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Abstract—Nowadays, sensor networks are being used to moni-
tor increasingly complex physical systems, necessitating advanced
signal analysis capabilities as well as the ability to handle large
amounts of network data. For the first time, we present a
methodology to enable advanced decision support on a low-
power sensor node through the direct use of compressively-sensed
signals in a supervised-learning framework; such signals provide
a highly efficient means of representing data in the network, and
their direct use overcomes the need for energy-intensive signal
reconstruction. Sensor networks for advanced patient monitoring
are representative of the complexities involved. We demonstrate
our technique on a patient-specific seizure detection algorithm
based on electroencephalograph (EEG) sensing. Using data from
21 patients in the CHB-MIT database, our approach demon-
strates an overall detection sensitivity, latency, and false alarm
rate of 94.70%, 5.83 seconds, and 0.199 per hour, respectively,
while achieving data compression by a factor of 10×. This
compares well with the state-of-the-art baseline detector with
corresponding results being 96.02%, 4.59 seconds, and 0.145 per
hour, respectively.

I. Introduction

In next-generation sensor networks, the ability to provide

advanced assessment over a large number of signal channels

will be of critical value. In many applications, however,

the signals involved are too complex to model adequately

at the physical level. Data-driven techniques are emerging

as a powerful approach for overcoming this challenge [1].

Out-patient monitoring networks are representative of such

applications, since they require specific, clinically-relevant

states to be modeled in physiological signals that are accessible

through low-power sensors. As rich data become increasingly

available, both through low-power sensing technologies and in

the form of electronic records, supervised-learning methods

provide efficient techniques for constructing and applying

accurate signal models derived from the data. The problem,

however, is that in networks formed from small-scale, energy-

constrained nodes, communication and storage of data pose

primary limitations.

Fig. 1 illustrates the bottlenecks. First, the signals of interest

may be distributed and only invasively accessible [action po-

tential, local field potential (LFP), electrocorticogram (ECoG),

and EEG signals are shown as examples in Fig. 1]. In order

to transmit these signals from an energy-constrained implant
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Fig. 1. Bandwidth and energy limitation of systems for physiological signal
acquisition. Compressive sensing (compression by a factor of 10 is illustrated)
can help alleviate the strict limitations imposed by Nyquist sampling.

to an external computation platform, transcutaneous or MICS-

band links may be utilized [2], [3]. However, as shown for the

example of neural spike signals (bottom left of Fig. 1), such

links can pose strict bandwidth limitations for even moderate

channel counts. Second, data storage on a sensor platform and

communication to centralized resources or gateway devices

face capacity and energy limitations in a network, particularly

as the number of such nodes increases. For instance, the

communication energy (bottom right of Fig. 1) imposes limits

on wireless EEG acquisition systems [4]–[6].

Efficient signal representation techniques could thus play

a critical role in networks composed of energy-constrained

nodes. In this paper, we unite such a technique with advanced

on-sensor signal analysis. The signal representation we focus

on is compressive sensing [7], which has gained popularity in

small-scale sensors because of its potential to enable very low-

energy compression as well as its applicability to a broad range

of signals. An important challenge, however, is that it requires

highly intensive computations for signal reconstruction [7],

[8]. We thus present a methodology that enables the direct

use of compressively-sensed signals in a supervised-learning

framework to construct low-energy biomedical detectors for

decision support on sensor nodes within a network. At the

same time, this approach allows the signals to be reconstructed

for offline analysis by clinical experts. Our specific contribu-

tions are as follows.
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• We propose a new methodology for transforming linear

and nonlinear filtering operations into the compressed

domain, enabling the computation of features from physi-

ological signals. Features correspond to specific biomark-

ers, which substantially improve the performance of med-

ical detectors. Previous work in signal classification using

compressively-sensed data [9]–[11] has only investigated

theoretical bounds and has not considered methods for

extracting specific features.

