
Toward Virtualizing Branch Direction Prediction
Maryam Sadooghi-Alvandi, Kaveh Aasaraai, Andreas Moshovos

Department of Electrical and Computer Engineering, University of Toronto
{alvandim, aasaraai, moshovos}@eecg.utoronto.ca

Abstract—This work introduces a new branch predictor design
that increases the perceived predictor capacity without increasing
its delay by using a large virtual second-level table allocated in
the second-level caches. Virtualization is applied to a state-of-the-
art multi-table branch predictor. We evaluate the design using
instruction count as proxy for timing on a set of commercial
workloads. For a predictor whose size is determined by access
delay constraints, accuracy can be improved by 8.7%. Alterna-
tively, the design can be used to achieve the same accuracy as a
non-virtualized design while using 25% less dedicated storage.

I. INTRODUCTION

Modern processors use branch prediction to predict branch
outcomes, allowing them to fetch ahead in the instruction
stream, increasing concurrency and performance. Predicting a
branch outcome generally consists of using the branch address
and some additional information to look up predictions in
one or more tables of counters. This method achieves good
accuracy, but since the tables have a limited number of entries,
some branches are inadvertently forced to use the same entries.
This results in a phenomenon known as aliasing. Increasing
the branch predictor table size(s) is a simple way of reducing
aliasing. However, larger tables come at the cost of a larger
area budget and a longer access latency. It has been shown that
increasing delay to improve prediction accuracy is almost never
a good tradeoff [1].

Predictor Virtualization (PV) [2] proposes a methodology
for increasing the effective capacity of predictors without
necessarily increasing their latency. PV uses the memory hi-
erarchy to transparently store predictor metadata in a virtual
predictor table, while using the on-chip resources to record
active predictor entries. Whenever the dedicated storage is not
enough, data is spilled to and fetched from the virtual table.

Applying PV to branch outcome predictors could be used to
provide the best balance between the predictor’s accuracy, area
overhead, and latency. Augmenting the dedicated branch pre-
dictor tables with a large virtual second-level table is beneficial,
not only because the second-level table does not come at the
cost of larger dedicated storage, but also because, if orchestrated
properly, the delay of the predictor can remain constant at the
latency of accessing the smaller dedicated tables.

The key challenge in virtualizing a predictor is tolerating the
access latency of the virtual table. Some predictors naturally
benefit from virtualization as they can inherently tolerate higher
latencies [2]. However, a straightforward application of PV
techniques is not feasible for branch predictors, since branch
predictors are delay sensitive. Other delay-sensitive predictors,

such as Branch Target Buffers (BTBs), have been successfully
virtualized by exploiting the inherent locality in their access
streams in order to prefetch metadata [3]. BTBs use branch
addresses for their accesses, which inherit the spatial and tem-
poral locality present in program instructions. Branch predictor
access streams do not exhibit such locality, since they use a hash
of the branch address and other data (such as branch history)
to index their tables. To take advantage of PV, the design of
branch predictors has to be revisited with virtualization in mind.

This paper explores virtualization techniques as applied to
branch direction predictors. As most branch predictors were
designed with area constraints in mind, it is useful to rethink
branch predictor design in the absence of area constraints
and in the context of virtualization; Virtualization makes area
constraints a secondary factor by providing the predictor with
a large virtual space. Virtualization is applied to a state-of-the-
art multi-table branch predictor, the TAgged GEometric History
Length predictor (TAGE) [4]. Our design augments a single
table in the predictor with a large virtual second-level table.

We propose a paging scheme for the design of such a
heirarchical predictor, in which the virtual table is broken
into a collection of sub-tables, each dedicated to a set of
instruction memory blocks. This allows us to exploit some
of the locality that is natural in the instruction fetch stream.
However, contention is increased as branches are now limited
to using a single sub-table based on where they appear in
the instruction memory space. Experimental results show that
the paging scheme can improve accuracy by 8.7%, for a
predictor whose size is determined by access delay constraints.
Alternatively, the design can be used to achieve the same
accuracy as a non-virtualized design while using 25% less
dedicated storage. Paging introduces a small overhead of just
704 bits of extra dedicated storage (off the critical path).

