – 50%

dout pWriteW,
pNoWrite

pWriteP 50% 50% 1 parity 100%

parity pParityOdd,
pParityEven

∅ 100% 0% 0 – 100%

the percentage of save coverage, unsafe coverage, and unsafe
weight, respectively. The column depends lists the depending
signals (if there are any) and the last column gives the overall
added result. As can be seen only 50% of the behavior
of dout is covered by the properties (last number in first
row). The safe coverage of dout is 50% since class 1 and
class 2 (see enumeration above) are covered by the properties
pNoWrite and pWriteW, respectively. As unsafe coverage we
get 50% (100% − 50%). Since the property pWriteP, which
covers class 3 and class 4, uses the internal signal parity (see
consequent of the property) the metric is recursively applied
for this signal which is obviously not determined by the given
properties. Thus, the safe and unsafe coverage of parity is
0%, no depending signals exists and hence the unsafe weight
for dout in the first row becomes 0. This explains the overall
result of 50%.

Besides the coverage value for dout also the dependency on
parity including the classification for this signal is returned
by our approach. The uncovered classes resulting from the
classification of parity are summarized in Table II. As can
be seen there are two uncovered classes. For the first class
the active path contains the signals relevant for the odd

TABLE II
UNCOVERED CLASSES OF parity

Class Active path Assignment

1 din, even, lower_din, parity, parity_odd even = 0
2 din, even, lower_din, parity, parity_even even = 1

property p P a r i t y O d d =
always (

even == 0
) −> (

p a r i t y == (^ d i n [0 . . 1 4]) / / XOR r ed uc e
) ;
property p P a r i t y E v e n =
always (

even == 1
) −> (

p a r i t y == ! (^ d i n [0 . . 1 4]) / / XOR r ed uc e
) ;

Fig. 4. Properties for parity computation

parity computation and the final assignment that remains
after intersection of the counter-examples for this path only
contains the signal even set to 0. In case of the second class
obviously the even parity mode is found. By step-wise adding
the respective properties (see Figure 4) we get results shown
in the middle and bottom of Table I, respectively. With the
additional property pParityOdd we achieve a coverage of
75%. By including both properties 100% coverage results.

D. Full Coverage Workflow
This subsection describes the workflow to achieve full

coverage using the proposed metric. The steps to follow are:
1) Define the set of signals S to be analyzed. Typically S

contains the circuit outputs.
2) Apply the proposed metric.
3) Select a signal s ∈ S which is not fully covered.
4) If the sum of safe coverage and unsafe coverage for s

is less than 100%, properties describing s are needed.
For closing the gap(s), consider the uncovered behavior
classes as determined during the calculation of the cover-
age metric. Formulate one or more properties according
to the specification which cover at least one behavior
class. If possible avoid the creation of new dependencies
by only relying on inputs or signals already in use.

5) If the sum of safe coverage and unsafe coverage for s
is 100% (recall s is not fully covered so the unsafe
weight has to be less than 1), proceed to fully cover the
dependent signals.

6) Continue with Step 2 until all signals in S are covered.
Following these steps, there are degrees of freedom how

to continue the verification process. If coverage gaps for
depending signals are found and a property is added to close
this gap, one may proceed to verify new potential depending
signals. This would correspond to a depth-first verification
procedure. In contrast, repeating step 4 gives a breath-first
verification procedure. In general, internal signals should only
be used in properties if there is no alternative.

V. EVALUATION

For an in-depth evaluation of the proposed guiding coverage
metric a Memory Management Unit (MMU) has been chosen.
The interface of the design is depicted in Figure 5.

The MMU has a CPU connection (left side) as well as a
memory connection (right side) and can buffer a single write
request.

During the development of the MMU bounded model
checking has been employed to verify the correctness of the
implementation. Thus, a property set for the MMU already
existed. Using this property set an overall coverage of 42.3%
for the 7 outputs of the MMU was calculated. While computing
the coverage metric 4 dependent internal signals used by the
properties have been found. The results of our metric for all

Memory
Management Unit

re
32raddr

rack
32rdata

we
32waddr

wack
32wdata

mem_req
mem_rw

32 mem_addr
32 mem_data_o

mem_ack
32 mem_data_i

reset
Fig. 5. Memory management unit

TABLE III
RESULT OF THE COVERAGE METRIC FOR THE INITIAL PROPERTY SET

signal safe unsafe unsafe
weight

∑
mem_addr 66.7% 12.8% 0.472 72.7%
mem_data_o 0.0% 67.4% 0.535 36.0%
mem_req 85.7% 8.9% 0.502 90.2%
mem_rw 84.5% 3.4% 0.514 86.3%
rack 0.0% 0.0% 0.294 0.0%
rdata 0.0% 0.0% 0.294 0.0%
wack 0.0% 25.0% 0.441 11.0%

