

Dynamic Cache Management in Multi-Core Architectures
through Run-time Adaptation

Fazal Hameed, Lars Bauer, and Jörg Henkel
Karlsruhe Institute of Technology, Chair for Embedded Systems, Karlsruhe, Germany

{hameed, lars.bauer, henkel} @ kit.edu

Abstract–Non-Uniform Cache Access (NUCA) architectures pro-
vide a potential solution to reduce the average latency for the
last-level-cache (LLC), where the cache is organized into per-core
local and remote partitions. Recent research has demonstrated the
benefits of cooperative cache sharing among local and remote
partitions. However, ignoring cache access patterns of concur-
rently executing applications sharing the local and remote parti-
tions can cause inter-partition contention that reduces the overall
instruction throughput. We propose a dynamic cache manage-
ment scheme for LLC in NUCA-based architectures, which re-
duces inter-partition contention. Our proposed scheme provides
efficient cache sharing by adapting migration, insertion, and pro-
motion policies in response to the dynamic requirements of the
individual applications with different cache access behaviors.
Our adaptive cache management scheme allows individual cores
to steal cache capacity from remote partitions to achieve better
resource utilization. On average, our proposed scheme increases
the performance (instructions per cycle) by 28% (minimum
8.4%, maximum 75%) compared to a private LLC organization.

1. INTRODUCTION AND RELATED WORK
Multi-core systems are expected to increase the last-level-

cache (LLC) capacity to accommodate the working sets for
memory intensive applications. However, increasing the LLC
capacity increases the on-chip interconnect delay. As com-
pared to the transistor delay, interconnect delay does not scale
at the same rate with each technology node [1-4]. Increasing
interconnect delay has made Non-Uniform Cache Access
(NUCA) architectures a promising solution compared to tradi-
tional Uniform Cache Access (UCA) architectures. The con-
cept of NUCA architectures is based on the non-uniformity of
access time, where the access time depends upon the physical
location of the line relative to the core. LLC in NUCA-based
multi-core systems is organized into per-core local partitions
and remote partitions, each of which has different access la-
tencies. A significant body of work studied LLC management
to provide better throughput and fairness [5-12].

Previous studies [5-7] have proposed several NUCA
schemes by combining the strengths of private LLC organiza-
tions (i.e. local partition is only accessible to the requesting
core) and shared LLC organizations (i.e. all partitions are
shared by all cores providing equal capacity sharing). In such
a hybrid scheme, each core is provided with a local partition,
which can be shared with other cores. On a miss in the local
partition, all of the remote partitions are searched until the re-
quest is satisfied or an LLC miss is detected. In case of an
LLC miss, the main memory is accessed and the data is
brought to the local partition of the requesting core. Coopera-
tion among different local partitions was earlier proposed [5],
where cache lines that are evicted from local partitions (victim
lines) are stored in remote partitions (called spilling). This un-
controlled spilling of victim lines to remote partitions causes
cache pollution. The research work in [5] focused on control-
ling the degree of cooperation between different partitions by
dynamically tuning the partition size of each local partition,
where a part of the local partition is only accessible to the lo-
cal core (private portion), while the remaining part is accessi-

ble to the remote cores (shared portion). The sizes of the pri-
vate and shared portions of the local partitions are controlled
dynamically on a per-core basis.

Previously proposed NUCA-based approaches [5-7] do not
consider application access patterns of the competing applica-
tions sharing local and remote partitions, which can cause con-
tention leading to ineffective utilization of cache resources. As
future multi-core architectures are expected to have a large
number of cores, cache contention caused by concurrently
running application will increase as well. Research work in
mitigating cache contention has been carried out recently for a
shared LLC in UCA-based architectures [12]. That work uses
a Utility Monitoring Circuit (UMON) [13] for adapting the
cache replacement policy in the shared LLC by tracking run-
time miss rate information of the individual applications.
However, the use of UMON comes at the cost of additional
hardware overhead for maintaining shadow tags (a shadow tag
is similar to a regular cache structure except that it only con-
tains the tag array). In this paper, we focus on the cache man-
agement in NUCA-based multi-core architectures by allocat-
ing cache resources to competing applications in response to
the diverse application requirements. There has been a consi-
derable amount of work on managing NUCA caches [5-7] and
we compare our results with the most recently proposed Dy-
namic spill-receive (DSR) architecture [6] as it provides a low-
overhead cooperative caching between different partitions.