• We demonstrate our methodology on a seizure detec-

tor based on spectral-energy features extracted from

compressively-sensed EEG. In fact, spectral features are

generic biomarkers for neural field potentials and hold

relevance for a broad range of neurological applica-

tions (e.g., brain-machine interfaces [12], sleep disorders

[13], etc.). Using patient data from the CHB-MIT [14]

database, we validate the computed features with mutual

information and Kullback-Leibler (KL) divergence met-

rics, and compare the end-to-end detector performance

with a baseline algorithm that uses Nyquist samples.

Comparable performance is obtained while achieving

high data compression ratios (of more than 10×).

• We analyze the hardware implications of implementing

a detector using the proposed approach. The hardware

operations required are compared to optimized Nyquist-

domain methods, where optimizations, such as folded FIR

and polyphase filter implementations, are possible.

II. Background

Given a signal u ∈ RN , which is k-sparse in a dictionary Ψ,

the theory of compressive sensing states that we can collect M

[M ≪ N] samples from u, using simple measurement vectors

φi, to extract sufficient information for accurate reconstruction

with a high probability. Several choices of the measurement

matrix Φ = {φi}1≤i≤M are possible. A random matrix, whose

elements are ±1 according to a Gaussian probability distri-

bution, is often sufficient [7], [8], and leads to low-energy

compression via simple additions.

A. Related Work

Techniques for dimensionality reduction and random projec-

tions in machine learning have recently received interest. In

[9], a theoretical error bound is presented for the use of

compressively-sensed signals with a discriminative classifier

[e.g., support-vector machine (SVM)]. Similar explorations

on regression methods are described in [10], which show an

estimation-error bound of O(logM/
√

M) (M is the number of

compressed samples). The use of generative classifiers with

random projections applied to data has also been explored

[11].

The approach we take in this paper expands on the theoret-

ical concepts behind the application of such machine-learning

frameworks. An important distinction is that we also focus

on methods for extracting specific signal features. In medical

detectors, these features correspond to biomarkers in physio-

logical signals that are determined to have some correlation

Fig. 2. The proposed detector comprises a compressive-sensing front-end,
a compressed-domain feature extractor, and a classifier. We quantitatively
validate the approach by analyzing the reconstruction error, the information
content of the computed features, and the final detector performance.

with the clinical states we are interested in detecting. By

isolating physically-meaningful biomarkers through the direct

use of compressively-sensed signals, our methodology thus

enables high-performance detectors that are also compatible

with efficient methods for representing data within the sensing

system and network.

III. Overview Of The Proposed Technique

An overview of our system architecture, which is implemented

in MATLAB, is shown in Fig. 2. The detector consists of

a sensing front-end, a compressed-domain spectral-feature

extractor, and a classifier (for which we use an SVM). The

figure also shows our methodology of quantitative validation

at various stages for analyzing the reconstruction error, the

information content of the computed features, and the final

detector performance. An overview of the proposed method-

ology, which is demonstrated on an epileptic seizure detector,

is presented in the rest of this section.

A. Compressed-domain Seizure Detector

In this section, we describe the sub-systems used in the

proposed compressed-domain seizure detector.

Compressive-sensing front-end. 18 channels of raw EEG

from several patients are available from the CHB-MIT

database [14] as digitized samples recorded at 256 Hz. N

Nyquist samples (corresponding to an epoch of two seconds)

are applied as input to the sensing front-end shown in Fig. 2,

where they are projected onto an M × N random measure-

ment matrix Φ, resulting in a compressively-sensed signal

representation of M (≪ N) samples. The number of Nyquist

and compressively-sensed samples are therefore related by the

compression ratio (RCS ), which is defined as

RCS = N/M. (1)

Compressed-domain feature extractor. The compressively-

sensed samples from each EEG channel are processed to

compute features using the functions Ĥ1, . . . , Ĥ8 (only one

instance of these functions is shown in Fig. 2). Each of these

functions corresponds to the compressed-domain equivalent of

applying a bandpass filter to the Nyquist signal. The functions

thus effectively isolate the frequency content in eight bands.