The rest of the paper is organized as follows. Section II
presents a background on the L-TAGE branch predictor. In
Section III, we introduce the paging scheme and describe
its architecture. In Section IV, we describe the methodology
used for our tests, presenting the results of our experiments in
Section V. Finally, we review related work in Section VI, and
conclude in Section VII.

II. BACKGROUND: THE L-TAGE PREDICTOR

In this work we virtualize the TAGE predictor, the main
component of the L-TAGE, a state-of-the-art branch direction
predictor [4]. The L-TAGE predictor is composed of a TAGE
predictor and a loop predictor (which tries to identify regular
loops with constant iteration counts). Figure 1 shows the978-3-9810801-8-6/DATE12/ © 2012 EDAA

index tag

tag match?

index tag

tag match?

index tag

tag match?

PC
hist[L2:0]

°°°

°°°

prediction

hist[LN:0]hist[L1:0]

Fig. 1: The TAGE Predictor with N Tagged Tables

organization of the TAGE predictor. It consists of a base
bimodal predictor and a set of partially tagged predictor tables.
Each tagged table is indexed through an independent function
of global and path histories and the branch PC. The set of
global history lengths used forms a geometric series. The base
predictor is in charge of providing a default prediction and
is implemented as a simple PC-indexed 2-bit counter bimodal
table. An entry in the tagged table consists of a 3-bit prediction,
an unsigned 2-bit useful counter, and a tag.

At prediction time, all tables are accessed simultaneously.
The base predictor provides a default prediction, while the
tagged tables provide a prediction only on a tag match. If there
are no tag matches, the default prediction is used. Otherwise,
two predictions from the two longest history length tables with
a tag match (or bimodal, if there is only one tag match) are
considered. In general, the longest history prediction is used
unless the entry is deemed as newly allocated, in which case
the other prediction is used. The interested reader is referred
to the original L-TAGE description for additional detail.

III. PAGING SCHEME

In this scheme, one of the tagged predictor tables is aug-
mented with a large second-level table. While the first-level
table is accessible within a single cycle, the second-level table
(placed in the L2 cache) has a much longer latency. Due to the
delay-sensitive nature of branch prediction, the longer latency
of the second-level needs to be hidden by fetching several
correlated entries on each miss, thus amortizing the cost of the
fetch. In general, branch predictor hash functions are designed
to randomize the predictor access stream in order to reduce
aliasing. The increased perceived capacity of the table helps to
allievate aliasing, allowing us to introduce some locality in the
access stream. Specifically, we limit the randomness to only the
lower portion of the index bits, while using the branch PC bits
directly as the upper portion of the index. In effect, the predictor
table is divided into several smaller sub-tables, known as pages
in our terminology, where each branch uses the entries within
a specific page. This introduces coarse grain locality in the
branch predictor access stream; The page sequence inherits the
spatial and temporal locality present in program instructions.

While the sequence of accesses within a page may not exhibit
locality, the stream of pages accessed do.

Only the two levels of this predictor component are divided
into pages, while the other components remain unchanged. The
entry organization in both levels remains the same as in the
original predictor. The first level table serves as a cache for
the most recently accessed pages of the second level. Branches
are assigned specific pages on the table based on their PC. The
instruction address space is conceptually divided into blocks,
and branches in one instruction block use the corresponding
page for making prediction and allocating new entries.

The prediction mechanism is unaware of the existence of
pages and is unaffected by the introduction of the second-
level table. The only change to the prediction mechanism is
the change in the index hash function for this component, so
that each branch, based on its PC, accesses entries within a
specific page. To make a prediction, only the first-level table is
accessed directly. Updates are also made only on the first-level
table. The second-level table is not accessed directly by the
prediction mechanism. Instead, a separate engine swaps pages
between the two levels as necessary.

A. Architecture

Figure 2 shows the architecture of the paged design. We refer
to the two levels of the virtualized predictor component as the
L1 and L2 tables. We also refer to this component as a whole as
long table, or ltable for short, since it appears virtually longer
than the other predictor tables.