LLC size art bzip mcf milc lbm gos povray
0.5 MB 79.8 6.86 53.34 18.65 26.15 0.694 0.0214
1 MB 56.14 4.35 37.68 18.65 26.14 0.520 0.0196
2 MB 0.04 1.47 23.80 18.64 26.13 0.350 0.0193
4 MB 0.001 0.69 16.86 18.61 26.13 0.213 0.0193

Table 1: Case study: LLC misses per thousand instructions (MPKI)

The LLC in our baseline architecture is realized as four
equally sized Local Partitions (LPs, one per core) and assumes
an LP size of 1 MB per core. Applications vary widely in
terms of their cache requirements. Table 1 illustrates this ob-
servation showing LLC misses per thousand instructions
(MPKI) for different LLC sizes and different applications. In-
creasing the LLC size of some applications (e.g. art, bzip, and
mcf) incurs significant reduction in MPKI. These applications
benefit from an increased cache capacity and are classified as
Taker applications. The applications whose LLC requirement
is far less than the cache space available in the LP are classi-
fied as Giver applications (e.g. gos and povray already have an
MPKI < 1 for 0.5 MB LLC).

Figure 1: Overview of the DSR architecture [6]

978-3-9810801-8-6/DATE12/©2012 EDAA

Figure 1 shows an overview of the DSR architecture [6] for

a 4-core system. The DSR architecture allows stealing cache
resources from remote partitions in response to the cache de-
mands of individual cores. The LP of the core executing a
Taker application (at most one application executes per core)
acts as a spiller partition to spill evicted victim lines to the
remote partitions for later reuse. The LP of the core executing
a Giver application acts as a receiver partition to provide
some of its capacity to the Taker applications. In the DSR ar-
chitecture, a victim line from a spiller partition is stored in a
randomly chosen receiver partition, whereas a victim line from
a receiver partition is spilled to the main memory. Each LP is
provided with one bit named as S/R that decides whether that
LP will act as a spiller partition (S/R=1) or a receiver partition
(S/R=0). In Figure 1, the S/R bit of partitions LP0 (local parti-
tion associated with Core 0) and LP2 are set to 1 indicating
that these partitions act as spiller partitions. Therefore, victim
lines from LP0 and LP2 are spilled randomly to any of the re-
mote receiver partitions, i.e. LP1 or LP3. Evicted victim lines
from LP1 and LP3 are spilled to main memory. Each local
partition learns the spiller-receiver decision using dynamic set
sampling (details can be found in [6]).

Comparing across the applications, we found that the cache
requirements do not correlate linearly with the increase in the
cache demand. For example, lbm and milc incur a high miss
rate and a high access rate (see Table 1). These applications
have large working sets with very poor locality and do not get
any benefit from increasing the cache resources. Instead, that
would lead to inter-partition contention in the DSR architec-
ture (details in Section 2). The main drawback of the DSR ar-
chitecture is that it statically determines the line migration,
insertion, and promotion policies (explained below) and suf-
fers from inter-partition contention. If an application requires
a different policy to improve the instruction throughput then
this cannot be achieved when using a fixed policy. The main
objective of this paper is to realize a low-overhead mechanism
to reduce inter-partition contention with dynamic migration,
insertion, and promotion policies. The differences in compari-
son to the DSR architecture and our novel contributions are:
1. We propose a dynamic migration policy, that decides at run-

time, whether a line that receives a hit in the remote parti-
tion shall be migrated to the local partition of the requesting
core or not. Our dynamic migration policy detects and
avoids unnecessary migrations between local and remote
partitions, whereas the DSR architecture always migrates
the remote cache-hit lines to the local partition.

2. We propose a dynamic insertion policy (decides the inser-
tion position for the incoming cache line in case of a cache
miss) and a dynamic promotion policy (decides how a cache
line moves towards the most recently used (MRU) position
on receiving a cache hit) for the local and remote requests in
response to the dynamic requirements of the applications.
The DSR architecture uses the traditional least recently used
(LRU) policy for line insertion and promotion.

3. Our proposed approach attempts to minimize the cache re-
sources allocated to applications with streaming and thrash-
ing behavior, since they get little benefit from increasing the
cache resources. Cache thrashing occurs for applications
that have a working set size that is significantly larger than
the available cache resources [12, 14].