The energies within these bands are derived, which correspond

to the biomarkers required for seizure detection [15].



Classifier. The outputs from the compressed-domain feature

extraction block are fed to a classifier. To implement the SVM

classifier, the open-source SVM-Light [16] package is used.

B. Validation of Methodology

The proposed approach is validated via the three types of

analyses described below. We show that both the information

content in the computed features and the final performance

of the detector correspond to the reconstruction error of the

compressively-sensed signal.

Information analysis. The first step in our validation is

to quantify the change in the information contained in the

compressed-domain features relative to that contained in the

Nyquist-domain features. We use the metric of mutual infor-

mation, which measures how the computed features alter the

uncertainty of classifying a data instance. We observe that the

information content initially degrades minimally with RCS , but

then, beyond a threshold, which is around ten, it degrades

significantly.

Performance analysis. The performance metrics we use in

our evaluation are sensitivity, detection latency, and the num-

ber of false alarms per hour. We observe that there is a direct

correlation between the decay in information content and the

performance of the compressed-domain detector. Initially, the

performance degrades modestly with increasing RCS . However,

with larger compression ratios, the latency and false alarms

increase, and sensitivity drops significantly.

Reconstruction error analysis. Reconstruction error is

used to understand the information-content and detector-

performance trends observed. We find that these trends corre-

spond to the degradation in reconstruction error and thus accu-

rate compressed-domain detection can be achieved in a manner

that follows the reconstruction accuracy. This is promising,

since compressive sensing can often tolerate high compression

ratios while maintaining reasonable reconstruction accuracy.

IV. DetectionWith Compressively-sensed Data

In this section, we formulate the computations of the base-

line seizure detection algorithm to permit transformation

to the compressed domain. We then present the proposed

compressed-domain approach.

A. Epileptic Seizure Detection Using the EEG

Fig. 3 illustrates the baseline algorithm, which relies on

patient-specific SVM training [15]. The algorithm processes

a two-second epoch of each EEG channel using eight band-

pass filters (with passbands of 0-3 Hz, 3-6 Hz, . . ., 21-24

Fig. 3. The baseline epileptic seizure detection algorithm employing spectral-
analysis feature extraction and SVM classification.

Hz). Clinical studies have shown that EEG spectral energies

can serve as biomarkers that indicate the onset of a seizure

[17]. As shown in the figure, the energy from each filter

is then represented by summing the squared value of the

output samples to form a feature vector, which is then used

for classification by an SVM. The detector is applied to 558

hours of data from 21 patients (corresponding to 148 seizures)

and achieves an average sensitivity, latency, and specificity of

96.02%, 4.59 sec., and 0.145 false alarms per hour.

Feature-extraction formulation. Let each epoch of Nyquist-

sampled EEG per channel be denoted by an N-dimensional

vector u ∈ RN . The eight bandpass filters can be represented

by eight matrices Hj ∈ RN×N , j = 1, 2, . . . , 8. Thus, a filtering

operation can be formulated as a linear transformation given

by
fj = Hju, (2)

where fj ∈ RN represents the filtered signal of N samples. To

form the feature vector, we compute the energy in each of the

frequency bands defined by Hj. The following accumulation

operation is thus used to derive the energy:

x j = fj
T fj, (3)

where x j is the jth dimension of the feature vector.

B. Compressed-domain Feature Computation Methodology

Let the inputs to the proposed compressed-domain detector

be M (≪ N) compressively-sensed EEG samples per channel.

These samples can be represented as û ∈ RM , and are related

to the Nyquist samples u by

û = Φu, (4)

where Φ is the measurement matrix whose elements are ±1

i.i.d samples from a Gaussian normal distribution N(0, 1).

Now, in place of the original bandpass filters Hj, we propose

to use new matrix transformations Ĥj ∈ RM×M , j = 1, 2, . . . , 8,

which derive compressed-domain representation of the spectral

components by directly using the compressively-sensed EEG

samples.