1) Virtualization Engine: The Virtualization Engine is re-
sponsible for maintaining pages in the two levels. The branch
address is used to determine the page number, and the corre-
sponding page is requested from the L2 table in case of a miss.
At the same time, the residing page, if dirty, is written back to
the L2. On a page miss, prediction is not stalled. Instead, the
prediction mechanism uses the entries currently residing in the
L1. In these cases, a branch may inadvertently use data in a
page different than its own while waiting for the correct page to
be fetched. The entry’s tag provides a second layer of filtering
so that the effect of aliasing is insignificant in such cases.
Similarly, a branch may allocate entries in a page different than
its own. Conceptually, this allows repeating patterns to take
advantage of entries in other pages to make a prediction in the
meantime. In addition, pages are swapped to keep the L1 in
sync with the current instruction block, regardless of whether
ltable provides the final prediction or not. Consequently, the
sequence of pages swapped is a characteristic of the application
alone, and is independent of the predictor configuration.

2) Index Hash Function: The index hash function is modi-
fied so that each branch allocates and uses entries in a specific
page. Figure 2 shows how the bits of the branch PC are used
in the index hash function. In the figure, p is equal to log2 of
the page size, b is equal to log2 of the instruction block size, a
is log2 of the number of pages that fit in the L1, and n is log2

of the number of pages that fit in the L2. The parameter X is
used to vary the instruction block size as a function of the page
size, such that b = p + X . For each branch, bits [b + n− 1 : b]

PC

pXa

a

page index

Auxiliary Table Virtualization
Engine

L1 Table

L2 Table

bn

L1 index

⎬
⎫
⎭

ltable prediction

page

page match?

history

Fig. 2: Paging Scheme Architecture

determine the corresponding page number. The page number is
a function of the branch address only and preserves the locality
of the branch stream at a coarser grain. The position of a page
in the L1 table is determined by the lower a bits of the page
number, bits [b + a− 1 : b] of the branch PC.

As shown in Figure 2, the index to the L1 table is the a bits of
the branch PC that determine the location of the corresponding
page in the L1, concatenated with the page index (index within
the page). The page index hash function parallels that of the
original predictor, with minor modifications. The original hash
function compresses the information bits (PC, global and path
histories) to t bits, where t is the log2 of the number of table
entries. Instead in the new hash function, the same information
bits are compressed to p bits, the log2 of the page size.

3) Auxiliary Table: Tags for pages currently residing in the
L1 are kept in the Auxiliary Table. The table has 2a entries,
each entry consisting of n bits for the page number, as well as
a single dirty bit, which indicates whether the page has been
modified since it was fetched. Only dirty pages are written back
to the L2. The auxiliary table represents an additional dedicated
storage of 2a × (n + 1) bits. Since the Auxiliary Table is only
used by the Virtualization Engine, it is not on the critical path
of making a prediction.

IV. METHODOLOGY

A. Simulation Infrastructure

To evaluate the designs explored in this work, we use
the functional simulation infrastructure provided for the sec-
ond Championship Branch Prediction Competition. Results are
measured using functional simulation of two billion instructions
of a set of three commercial workloads. For each workload,
a trace of the branch addresses, corresponding outcomes and
intervening instruction counts is collected on Flexus, a full-
system simulator based on Simics, configured as a functional
in-order uniprocessor running the UltraSPARC ISA.

To emulate the L2 table’s delay, we employ a request queue
model. The L2 table is modeled with separate read and write
ports, and a request queue is managed for each of these ports. At
most one read and one write request is serviced per cycle. We
assume that this table is pinned in the L2 cache. Each request

contains the number of the requested cache line, in addition to
being stamped with the cycle number in which the request is
made. For write requests, a snapshot of the data at the time
the request is made is also passed along with the request. To
simulate a latency of N cycles, a request made at time t is
serviced at the beginning of cycle t+N . The simulator fetches
four instructions per cycle (fetch width of four).

We use the following benchmarks: the TPC-C v.3.0 online
transaction processing (OLTP) workload running on IBM DB2
v8 ESE, the TPC-H workload running on IBM DB2 v8 ESE
representing a decision support system (DSS), and finally the
SPECweb99 benchmark running over Apache HTTP Server
v2.0. The web server is driven with separate simulated client
systems, the results present the server activity.