2. DYNAMIC CACHE MANAGEMENT
Our proposed cache management scheme is based on the

concept of NUCA architectures, where hits in the local parti-
tion are faster than hits in the remote partitions. On a miss in
the local partition, all of the remote partitions are searched un-

til the request is satisfied or an LLC miss is detected. An LLC
miss will require an off-chip access, where the main memory
is accessed and the cache line is brought to the local partition
of the requesting core. For cooperative sharing among differ-
ent partitions, we employ the recently proposed set dueling
technique to learn whether a partition will act as a spiller par-
tition or a receiver partition [6, 14].
2.1. Dynamic migration policy

In the previous NUCA schemes [5-7], on a miss in the local
partition, all remote partitions are queried by en-queuing the
request for determining a hit or a miss. In case of a remote hit
in the DSR architecture [6], the cache line is invalidated in the
remote partition, and migrated to the local partition of the re-
questing core (migrate policy) exploiting the temporal locality
that the referenced line will be accessed in the near future. For
example, Figure 1 illustrates two spiller and two receiver par-
titions. If a line for core 0 (LP0 is a spiller partition) hits in
LP1 (receiver partition with core 1), then the DSR architecture
migrates the hit line to LP0. The line evicted from the LP0 (as
a result of the migration) is transferred to the receiver partition
LP1. The migrate policy exploits the temporal locality to im-
prove the local partition hit ratio. A migrated cache line that is
not referenced between its insertion into the local partition and
spilling it again is called zero reuse migrated line. It is not
beneficial to migrate such a line into the local partition if its
reuse distance (the number of insertions made before the line
is reused) is greater than the local partition associativity as it
will be spilled before it is reused. For applications with a ra-
ther large number of zero reuse migrated lines (e.g. art exhi-
bits this behavior), the majorities of migrated lines reside in
the local partition without contributing to cache hits and final-
ly get evicted/spilled to remote partitions, resulting in frequent
migrations between local partition and remote partition affect-
ing the cache efficiency.

Figure 2: Example illustrating the migrate- and no-migrate policy for a

hit to Line N in the remote partition for the LRU replacement policy
LP: local partition, RP: remote partition

In this paper, we introduce the no-migrate policy and dy-
namically switch between migrate and no-migrate policy at
run time. In the no-migrate policy, a cache line that receives a
hit in a remote partition is transferred to the requesting core to
handle its request without being installed in the local partition
of the requesting core. Figure 2 shows an example illustrating
the migrate- and no-migrate policy on receiving a cache hit in
a remote partition for line N. In the migrate policy, line N is
migrated to the local partition of the requesting core by plac-
ing it in its MRU position. This migration will cause eviction
of line H in the local partition, which is then installed in the
MRU position of the remote partition. In case of the no-
migrate policy, line N is not installed in the local partition but
promoted to MRU position in the remote partition.

Figure 3 shows the IPC of four different applications run-
ning on a quad-core system, when using the migrate- or no-
migrate policy for the art application and the no-migrate poli-
cy for the other applications (these applications benefit from
the no-migrate policy; the details of the experimental setup are
presented in Section 4). The art benchmark shows a signifi-
cant improvement in the IPC (58%) for the no-migrate policy
compared to the migrate policy. While applying the migrate

policy for art, we found that about 82% of the lines that are
migrated to the local partition of the core that executes the art
benchmark are not re-used before spilling the lines again to a
remote partition. Figure 4 shows the LLC MPKI for art as a
function of number of ways allocated to it. The art benchmark
obtains significant benefits from the extra cache capacity
beyond its local partition size as its MPKI reduces significant-
ly when extra cache resource are allocated to it. The art
benchmark is determined as a Taker application by DSR, but
has a much lower reuse frequency in the local partition and
gets significant benefits with the no-migrate policy compared
to migrate-policy.

Figure 3: Individual benchmark instruction per cycle (IPC)

T: Taker application, G: Giver application

Figure 4: LLC misses per thousand instructions (MPKI)

for art as a function of number of ways

We propose a dynamic migration policy that decides at run-
time whether a line that hits in a remote partition shall be mi-
grated or not. Algorithm 1 shows our proposed dynamic mi-
gration policy. If an application remote hit ratio exceeds the
local partition hit ratio, then the requesting core chooses the
migrate policy, otherwise the requesting core selects the no-
migrate policy. The intuition behind our dynamic migration
policy is that a high local hit ratio favors the migration policy
(for later reuse of the cache line), while a high remote hit ratio
favors the no-migrate policy (to mitigate the negative impact
of zero reuse migrated lines). When deciding whether the mi-
gration or the no-migration policy shall be used it may happen
that the core switches through different policy changes before
converging on a good one. To address this issue, we invoke
our dynamic migration policy after 4096 misses (interval pe-
riod Ti in Algorithm 1) in the LP to prevent rapid policy
changes. Once a policy change is made, it remains until 4096
misses occur in the LP.