In particular, in order to compute the desired features, Ĥj

must be such that it yields an output signal from which the

energy of the original band-isolated signal fj can be obtained.

Suppose that we are able to find a suitable matrix Ĥj that

yields the output signal f̂j such that

f̂j = Ĥjû, (5)

where f̂j ∈ RM is a vector of M samples. We will show below

that f̂j can represent the energy of fj if it is chosen to be the

random projection of fj given by

f̂j = Φfj. (6)

This leads to the following relationship [from Eqs. (2), (4),

and (5)]:
ĤjΦu = ΦHju, (7)

which allows us to derive Ĥj. However, since Φ is not a square

matrix, the above relationships represent an underdetermined



set of equations. They can be solved using the Moore-Penrose

pseudo-inverse Φ† ∈ RN×M of Φ for a closed-form represen-

tation given by

Ĥj = ΦHjΦ
†. (8)

Proof that the energy of fj can be represented by f̂j: A

corollary from the Johnson-Lindenstrauss lemma states that

the inner products are preserved under random projections

[18]. We exploit this by applying it to the inner products of

vectors fj and fT
j

and their projections f̂j and f̂j

T
. Thus, we

have the following condition:

Pr

(
∣

∣

∣

∣

fj
T fj − f̂j

T
f̂j

∣

∣

∣

∣

≥ δ
)

≪ 1,∀ j ∈ [1, 8] (9)

where δ is a probabilistic error bound for the extracted features

that justifies the assumption in Eq. (6). �

The required spectral energy (to compute the feature vector),

in the compressed domain, can thus be obtained from f̂j as

follows:
x̂ j = f̂j

T
f̂j. (10)

The feature vector from the above equation can now be used

with an SVM classifier for seizure detection.

V. Analysis and Experimental Results

We quantify the performance of the proposed compressed-

domain detection approach by analyzing how the derived

features affect the conditional entropy of the seizure or non-

seizure class values associated with the data. We then provide

an experimental evaluation of the detection algorithm using

compressively-sensed EEG.

A. Information Analysis of the Proposed Methodology

Let C ∈ {0, 1} be the set of class values (i.e., seizure or non-

seizure) with cardinality E corresponding to all two-second

epochs of EEG data in the CHB-MIT database. Further, let

P(C) represent the probability distribution of these values.

The initial uncertainty in the feature vector set xk prior to

classification is measured by the Shannon entropy given by

S (X) = −
E
∑

k=1

P(xk) logP(xk). (11)

The average uncertainty after determining the E class labels

is given by the conditional entropy:

S (X|C) = −
∑

C=0,1

P(C)

E
∑

k=1

P(xk|C) logP(xk|C), (12)

where P(xk|C) is the conditional probability of the feature

vector derived from the Nyquist-sampled EEG, given the set

C. The amount by which the uncertainty is decreased is, by

definition, the mutual information I(X; C) between the feature

vector set X and the class values. A common measure for

evaluating the ability of a classifier to discriminate between

data instances thus exploits the following property [19]:

I(X; C) = S (X) − S (X|C). (13)
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Fig. 4. KL divergence between the feature vectors in the original and
compressed-domain detectors is retained up to a large compression ratio.

Intuitively, mutual information is the amount by which the

knowledge provided by the set of class values C decreases

the uncertainty about the feature vector set X [20]. It can

therefore be used as a metric to validate the information

content in the features derived by the compressed-domain

detection methodology. This can be done as follows:

I(X̂; C) = S (X̂) − S (X̂|C). (14)

After undergoing the feature extraction process, consider

two separate instances of the SVM classifier operating on

feature vector sets X and X̂ corresponding to the baseline

and the compressed-domain detectors, respectively. A measure

of closeness in the result of the two classifiers is the KL

divergence [19], which is defined as

DKL(X||X̂) = I(X; C) − I(X̂; C). (15)