The only processor parameters outside the branch prediction
unit considered in this work are the L2 cache line size and
latency, which we assume to be 64 bytes and 20 cycles
respectively. All virtualized designs described use a 64 KB
second-level table, equivalent to 1 K L2 cache lines.

The primary metric used in this work to measure predic-
tion accuracy is mispredictions per kilo instructions (MPKI).
This metric is a better measure of prediction accuracy than
misprediction rate, as it includes information about both the
branch frequency, as well as the predictor’s ability to correctly
predict these branches. MPKI is also more representative of the
performance impact of the predictor’s accuracy. For example,
a poor misprediction rate in a program with few branches may
not have a significant impact on performance.

B. TAGE Parameters

The original TAGE contains 12 tagged tables. We vary the
number of tagged tables, N , from 1 to 12 since one of our
objectives is to use virtualization to reduce the predictor’s
dedicated budget and complexity. In this way, we can determine
if a non-virtualized design can be replaced with a virtualized
design with fewer tables but equivalent accuracy. We use the
notation TAGEN,M to refer to a predictor with N tagged tables
each with M entries. The entry sizes remain unchanged from
the original predictor. The prediction and useful counters are 3
and 2 bits each, and the tag widths vary for each table.

Number of Tagged Tables (N) Number of Entries
1 16K
2 8K

3-4 4K
5-8 2K

9-12 1K
Bimodal Table 64K

TABLE I: Delay-Constrained Table Size Configurations

The original TAGE geometric function used for calculat-
ing history lengths takes a minimum and maximum history
length, and computes a history length for each table based on
the number of predictor tables. The minimum and maximum
history lengths used in the original TAGE are 4 and 640 bits
respectively. This allows a wide range of history lengths for a
predictor with a reasonable number of tables. For a predictor
with fewer tables, however, this results in very short and very
long history lengths with few moderate values in between. To
allow a better range of history lengths for smaller N , we tested
the predictor with a simple geometric function: Li = L1×2i−1.
This resulted in better accuracy for predictors of up to five
components. Therefore, we use two sets of geometric functions:
the new function for N <= 5 and the original for N > 5.

For our baseline predictor, we allow the predictor capacity
to be set by constraints on the predictor access time rather
than its area. The predictor is allowed as much capacity as it
can access to make a prediction in a single cycle. We use the
CACTI cache modeling tool [5] to estimate the latency of the
predictor structures and choose the largest configuration that
can provide a prediction in one cycle. The tagged tables are
modeled as caches, and the bimodal table as an SRAM array.
We optimistically assume a 4 Ghz processor. To mitigate the
effects of discrepancies introduced by our simplified model for
the predictor access time, we allow delays within a 20% margin
of the 250 ps cycle time, up to 300 ps. Table I summarizes the
results of this analysis. We refer to these baseline configurations
as delay-constrained or delay-limited, since the predictor size is
determined not by area constraints, but by the delay to access
its tables.

V. TESTS AND RESULTS

In this section, we first describe the experiments used to
explore the design space of the paged TAGE predictor. In order
to allow these effects to be shown more clearly, we use a
fixed size for all of the predictor tables, as opposed to using
the delay-constrained configurations established using CACTI
(Table I). For the final results (Section V-B), we apply the
parameters determined in the design exploration phase to the
delay-constrained configurations and analyze the effects.

In the design space exploration phase, the tagged table
are fixed at 2K entries each (TAGEN,2K). This is the size
determined by CACTI for the range of 5 <= N <= 8. We
use this size since the baseline TAGE8,2K predictor achieves
the best MPKI of all the delay-constrained configurations, as
will be shown in Section V-B. The size of the bimodal table is
16 K entries, unchanged from the original predictor.