NAL Number of accesses to the local partition
NHL Number of hits in the local partition
NAR Number of accesses to the remote partitions
NHR Number of hits in the remote partitions
1 At the end of an interval period Ti
2 for all Taker partitions do
3 if (NHL / (NAL + NAR) < NHR / NAR) then
4 choose migrate policy for the next time interval Ti+1
5 else
6 choose no-migrate policy for the next time interval Ti+1
7 end if
8 end for
9 Reset NAL, NHL, NAR, and NHR monitoring

Algorithm 1: Our Dynamic Migration Policy

2.2. Dynamic insertion and promotion policy
Cache replacement policies can be categorized into two

parts: insertion policy and promotion policy [14, 12]. The
priority position of a cache line determines the eviction policy
on a cache miss. Figure 5-a shows a logical organization (lines
are shown from left to right in priority order, the physical or-
der in the set may differ) of a cache set with priority values
assigned to each line that decide the priority position of the
line in the set. The cache line with the least priority (Line H
with a priority value of 1) is the candidate for eviction to make
room for the incoming line on a cache miss. On receiving a
cache miss, the insertion policy decides the insertion position
for the incoming line in the priority list [14] which requires
modification to conventional least recently used (LRU) policy.
In Figure 5-a, the LRU replacement policy evicts Line H from
the lowest priority position 1 to make room for the new in-
coming Line I that is inserted into the highest priority posi-
tion 8. The promotion policy decides how a cache line moves
towards the highest priority position on receiving a cache hit.
In an LRU based cache, a hit causes the line to move towards
the highest priority position. In the example shown in Fig-
ure 5-b, Line E is promoted to the highest priority position 8
on receiving a cache hit.

Figure 5: Example illustrating (a) LRU Insertion policy and

(b) LRU Promotion policy

Figure 6: Example illustrating (a) Inter-partition contention

(b) Performance Isolation between local and remote partition
(remote lines shown in grey boxes)

The LRU replacement policy (as for instance used by the
DSR architecture [6]) does not work well with applications
that have streaming or thrashing behavior. These applications
have a high cache access rate with a working set size greater
than the available cache size and thus get negligible benefits
from extra cache capacity. Applications that exhibit streaming
or thrashing behavior are for instance lbm, libquantum, mesa,
and milc. The local partition of a core running a streaming ap-
plication is not efficiently utilized due to many rarely reused
lines. Streaming applications are typically classified as Giver
applications because they do not benefit noticeably from larg-
er cache capacity and thus allow Taker applications to spill
their lines into the local partition of the streaming application.
However, they have a high access rate to their local partition
relative to the access rate of Taker applications to the remote
lines in this partition. This means, they insert a large number
of lines in the local partition, and as a result, they quickly

0

0.5

1

1.5

art (T) mcf (T) eon (G) povray (G)

IP
C

art_migrate
art_no_migrate

0

20

40

60

80

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
PK

I

art MPKI

Local partition

evict useful remote cache lines. The eviction of useful remote
cache lines increases the contention between local and remote
partitions. Figure 6-a illustrates a receiver partition running a
streaming application with LRU-based replacement policy,
which initially contains some useful lines from the remote par-
titions (shown in grey boxes). As the local core inserts more
lines into its local partition, the useful remote lines are
evicted. Subsequent accesses to these useful remote lines will
result in cache misses, hereby affecting performance. Thus, by
inserting the rarely used local lines in the highest priority po-
sition, the LRU replacement policy increases inter-partition
contention. The occupancy time of the rarely used lines can be
reduced, if they are inserted into low priority positions. Fig-
ure 6-b shows how a local cache line for streaming applica-
tions is inserted into a low priority position (i.e. insertion po-
sition of 3), hence providing inter-partition performance isola-
tion/protection. Since local lines exhibit little reuse for stream-
ing applications, they are evicted quickly as more lines are in-
serted. The useful remote lines are maintained in the highest
priority position, which protects them from the streaming be-
havior of the local core.