state 50.0% 12.5% 0.558 57.0%
wbuf_addr 15.0% 0.0% 0.362 15.0%
wbuf_data 15.0% 0.0% 0.362 15.0%
wbuf_full 31.2% 0.0% 0.308 31.2%

these signals are listed in Table III. In the upper part of the table
the outputs signals are shown while the lower part provides
the data for the 4 internal signals. Column signal specifies
the name of the signal. The next three columns provide safe
coverage, unsafe coverage, and unsafe weight. The last column
shows the coverage value for the current signal. As can be seen
there are several signals which have a high coverage, but there
are also cases where the coverage is 0%. We first consider one
of the two signals which have a coverage of 0% in more detail.
Even if the achieved coverage of rack is 0%, one property has
been specified for rack (see Figure 6). However, this property
only verifies a very small portion of rack’s behavior. In terms
of our coverage metric this means not even a single class
is covered by the READ_return property. This becomes
evident when looking at the uncovered classes of rack as
determined during the computation of our metric. They are
shown in Table IV. When considering the assignments in
class 2 (this class contains the READ state which is the
same scenario as considered in the property READ_return),
it can be seen that the signals rack and mem_ack are both
zero. This complements the specified value of rack in the

property READ_return =
always (

! r e s e t && s t a t e == READ && mem_ack
) −> (

r a c k && r d a t a == mem_data_i
) ;

Fig. 6. Only property for rack

TABLE IV
UNCOVERED CLASSES OF rack USING PROPERTY READ_return

Class Assignment

1 reset ∧ ¬rack
2 ¬reset ∧ state = READ ∧ ¬mem_ack ∧ ¬rack
3 ¬reset ∧ state = IDLE ∧ ¬wbuf_read ∧ ¬rack
4 ¬reset ∧ state = IDLE ∧ wbuf_read ∧ rack
5 ¬reset ∧ state = WRITE ∧ ¬wbuf_read ∧ ¬rack
6 ¬reset ∧ state = WRITE ∧ wbuf_read ∧ rack
7 ¬reset ∧ state = READ_WRITE_PENDING

From the assignments (right column) the buffered internal signals have been removed
to increase readability.

property RACK_WRITE_IDLE =
always (

! r e s e t && (s t a t e == WRITE | | s t a t e == IDLE)
) −> (

r a c k == wbuf_read
) ;

Fig. 7. Additional property for rack

in
iti

al
ra

ck
rd

at
a

w
ac

k
m

em
_r

eq
m

em
_r

w
m

em
_a

dd
r

m
em

_d
at

a_
o

sta
te

w
bu

f_
fu

ll
w

bu
f_

ad
dr

w
bu

f_
da

ta
w

bu
f_

m
at

ch
w

bu
f_

re
ad

0

20

40

60

80

100

co
ve

ra
ge

m
et

ri
c

(%
)

overall
rack

Fig. 8. Coverage evolution when adding properties using the guiding coverage
metric

consequent of the property: Altogether, mem_ack is assigned
to rack in state READ if no reset is requested. In other
words, the existing property only describes “half” of the
READ state behavior class. To summarize, since the property
READ_return describes only a subset of a class, the class
is not covered and hence the coverage of rack becomes 0%.

For the other classes of rack additional properties need to be
formulated. Class 1 refers to the reset behavior and therefore
the existing reset property has been extended to include rack =
0. The classes 3 to 6 can be summarized in a single property
as shown in Figure 7. In both states, i.e. in IDLE and WRITE,
wbuf_read is assigned to rack. Two classes for both states
are identified by our classification algorithm, class 3 and 4
for IDLE and class 5 and 6 for WRITE. There are two classes
in both cases because an if-condition is used in the circuit to
check the value of wbuf_read and therefore different circuit
paths become active enabling the then-block or the default
assignment. The last class does not specify a value for rack,
which indicates that the value is not explicitly set here, but
depends on the value of another signal on the actual active
signal path (it is mem_ack). After updating the property set,
a total coverage of 45.5% resulted. Thereby, the coverage of
rack increased to 29%. 100% for rack was not achieved since
new dependencies to internal signals emerged.

We continued to fully cover the remaining signals. Therefore,
we covered all the outputs in the next steps, i.e. we wrote
properties using external signals (inputs or proven states) as
long as possible and then finalizing the remaining behavior by
relying on internal signals. If new signal dependencies have
been introduced (and hence potentially unsafe coverage) we
postponed the verification of these signals. Figure 8 shows
the evolution of the overall coverage and the coverage for
rack when following this procedure. The x-axis denotes the
chosen signal to be fully described by (additional) properties.
As can be seen verifying the other outputs has no effect on the
coverage of rack but the overall coverage increases. As soon

as the dependencies of rack are covered (state to wbuf_read)
the coverage of rack increases. The signals wbuf_match
and wbuf_read are new internal signals relevant for the
behavior of rack. In particular, wbuf_read has a strong
influence on rack as the rapid growth of rack’s coverage from
wbuf_match to wbuf_read shows. The signal wbuf_read
is used in 4 out of 7 classes.