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

8.6

6.46

5.41
4.81

4.39
3.97

3.66
3.39 3.23 3.09 2.97 2.87

7.4

5.01

4.02
3.55 3.32 3.11 2.89 2.72 2.61 2.53 2.46 2.39

6.24

3.97

3.2
2.88 2.71 2.58 2.44 2.32 2.23 2.18 2.12 2.07

TAGE_N,2K TAGE_N,4K TAGE_N,8K

N

A
ve

ra
g

e
 M

P
K

I

Fig. 3: TAGE MPKI as a function of the number of tables (x-axis) and the
capacity of each table (curves)

A. Design Space Exploration

1) TAGE Baseline and Potential for Virtualization: Figure
3 shows the average MPKI of the original TAGE predictor
with three different capacities: TAGEN,2K , TAGEN,4K , and
TAGEN,8K as a function of N . The figure shows that the
predictor’s accuracy can be improved both by increasing the
table count and the table sizes. This observation suggests that
increasing the capacity of TAGE can improve accuracy and
motivates our attempt to virtualize TAGE.

2) Choosing Which Table to Virtualize: Since the paging
mechanism is applied to a single predictor table, we ensure that
increasing the perceived capacity of one table provides enough
improvement to justify a paged design. We also determine the
table that utilizes the increased capacity most efficiently to
improve accuracy. To do this, we model an idealized version
of the predictor by replacing one of the predictor tables with
a large table equal in size to the L2 table, representing the
virtualized component (ltable). The table is not broken into
pages and can be thought of as a single large page. The accuracy
of this predictor represents an upper bound on the improvement
that can be achieved through paging. For all of our experiments,
we use virtual table with 32 K entries (approximately 64 KB).

Figure 4 shows the average MPKI of the idealized predictor
for different values of N . The x-axis shows which table was
replaced with a large table, while each line represents a different
N . The average MPKI of the baseline predictor (with no ltable)
is also shown at N = 0 for comparison. In all cases, the
first few tables benefit the most from an increased capacity.
Intuitively, we expect the first few tables which use shorter
history lengths to gain the most benefit, since the behaviour
of most branches depends on the outcome of a few recent
branches, while a smaller portion of branches depend on long
history lengths. The best MPKI is roughly achieved with
ltable = 2 for 2 <= N <= 6, and ltable = 3 for N > 6. We
use this ltable configuration in the rest of this study.

3) Introducing Pages: To simplify the design of the virtual-
ized predictor, we choose the page size that fits in a single 64 B
L2 cache line. Since each entry is about 2 B, this corresponds to
a 32-entry page size. Figure 5 shows the average MPKI of the
predictor with 32-entry pages. Also shown for comparison are

 Baseline 1 2 3 4 5 6 7 8 9 10 11 12
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

N=12 N=11 N=10 N=9 N=8 N=7
N=6 N=5 N=4 N=3 N=2

ltable

A
v

e
ra

g
e

 M
P

K
I

Fig. 4: Design space sweep for choosing which table to virtualize

 1 2 3 4 5 6 7 8 9 10 11 12
2

3

4

5

6

7

8

9

0

5

10

15

20

25

30

35

40

4543.7 43.2

39.0
36.2

33.7

27.8
25.2

23.5
21.7

19.6
18.0

16.3

40.6

36.0
33.4

31.2
28.9

24.2

19.2 18.3 17.8 16.8 16.0 15.0

Average MPKI: TAGE_N,2K
Average MPKI: Idealized Predictor
Average MPKI: Paged Predictor – 32-Entry Pages
Average % Improvement over Baseline: Idealized Predictor
Average % Improvement over Baseline: Paged Predictor – 32-Entry Pages

N

A
v

e
ra

g
e

 M
P

K
I

A
ve

ra
g

e
 %

 Im
p

ro
ve

m
e

n
t

Fig. 5: Maximum Potential Improvement with a Page Size of 32 Entries

the average MPKI of the baseline predictor TAGEN,2K and the
idealized predictor from the previous section. The two dashed
plots show the percentage improvement in the accuracy of the
idealized predictor and the paged predictor over the baseline.
The difference between the two lines represents improvement
loss due to page size constraints. It can be seen that even with
paging, significant room for improvement persists.

4) Instruction Block Size: In the previous section, we as-
sumed that the instruction block size (IBS), the size of a
block in the instruction address space whose branches share
a predictor table page, and the page size are equal. In our
experiments, we found that for this IBS, a page would have
to be swapped into the L1 table once every three conditional
branches. We omit the detailed results due to space limita-
tions and summarize the key finding. Specifically, we found
that using an IBS eight times larger than the predictor page
results in the best tradeoff between page swap frequency and
improvement in MPKI. Specifically, this cuts the page swap
frequency down to a third, from 33% down to 11%.