Figure 7: Example: promotion of a line by +2 on receiving a cache hit

In an LRU-based cache, lines that receive a hit are promoted
to the highest priority position, as shown in Figure 5-b. How-
ever, the LRU-based promotion policy does not perform well
for streaming applications that exhibit rarely reuse behavior. If
the local lines for streaming applications are moved by a
smaller promotion distance (i.e. the distance by which the
priority position of the line is changed on receiving a cache
hit), it will not only reduce the occupancy time for the rarely
used lines, but also prevent eviction of useful cache lines be-
longing to remote partitions. As shown in Figure 7, Line G is
promoted by a smaller promotion distance (promote by +2) on
receiving a hit. Promotion of the rarely reused lines by a
smaller distance will keep the highly reused lines towards the
highest priority position and rarely reused lines towards the
lowest priority position, hereby increasing the cache efficien-
cy.

Let A be the associativity of the local partition. The inser-
tion position IP of an incoming line can be defined as a value
between 1 and A. An incoming line with IP=A indicates that
the line is inserted into the MRU position (highest priority),
whereas an incoming line with IP=1 indicates that the line is
inserted into the LRU position (lowest priority). Similarly, the
promotion distance PD of a hit line can have a value between
1 and A. A local partition with PD=A will always promote the
cache hit line to MRU position, whereas a local partition with
PD=1 will promote the cache hit line by a single priority posi-
tion. The primary objective of our dynamic insertion and pro-
motion policy is to reduce the cache resources that are allo-
cated to applications with streaming or thrashing behavior.
This will effectively reduce the occupancy time of the rarely
reused lines for streaming applications. These cache resources
can be provided to the spiller partitions. In our approach, the
values for IP and PD are adapted at run-time for each local
partition.

Algorithm 2 shows our proposed dynamic insertion/promo-
tion policy for an A-way set associative local partition. An ap-
plication’s cache behavior is determined using runtime profil-
ing via the processor’s performance counters. If an application

running on a core with a receiver partition (i.e. the local parti-
tion does not get any benefit from extra cache capacity) has a
higher local miss rate than a certain threshold thr1, then the
application is classified to exhibit extreme streaming (ES) be-
havior. In such a case, our dynamic scheme allocates less
cache resources to that local core by inserting the incoming
local lines into the low priority positions as illustrated in Fig-
ure 8. The remote requests (i.e. evicted victim lines from the
spiller partitions) are inserted into high priority positions to
give preference to the spiller partitions. In such a case, the
spiller partitions steal more cache resources from the receiver
partition that exhibits streaming or thrashing behavior. Differ-
ent stream detection thresholds (thr1, thr2, and thr3) are used to
classify the cache access behavior (ES, MS, LS, and LF as
shown in Algorithm 2). Similarly, the cache lines on receiving
a hit are moved towards high priority position by the promo-
tion distance that is adapted at runtime. The lines are moved
by a smaller promotion distance in case of a high local miss
ratio (poor locality), while they are moved by a larger promo-
tion distance in case of a low local miss ratio (good locality).
In such a case, heavily used lines will be promoted towards
the high priority position and infrequently used lines will be
moved towards the low priority positions, hereby reducing the
occupancy time of the rarely reused lines.

A Associativity of the local partition
IL Insertion position for the local request
IR Insertion position for the remote request
PL Promotion distance for the local request
PR Promotion distance for the remote request
ES Extreme Streaming
MS Moderate Streaming
RS Reduced Streaming
LF LRU Friendly
NAL Number of local accesses
NML Number of local misses
thr1, thr2, thr3 Streaming/Thrashing detection thresholds
1 At the end of an interval period Ti
2 for each partition p do
3 if (all local partitions are receiver partitions or
4 p is a spiller partition) then
5 LRU policy : IL = A, PL = A, IR = A, PR = A
6 else if (NML/NAL thr1) then
7 Type ES : IL = A/8, PL = A/4, IR = A, PR = A
8 else if (NML/NAL thr2) then
9 Type MS : IL = A/4, PL = A/2, IR = A, PR = A
10 else if (NML/NAL thr3) then
11 Type RS : IL = A/2, PL = 3A/4, IR = A, PR = A
12 else // receiver partition has a low miss rate
13 Type LF : IL = A, PL = 3A/4, IR = 3A/4, PR = 3A/4
14 end if
15 end for
16 Reset NAL and NML
17 Apply the insertion and promotion policy for the next time
 interval Ti+1

Algorithm 2: Dynamic Insertion/Promotion Policy
for an A-way set associative local partition