A KL divergence close to zero is desired to maintain

correspondence between the two approaches. Fig. 4 shows nu-

merical results for the analysis of information content averaged

over 1 million epochs of EEG data from 21 patients in the

CHB-MIT database. S (X) = 3.61 bits is the initial entropy in

class values. After the extraction of spectral-energy features

from Nyquist-sampled EEG data, the conditional entropy

S (X|C) drops by 3.3% to 3.49 bits. Using compressively-

sensed EEG data and the proposed transformation of Eq. (8)

for feature extraction, the conditional entropy in class values

S (X̂|C) drops to 3.44 bits for RCS = 2 and continues to

degrade to 3.37, 3.28, and 3.09 bits for RCS = 3.3, 5, and 10,

respectively. Compressing the EEG signals beyond this point

drops S (X̂|C) to 1.67 bits. Consequently, compressing EEG

signals, up to a ratio of approximately 10, degrades DKL(X||X̂)

minimally (i.e., by 0.40 bits) and rapidly beyond this. Thus,

the information content of the compressed-domain features

is maintained up to a large compression ratio. To enable

a calculation of the entropies, we quantized the probability

distributions using 256 bins in [0,1]. Note that the y-axis

in Fig. 4 is in bits, which means that the computation of

individual entropies involves logarithm to base 2.

B. Performance Analysis of the Proposed Methodology

The compressed-domain detection methodology is further val-

idated by simulating the end-to-end seizure detection perfor-

mance using an SVM classifier.

Compressively-sensed EEG over 18 channels in the CHB-

MIT database is processed one epoch at a time, using the
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Fig. 5. Average performance of the compressed-domain seizure detection algorithm with direct use of compressively-sensed signals. The results were
calculated using EEG data from 21 patients in the CHB-MIT database. The figure on the right shows the reconstruction accuracy versus RCS .

transformation functions Ĥj, j = 1, 2, . . . , 8, from Eq. (8).

Thus, feature vectors of 144 dimensions corresponding to the

biomarkers are generated at a rate of 0.5 Hz. These vectors

are used to train and test the SVM classifier in a patient-

specific manner [15]. A leave-one-out cross-validation scheme

is employed for measuring the performance of the detection

algorithm. Fig. 5 shows the scaling in average performance

(over 21 patients). The degradation in sensitivity is less than

1.32% up to a compression ratio of 10×, beyond which it

begins to drop more significantly. The scaling in the number

of false alarms per hour and the latency also follow a similar

trend. The mean latency of detection increases by 1.24 seconds

while the specificity of the algorithm degrades by 0.054 false

alarms per hour at RCS = 10. The degradation in performance

exhibits the expected correlation with information loss in the

feature vectors, as discussed in the previous section.

C. Reconstruction Error Analysis

We evaluate the accuracy of signal reconstruction from

compressively-sensed EEG. Our aim is to observe whether

any correlation exists between the detector performance and

the reconstruction error.

In the compressive-sensing front-end (described in Fig. 2),

a random measurement matrix Φ ∈ RM×N is used, along with

a Gabor basis Ψ ∈ RN×N , for sparse representation. The use of

a Gabor basis enables an efficient representation and accurate

reconstruction of EEG signals [21]. Gradient projection is used

for signal reconstruction in the sparse reconstruction algorithm

[22]. The signal-to-noise ratio (SNR) in dB is calculated based

on the original (ui) and reconstructed epochs of the EEG.

Fig. 5 shows the degradation in SNR as a function of the

compression ratio averaged over 21 patients. With increas-

ing compression ratio, the SNR of the reconstructed EEG

drops minimally up to RCS of approximately 10, and rapidly

beyond that. This behavior correlates with the deterioration

in performance of the compressed-domain detector. We thus

observe a rationale for why decision-support computations can

be supported directly by compressively-sensed EEG even in

the case of substantial compression ratios.