Figure 6 shows the average MPKI of this predictor for
different values of N . Also shown for comparison are the
average MPKI of TAGEN,2K and the predictor with equal

1 2 3 4 5 6 7 8 9 10 11 12

2

3

4

5

6

7

8

9

0

5

10

15

20

25

30

35

40
39.8

35.2
32.7

30.6
28.3

23.7

18.6 17.9 17.4 16.5 15.7 14.7

36.8

32.6
30.6

28.6
26.3

21.6

16.8 16.1 15.8 15.3 14.6 13.7

Average MPKI: TAGE_N,2K
Average MPKI: Paged Predictor with 32B IBS
Avergae MPKI: Paged Predictor with 256B IBS
% Improvement Over Baseline: Paged Predictor with 32B IBS
% Improvement Over Baseline: Paged Predictor with 256B IBS

N

A
v

e
ra

g
e

 M
P

K
I

A
ve

ra
g

e
 %

 Im
p

ro
ve

m
e

n
t

Fig. 6: Maximum Potential Improvement with an IBS of 256 B

 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

-10

-5

0

5

10

15

20

-6.2 -2.9

5.5 5.0

12.8

10.5
9.4 8.7

16.4
15.3

14.3
13.4

Average % Improvement Over Non-Virtualized Predictor
Average MPKI: Non-Virtualized Predictor
Average MPKI: Virtualized Predictor

N

A
v

e
ra

g
e

 M
P

K
I

A
ve

ra
g

e
 %

 Im
p

ro
ve

m
e

n
t

Fig. 7: Accuracy Improvement for Virtualization of Delay-Constrained Config-
urations

instruction block and page sizes. The two dashed plots show
the percentage improvement in MPKI for the two different IBS
values over (approximatley 1%-3%). In the remainder of this
paper, we use a page size of 32 entries and an IBS of 256 B.

B. Virtualized Design with Realistic Virtual Table Latency

Figure 7 shows the average MPKI of the virtualized and
non-virtualized predictors as a function of N for the delay-
constrained configurations. For these results, the number of
entries in the tagged tables varies as a function of N according
to Table I. Therefore, unlike previous sections, the MPKI curves
are not a straight function of N . For the virtualized design,
the L2 table is kept constant at 32 K entries in all cases. Its
access latency is assumed to be 20 cycles. The bars show the
percentage improvement in MPKI through virtualization over
the baseline. For N = 1, virtualizing the predictor results in a
worse MPKI. At this point, the virtual table size (32 K entries)
is only twice the size of the dedicated table (16 K entries).
The same reasoning applies for N = 2, where the virtual
table is only four times larger than the dedicated table. Starting
at N = 3, we see positive improvement in accuracy. This
suggests that in our scheme, the virtual table has to be relatively

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

16

2.5

5.2

7.9 7.9

10.8 10.8 10.8 10.8

13.4 13.4 13.4 13.4

2.0
2.6

3.3 3.2

4.3 4.5

3.4 3.7

5.0 5.2 5.1 5.2

L2 Read Rate L2 Write Back Rate (Dirty)

N

A
v

e
ra

g
e

 L
2

 T
ra

ff
ic

 R
at

e

Fig. 8: Effect of Virtualization on L2 Cache Traffic

larger than the dedicated table to compensate for losses due
to page size constraints. The best accuracy for the baseline
predictor is achieved at N = 8. For this point, virtualization
can improve accuracy by 8.7%. Alternatively, a virtualized
design with five tagged tables can be used to achieve the same
accuracy, reducing the dedicated storage of the predictor by
12 KB, 25% of the original dedicated predictor size.

To observe the effect of virtualization on the L2 traffic,
Figure 8 shows the L2 cache read and write overhead rates
(shown as percentages) for each N . These rates are measured
as the number of L2 reads or writes per conditional branch. L2
writes occur only for dirty pages, and as a result are fewer than
L2 reads. The figure shows that the maximum read and write
overhead rates are 13.4% and 5.2% both at N = 12.