Figure 8: Example of a 16-way set associative partition, illustrating dy-

namic insertion position for local (circles) and remote (triangles) requests

Table 2 shows the average cache miss rate of different ap-

plications (when running alone) for a 4 MB LLC. The stream-
ing benchmarks (lbm, milc, libquantum, and mesa) exhibit
high cache miss rates (closer to 0.5 for most of the streaming
applications) even if the entire 4 MB LLC is available exclu-
sively for that application. The threshold values used in Algo-
rithm 2 are determined based on the high miss rates of stream-
ing applications. The threshold values (thr1 = 0.5, thr2 = 0.25,
thr3 = 0.125) are chosen for easy computation. For instance,
computing NML/NAL 0.5 (or 0.25 or 0.125, respectively) will
require right-shifting NML by 1 (or 2 or 3, respectively) and
compare with NAL (e.g. NML/0.5 NAL). The priority positions
IL, IR, PL, and PR are determined at run time based on the
threshold values as shown in Algorithm 2. Our dynamic
scheme allocates the resources to each application considering
the streaming behavior of the individual applications. A dy-
namic insertion policy has been carried out recently for a
shared LLC in Uniform Cache Access (UCA) architectures
[12]. That work uses a Utility Monitoring Circuit (UMON)
[13] for adapting insertion policy in the shared LLC by col-
lecting run-time miss rate information of the individual appli-
cations with different associativity. However, the use of
UMON comes at the cost of additional hardware overhead,
which requires per-core storage overhead of 7.4 KB, altogeth-
er leading to a 29.6 KB storage overhead for a quad-core sys-
tem. In this paper, we apply our dynamic insertion and promo-
tion policy to a NUCA-based multi-core architecture to reduce
inter-partition contention between local and remote requests
with least hardware overhead (for hardware overhead see Sec-
tion 2.3).

Application lbm milc libquantum mesa art

Miss rate 0.519 0.733 0.499 0.482 0.0001

Application deal gos bzip mcf eon
Miss rate 0.0018 0.0026 0.026 0.051 0.0006

Table 2: Cache miss rate for entire 4 MB LLC

Our proposed dynamic insertion and promotion policy exhi-
bits its benefits in situations where streaming applications run
concurrently with Taker applications. In such a case, the Taker
applications are able to snatch large fractions of cache re-
sources from the streaming applications without degrading
their performance. For the corner case where all of the parti-
tions are receiver partitions, our dynamic scheme reverts to
the LRU policy (Line 3 in Algorithm 2) to prevent underutili-
zation of each local partition (because none of the local parti-
tion benefits from extra cache capacity beyond local partition
size). The traditional LRU scheme allocates cache resource to
each application based on demand rather than locality. In LRU
based caches, applications with higher access frequencies
(greater demand) and higher miss rate (thrashing behavior)
will occupy more cache resources, which may lead to ineffec-
tive utilization of the cache resources.
2.3. Hardware overhead

Our proposed scheme requires four registers (to keep track
of the local and remote partition hit ratio) per-core to decide
the migration policy as illustrated in Algorithm 1. Each parti-
tion requires a 4-bit migration policy vector (for a 4-core sys-
tem) to decide the migration policy for the remote partitions.
Our dynamic insertion and promotion policy illustrated in Al-
gorithm 2 can be implemented either in hardware or in soft-
ware and requires monitoring of the overall miss ratio to de-
cide the insertion position and promotion distance for local
and remote requests. A hardware implementation will require
4 priority encoders (to decide IL, IR, PL, and PR) per LP. In
terms of storage overhead, we need registers to keep track of

the miss and access statistics for the current and previous time
intervals. Altogether, our proposed scheme comes with neglig-
ible per-core hardware/software overhead.