During the evaluation we observed that the run-time for
computing the coverage metric is on average about 5 to 10
times higher than proving the properties.

In total, with the proposed coverage metric we first deter-
mined the verification status. Then, we successfully tracked
the verification progress while completing the property set. In
doing so the uncovered class information always provided very
valuable information.

VI. CONCLUSIONS

In this paper we have presented a coverage metric for formal
verification. The metric computes a single number given a
circuit, environment constraints, a property set and the set of
signals to be covered. The metric takes dependencies on inter-
nal signals into account which are typically found in realistic
property sets. Therefore, the metric is automatically applied
recursively. In addition, the verification engineer is guided
towards full coverage since during the coverage computation
uncovered behavior classes are determined. These classes are
very helpful to formulate the missing properties.

REFERENCES

[1] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design. Kluwer Academic
Publishers, 2003.

[2] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press, 1999.
[3] M. Ganai and A. Gupta, SAT-Based Scalable Formal Verification Solutions (Series

on Integrated Circuits and Systems). Springer, 2007.
[4] V. Bertacco, Scalable Hardware Verification with Symbolic Simulation. Springer,

2006.
[5] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation of hardware

designs,” IEEE Design and Test of Computers, vol. 18, no. 4, pp. 36–45, 2001.
[6] Y. Hoskote, T. Kam, P. Ho, and X. Zhao, “Coverage estimation for symbolic model

checking,” in DAC, 1999, pp. 300–305.
[7] H. Chockler, O. Kupferman, and M. Y. Vardi, “Coverage metrics for temporal

logic model checking,” in Tools and algorithms for the construction and analysis
of systems, ser. LNCS, no. 2031, 2001, pp. 528 – 542.

[8] H. Chockler, O. Kupferman, R. Kurshan, and M. Vardi, “A practical approach to
coverage in model checking,” in CAV, ser. LNCS, vol. 2102. Springer Verlag,
2001, pp. 66–77.

[9] N. Jayakumar, M. Purandare, and F. Somenzi, “Dos and don’ts of CTL state
coverage estimation,” in DAC, 2003, pp. 292–295.

[10] O. Kupferman, “Sanity checks in formal verification,” in In Proc. of CONCUR,
2006, pp. 37–51.

[11] A. Fedeli, F. Fummi, and G. Pravadelli, “Properties incompleteness evaluation by
functional verification,” IEEE Trans. on Comp., vol. 56, no. 4, pp. 528–544, 2007.

[12] O. Kupferman, W. Li, and S. A. Seshia, “A theory of mutations with applications
to vacuity, coverage, and fault tolerance,” in FMCAD, 2008, pp. 1–9.

[13] H. Chockler, D. Kroening, and M. Purandare, “Coverage in interpolation-based
model checking,” in DAC, 2010, pp. 182–187.

[14] K. Claessen, “A coverage analysis for safety property lists,” in FMCAD, 2007, pp.
139–145.

[15] J. Bormann, S. Beyer, A. Maggiore, M. Siegel, S. Skalberg, T. Blackmore, and
F. Bruno, “Complete formal verification of Tricore2 and other processors,” in
Design and Verification Conference (DVCon), 2007.

[16] D. Große, U. Kühne, and R. Drechsler, “Analyzing functional coverage in bounded
model checking,” IEEE Trans. on CAD, vol. 27, no. 7, pp. 1305–1314, 2008.

[17] J. Bormann, “Vollständige funktionale Verifikation,” Ph.D. dissertation, Technische
Universität Kaiserslautern, 2009.

[18] M. Oberkönig, M. Schickel, and H. Eveking, “A quantitative completeness analysis
for property-sets,” in FMCAD, 2007, pp. 158–161.

[19] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model checking without
BDDs,” in TACAS, 1999, pp. 193–207.

[20] M. D. Nguyen, M. Thalmaier, M. Wedler, J. Bormann, D. Stoffel, and W. Kunz,
“Unbounded protocol compliance verification using interval property checking with
invariants,” IEEE Trans. on CAD, vol. 27, no. 11, pp. 2068–2082, 2008.

[21] Accellera Property Specification Language Reference Manual, version 1.1,
http://www.pslsugar.org, 2005.

[22] R. Hojati and R. K. Brayton, “Automatic datapath abstraction in hardware systems.”
in CAV, 1995, pp. 98–113.

[23] G. Kamhi, O. Weissberg, and L. Fix, “Automatic datapath extraction for efficient
usage of HDD,” in CAV, ser. LNCS, vol. 1254. Springer Verlag, 1997, pp. 95–106.

[24] Z. S. Andraus and K. A. Sakallah, “Automatic abstraction and verification of
verilog models,” in DAC, 2004, pp. 218–223.