VI. RELATED WORK

There have been numerous works on branch direction predic-
tion. We limit our attention to few closely related works due to
space limitations. Delay-sensitive hierarchical branch predictors
[1] share the same goal as our work: to allow the use of a larger
more accurate predictor without increasing prediction delay to
more than a single cycle. While they were introduced in the
context of allowing predictors to scale to future technologies,
they could potentially be used to hide the latency of large
predictor tables. Three schemes are proposed for overcoming
delay: a caching approach, an overriding approach, and a
cascading lookahead approach applied to the gshare predictor.
The last two schemes could be considered as alternatives
to virtualization. However, in both cases prediction accuracy
depends on the accuracy of both a fast and less accurate
predictor and that of a larger more accurate one. These schemes
could benefit from using a virtualized predictor (which provides
predictions in a single cycle) as the first-level predictor. Unlike
a virtualized design, these schemes require large dedicated
budgets for implementing the two predictor levels.

Virtualization has been applied to the EXplicit dynamic
branch predictor with ACTive updates (EXACT) [6]. EXACT
employs a different approach to improving branch prediction
by using information about load and store instructions that

may affect branch outcomes. It requires that such instructions
update the branch predictor directly. Two new structures are
introduced which are in charge of keeping track of the effect
of load and store instructions. Virtualization is applied to the
latter structure, the Active Update unit, which takes the address
of a store instruction as index and outputs the PC of the branch
affected by the store, as well as the effects of the change.
Since active updates are tolerant of 400+ cycles of latency,
a straightforward application of PV is used on this unit. In our
scheme, virtualization is applied to the branch predictor unit
itself, and is thus orthogonal to the EXACT predictor.

VII. CONCLUSIONS AND LIMITATIONS

We have proposed a method for improving the accuracy
or reducing the dedicated storage cost of branch direction
prediction. Our method virtualizes one of the tables in the
TAGE predictor and stores a much larger virtual table in the
L2 cache. Through the introduction of a paging scheme, we
split a monolithic virtual table into a collection of sub-tables,
each assigned to a different portion of the instruction memory
space. As a result, locality is introduced in the branch predictor
access stream, allowing it to tolerate the increased latency
incurred due to virtualization. Experimental results showed that
the virtualized predictor can either be used to increase accuracy
by 8.7% or to reduce dedicated storage by 25%.

We have used functional simulation to evaluate the accuracy
of the proposed branch predictor designs. This is typical of
branch prediction studies. We used instruction count to approx-
imate processor cycles and to emulate delay of the predictor L2
table. Cycle-accurate simulation would allow us to determine
the impact of our design on the L2 cache traffic, as well as
the effect of the improved accuracy on the overall processor
performance. Furthermore, it would allow us to determine
predictor L2 table sizes which benefit prediction accuracy
without contending for the L2 cache data.

REFERENCES

[1] D. A. Jiménez, S. W. Keckler, and C. Lin, “The impact of delay on the
design of branch predictors,” in Proceedings of the 33rd annual ACM/IEEE
international symposium on Microarchitecture, ser. MICRO 33. New
York, NY, USA: ACM, 2000, pp. 67–76.

[2] I. Burcea, S. Somogyi, A. Moshovos, and B. Falsafi, “Predictor virtualiza-
tion,” in Proceedings of the 13th international conference on Architectural
support for programming languages and operating systems, ser. ASPLOS
XIII. New York, NY, USA: ACM, 2008, pp. 157–167.

[3] I. Burcea and A. Moshovos, “Phantom-btb: a virtualized branch target
buffer design,” in Proceeding of the 14th international conference on
Architectural support for programming languages and operating systems,
ser. ASPLOS ’09. New York, NY, USA: ACM, 2009, pp. 313–324.

[4] A. Seznec, “The l-tage branch predictor,” Journal of Instruction Level
Parallelism, vol. 9, April 2007.

[5] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0: A
tool to model large caches,” HP Laboratories, Tech. Rep., April 2009.

[6] M. Al-Otoom, E. Forbes, and E. Rotenberg, “Exact: explicit dynamic-
branch prediction with active updates,” in Proceedings of the 7th ACM
international conference on Computing frontiers, ser. CF ’10. New York,
NY, USA: ACM, 2010, pp. 165–176.