3. EXPERIMENTAL SETUP
We use the x86 version of SimpleScalar (zesto) [15] to si-

mulate a quad-core system. The processor is clocked at
3.2 GHz with 32 KB I-Cache and 32 KB D-Cache with
3 cycles latency. We use an 80-entry reorder buffer, 32-entry
reservation station, 24-entry load queue, and 20-entry store
queue. The branch misprediction penalty is assumed to be
14 cycles with a four-wide decode and commit width. The
main memory is modeled as DRAM with 400 MHz front side
bus. The last-level-cache local partition size is chosen to be
1 MB with a 10 cycle hit latency. Cache hits in the remote par-
tition incur an additional latency of 30 cycles. Our perfor-
mance evaluations make use of various multi-programmed
workloads from SPEC2000 and SPEC2006 [16], as shown in
Table 3. Each application is determined either as Taker (T) or
Giver (G) application in the DSR architecture. The applica-
tions that exhibit thrashing behavior are denoted as Streaming
(S) application. Note that streaming application are deter-
mined as Giver (S/R = 0) application by the DSR architecture.
For each benchmark, we used the Simpoint tool [17] to select
representative samples. For each benchmark, we collect simu-
lation statistics for 250 million instructions with a fast-
forward of 500 million instructions (to warm up the caches
and branch predictors in functional mode). When a shorter
benchmark finishes early by completing its 250 million in-
structions, then it is restarted and continues to contend for the
cache and bus resources. However, the simulation statistics are
reported for the first 250 million instructions after the fast-
forward.

Name Benchmarks
Mix_1 art (T), eon (G), mcf (T), povray (G)
Mix_2 mcf (T), eon (G), gos (G), libquantum (S)
Mix_3 gos (G), art (T), bzip (T), lbm (S)
Mix_4 bzip (T), milc (S), mesa (S), lbm (S)
Mix_5 deal (G), lbm (S), bzip (T), art (T)
Mix_6 mcf (T), bzip (T), deal (G), sjeng (G)
Mix_7 eon (G), art (T), libquantum (S), art (T)
Mix_8 bzip (T), lbm (S), bzip (T), libquantum (S)
Mix_9 mcf (T), libquantum (S), deal (G), milc(S)

Table 3: Benchmark Workload
T: Taker, G: Giver, S: Streaming

4. EXPERIMENTAL RESULTS
To evaluate the performance of our proposed scheme, we

use three metrics for comparison: overall throughput, harmon-
ic mean (HM) and best-case performance improvement com-
pared to a private last-level-cache (LLC) organization [5, 7].
In a private LLC organization, the local partition is only ac-
cessible to the requesting core and there is no capacity stealing
between partitions. We have compared our scheme with the
state-of-the-art Dynamic spill-receive (DSR) cache manage-
ment technique [6] that shares the same philosophy of stealing
cache resources from the remote partitions but does not con-
sider application’s cache access behavior for cooperative in-
ter-partition cache sharing. DSR uses static policies, whereas
we use our proposed dynamic migration, insertion, and promo-
tion policies.

We observe improved benefits for most workload types.
Figure 9 shows the percent improvement in instruction
throughput for DSR [6] and our proposed scheme compared to
a private LLC design. On average, our proposed scheme in-

creases the instruction throughput by 28% (minimum 8.4%,
maximum 75%) compared to a private LLC organization. In
comparison with the DSR architecture, it increases the instruc-
tion throughput by 12.5%. We also evaluate the performance
of our proposed scheme against the DSR architecture using the
harmonic mean fairness metric (M s the number of applica-
tions) which is given as:

i

HM =

Figure 9: Total instruction per cycle (TIPC) improvement

relative to a private LLC organization

Figure 10: Harmonic Mean (HM) for DSR and our architecture

Figure 11: Individual benchmark best–case performance for DSR and our

scheme compared to a private LLC organization

Figure 10 shows the HM fairness metric for DSR and our
proposed architecture. On average, our proposed architecture
improves HM speedup by 13.3% (minimum 3%, maximum
30%) compared to the DSR architecture. Maximum gains are
observed, where the applications with streaming behavior ex-
ecute together with Taker applications (Mix_3, Mix_5, Mix_7,
and Mix_9). In such a case, Taker applications are able to
steal large fractions of cache resources from the Streaming
applications. Thus, our approach not only increases the overall
throughput but it also balances fairness (13.3% improvement
in HM speedup) compared to the DSR architecture. Figure 11
shows the individual benchmark best-case performance im-
provement for DSR and our proposed policy compared to a
private LLC organization. On average, our proposed policy
increases the best-case performance by 190%, while DSR in-
creases the best-case performance by 94% compared to a pri-
vate LLC organization.