VI. Hardware Implementation Analysis

In this section, we present an analysis of the hardware im-

plementation cost for the compressed-domain detection al-

gorithm. Since the proposed approach requires formulating

feature computation as a matrix multiplication, it precludes

the use of filter optimizations, such as multiply-accumulate

(MAC)-stage folding and polyphase decomposition. On the

other hand, the compressed-domain approach has the benefit

of having to process fewer input samples. Thus, a trade-off

related to the compression ratio is presented.

Filter optimizations. Fig. 6 shows the structure of the

compressed- and Nyquist-domain detectors. MAC operations

are the dominant computation in the system and are used

for feature extraction in two stages: (i) the application of the

spectral-analysis filters of Eq. (2) (identified as MAC0 in the

figure), and (ii) the energy accumulation process of Eq. (3)

(identified as MAC1). The number of operations per epoch are

shown in dark boxes below the MAC units (N = 512 is the

number of Nyquist samples, k = 64 is the filter order used, and

F = 8 is the number of spectral-analysis filters). For the band-

pass filtering (BPF) stage, kN operations are performed per

epoch per channel in the cascade-form FIR implementation.

They can be reduced to kN/2 by exploiting the symmetry of

the filter coefficients Hj (necessary for a detector implementa-

tion with linear phase). Further computational reductions can

be achieved through down-sampling prior to processing by a

polyphase filter. Thus, F also corresponds to the polyphase

down-sampling possible as a result of BPF.

The optimizations for Nyquist-domain processing are pos-

sible because filtering actually corresponds to convolution,

allowing the matrix Hj to have a regular structure (with

several zeroed entries), as shown in Fig. 6. With compressed-

domain processing, however, the entries of the Ĥj matrix are

determined by the random projection matrix Φ, disrupting

Fig. 6. The structure of the convolution matrix Hj in the Nyquist domain
enables filter optimizations to reduce the number of MAC operations.
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the regularity, and precluding the optimizations above. Ĥj

thus potentially consists of (N/RCS )2 non-zero coefficients.

Therefore, in the most generic case, the compressed-domain

implementation involves a matrix multiplication resulting in

(N/RCS )2 operations in MAC0. Fig. 7 shows a practical

implementation of the detector using a single MAC engine

for each of the operations, MAC0 and MAC1, described

earlier. On the left, the figure shows the scaling in MAC

operations with compression ratio RCS (the number of MAC

operations required for an optimized Nyquist implementation

is also shown). We observe that at sufficient compression ratios

(around RCS > 8), compressed-domain processing can actually

enable fewer hardware operations despite the optimizations

possible in the Nyquist implementation. At RCS = 10, the

number of MAC operations in the compressed domain are

1.6×, 6.15×, and 12.3× fewer as compared to the polyphase,

folded, and cascade-form FIR architectures, respectively. Note

that random projections in the compressed domain can be

performed without any MAC operations and are excluded from

this analysis.

Another key consideration in the implementation is the

amount of memory required by the detectors (shown at the

right in Fig. 7). We need to store kF coefficients for the

Nyquist implementation versus k(N/RCS )2 for the compressed-

domain detector. There is thus a subtle computation-memory

trade-off in the implementation of the compressed-domain

detector. The system-level gains from reduced communication

and computation costs, however, are significant, typically

far exceeding the memory overheads in a low-power sensor

platform.

VII. Conclusions

An ensemble of sensor nodes monitoring complex physical

systems presents high volumes of data both for storage and

communication. We presented a methodology to enable accu-

rate on-sensor decision-support computations based on direct

use of compressively-sensed signals; such signals provide an

efficient method for representing the data. We presented an

efficient compressed-domain detector for epileptic seizures.

We observed that the performance of the compressed-domain

algorithm is preserved up to the accuracy with which the

signals can be reconstructed. We also observed that the gains

from reduced computation and communication potentially far

exceed the memory overheads of hardware implementation on

a low-power sensor platform.
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