5. CONCLUSIONS
Low latency on-chip cache access with reduced off-chip

memory traffic is a goal for future multi-core architectures.
Increasing on-chip interconnect delays, inter-cache contention,

and the requirements of memory intensive workloads necessi-
tate efficient cache management in order to satisfy the con-
flicting requirements to improve the overall throughput and
fairness. This paper presents an efficient cache management
scheme for multi-core systems that reduces average cache la-
tency by increasing the number of hits in the local partitions.
It provides dynamic insertion, promotion, and migration poli-
cies that dynamically allocate cache resources based on the
requirements of the individual applications. Our adaptive
cache management scheme reduces inter-partition contention
and provides better resource sharing by stealing cache re-
sources from remote receiver partitions via monitoring each
partition at runtime. Our proposed scheme increases the aver-
age instruction throughput by 28% and 12.5 % compared to a
private LLC organization and the DSR architecture [6], re-
spectively. Our proposed cache management scheme consider-
ing various dynamic policies comes with limited hard-
ware/software overheads.

0%

20%

40%

60%

80%

TI
PC

Im
pr
ov
em

en
t DSR Our Architecture

REFERENCES
[1] “Standard Performance Evaluation Corporation”, http://www.itrs.net.
[2] R. Kumar and D. Tullsen, “Interconnections in Multicore Architectures:

Understanding Mechanisms, Overheads and Scaling”, in ISCA-32, 2005,
pp. 408–419.

0

0.2

0.4

0.6

0.8

H
ar
m
on

ic
M
ea
n DSR Our Architecture

[3] J. M. Rabaey and S. Malik, “Challenges and Solutions for Late- and
Post-Silicon Design”, Design and Test, vol. 25, no. 4, pp. 292–308,
2008.

[4] B. Rogers, A. Krishna., G. Bell et al., “Scaling the Bandwidth Wall:
Challenges in and Avenues for CMP Scaling”, SIGARCH Computer Ar-
chitecture News, vol. 37, no. 3, pp. 371–382, 2009.

[5] J. Chang and G. Sohi, “Cooperative Cache Partitioning for Chip Multi-
processors”, in Int’l Conference on Supercomputing (ICS), 2007, pp.
242–252.

[6] M. K. Qureshi, “Adaptive Spill-Receive for Robust High-Performance
Caching in CMPs”, in IEEE Symposium on High-Performance Comput-
er Architecture (HPCA), 2009, pp. 45–54.

0%
100%
200%
300%
400%
500%

M
ax
im

um
sp
ee
du

p DSR Our Architecture

[7] H. Dybdahl and P. Stenström, “An Adaptive Shared/Private NUCA
Cache Partitioning Scheme for Chip Multiprocessors”, in IEEE Sympo-
sium on High-Perf. Computer Architecture (HPCA), 2007, pp. 2–12.

[8] M. K. Qureshi, D. Lynch, O. Mutlu, and Y. N. Patt, “A Case for MLP-
Aware Cache Replacement”, in Proceedings of the 33rd International
Symposium on Computer Architecture (ISCA), June 2006, pp. 167–178.

[9] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting Inter-Thread
Contention on a Chip Multi-Processor Architecture”, in IEEE Sympo-
sium on High-Perf. Computer Architecture (HPCA), 2005, pp. 340–351.

[10] J. Lin, Q. Lu, X. Ding et al., “Gaining Insights into Multicore Cache
Partitioning: Bridging the Gap between Simulation and Real Systems”,
in IEEE Symp. on High-Perf. Comp. Arch. (HPCA), 2008, pp. 367–378.

[11] C.Yu and P. Petrov, “Off-Chip Memory Bandwidth Minimization
through Cache Partitioning for Multi-Core Platforms”, in Proceedings of
the 47th Design Automation Conference (DAC), 2010, pp. 132–137.

[12] Y. Xie and G. H. Loh, “PIPP: Promotion/Insertion Pseudo-Partitioning
of Multi-Core Shared Caches”, in Proceedings of the 36th International
Symposium on Computer Architecture (ISCA), 2009, pp. 174–183.

[13] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning: A
Low-Overhead, High-performance, Runtime mechanism to Partition
Shared Caches”, in Proceedings of the 39th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2006, pp. 423–432.

[14] A. Jaleel, W. Hasenplaugh, M. Qureshi et al., “Adaptive Insertion Poli-
cies for Managing Shared Caches”, in Int’l Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), 2008, pp. 208–219.

[15] G. H. Loh, S. Subramaniam, and Y. Xie, “Zesto: A Cycle-Level Simula-
tor for Highly Detailed Microarchitecture Exploration”, in Int’l Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), 2009.

[16] “International Technology Roadmap for Semiconductors”, http://-
www.spec.org.

[17] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and More Flexible Program Analysis”, Journal of Instruction Level
Parallelism, vol. 7, 2005.

