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Abstract—Feature size reduction drastically influences 
permanent faults occurrence in nanometer technology devices. 
Among the various test techniques, Software-Based Self-Test 
(SBST) approaches have been demonstrated to be an effective 
solution for detecting logic defects, although achieving complete 
fault coverage is a challenging issue due to the functional-based 
nature of this methodology. When VLIW processors are 
considered, standard processor-oriented SBST approaches result 
deficient since not able to cope with most of the failures affecting 
VLIW multiple parallel domains. In this paper we present a 
novel SBST algorithm specifically oriented to test the register 
files of VLIW processors. In particular, our algorithm addresses 
the cross-bar switch architecture of the VLIW register file by 
completely covering the intrinsic faults generated between the 
multiple computational domains. Fault simulation campaigns 
comparing previously developed methods with our solution 
demonstrate its effectiveness. The results show that the developed 
algorithm achieves a 97.12% fault coverage which is about twice 
better than previously developed SBST algorithms. Further 
advantages of our solution are the limited overhead in terms of 
execution cycles and memory occupation.   

Keywords- Testing, software-based self test, Very Long 
Instruction Word Processors, Fault Simulation. 

I. INTRODUCTION 
The continuous aggressive reduction of semiconductor 

fabrication process permits today the implementation of SoCs 
with multimillion transistors operating at gigahertz 
frequencies and integrating on a single chip several hundreds 
of modules, computational cores and memory blocks. Thanks 
to the reduced feature size, SoC performances are extremely 
enhanced. However, due to the highly stressed production 
process, phenomena like metal migration or aging of the 
circuit may increase the occurrence of permanent faults. On 
the other hand, testability is progressively limited due to the 
aggressive deep-submicron geometries which may also 
provoke the appearance of new kinds of defects.  

Traditional usage of Automatic Test Equipment (ATE) for 
SoC tests is a valid method for deploying at-speed tests able to 
obtain high test quality; however, since extremely expensive, 
it cannot always be considered an economically affordable 
solution. In the last decade, several Software-Based Self-Test 
(SBST) techniques have been proposed following this 
approach [1] [2]. The basic idea of SBST is to generate test-
patterns by executing program sequences, where processor 
instructions are used to test the processor’s functionality.  

Various SBST methodologies have been proposed as an 
effective or additional solution for the manufacturing test of 
processors or SoCs. One of the main advantages of SBST is its 
non-intrusiveness, since it does not require any extra 
hardware; therefore, cost is reduced, and any critical path 
delay penalty is avoided, while allowing at-speed testing. 
SBST methods have been applied to a large set of processors 
and SoCs [3]. Among the various microprocessor 
architectures, Very Long Instruction Word (VLIW) processors 
have been demonstrated to be the most viable solution for 
several embedded applications characterized by high 
performance, low cost and low power consumption. Thanks to 
their architecture, VLIW solutions achieve a very good 
exploitation of the available instruction level parallelism 
(ILP). Nowadays, VLIW manufacturing is on-going in several 
semiconductor companies and the problem of testing their 
functional architecture is increasing relevant.  

A key feature of VLIW processors is the instruction format;  
in fact VLIW architectures are characterized by grouping 
several instructions into large macro-instructions called 
bundles, where each instruction within the bundle is executed 
in parallel distinct computational units referred as 
computational domains. VLIW processors are then organized 
in clusters formed by several computational domains (i.e. 
generally four or eight). On one hand ILP allows to improve 
performances, on the other hand it creates instruction 
interdependence that must be taken into account. This issue is 
generally solved by software compilers which should be 
suitable designed in order to address interdependence between 
different computational domains. A key hardware component 
which supports the ILP execution is the register file. The 
VLIW register file is characterized by several multiported 
registers for a single VLIW processor cluster [4]. It is one of 
the most resource consuming module of a VLIW processor, 
since the number of read and write ports in each multiported 
register increases with the number of computational domains 
and consequently results in an exponential increase in 
resources [5]. Internally, the register file has the architecture 
of a complex cross-bar switch, where each computational 
domain can write to each single register, and the content of 
each single register may be transferred to whatever 
computational domain [6].  

Several SBST approaches have been developed in order to 
address VLIW processors: most of them rely on software 
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techniques where the approaches adopt suitable instructions 
belonging to the processors instruction set to apply the test-
patterns, generated off-line by an automatic test pattern 
generator (ATPG) tool based on the internal components 
structure. Although effective, these methods have several main 
drawbacks: first of all, they delegate the pattern generation to 
an external ATPG, which drastically increases the total test 
time; secondly, they are applied at the software level before 
the compiler execution, therefore the generated assembly code 
it is not always fully compliant with the existing testing 
constraints; finally, these approaches are all based on a limited 
version of the VLIW architecture where each computational 
domain may read / write data only from a given set of registers 
within the register file [11]. Therefore, most of the faults 
really affecting the behavior of the VLIW processors are not 
covered by these methods. In this paper we propose a new 
SBST algorithm specifically oriented to test the typical 
register files embedded in VLIW processors. The proposed 
method does not require any hardware change or addition to 
the processor architecture. Moreover, since the method is 
totally functional-based, it does not require the usage of any 
external ATPG in order to generate the input stimuli.  

The main contribution of the developed test method to the 
advancement of state-of-the-art techniques in the area is the 
first algorithm able to effectively test a multi-port cross-bar 
switch embedded into a VLIW register file following an SBST 
approach. The proposed algorithm has small requirements in 
terms of memory (to store the test code) and the execution 
time is very limited. The developed test algorithm is applied at 
the post-compiler level, therefore it has an extended testing 
capability with respect to approaches applied before the 
compile time since it has full control on the execution code. 
The developed SBST algorithm has been evaluated on a 
realistic VLIW platform based on the Delft University r-VEX 
VLIW Processor which allows to implement the great part of 
features generally embedded within industrially manufactured 
VLIW architectures [6]. The results we achieved clearly 
demonstrate the efficiency of our approach, since by fault 
simulation analysis on the VLIW register file we achieved a 
fault coverage on stuck-at faults higher than 97 %. 

The paper is organized as follows. Section II describes the 
related works on software-based self-test techniques 
specifically oriented to VLIW processor. Section III gives an 
overview of the VLIW data path architecture while Section IV 
outlines the proposed test algorithm. Experimental results and 
their analysis are presented in Section V. Finally, conclusions 
and future works are described in Section VI. 

II. RELATED WORK 
Popular techniques to test processor chips and processor-

based System-On-Chip (SoCs) are Built-In Self-Test (BIST) 
and Software-Based Self-Test (SBST). The methodologies 
that require external hardware to perform the test  are 
infeasible without the use of multimillion dollar Automatic 
Test Equipment (ATE); this is due to the increasing gap 
between ATE frequencies and SoC operating frequencies 
which  makes external at-speed testing problematic and 

expensive (at-speed testing is needed because some failures 
can be detected only when the test is performed at the 
operating frequency of the device). Moreover, external test 
often involves long time and significant efforts to introduce 
the required hardware and may be characterized by long test 
application times [1]. To avoid these drawbacks self-test 
methodologies can effectively be adopted. In the literature 
there are many papers related to methods for the functional 
self-test of processors, but few of them refers to the test of 
Very Long Instruction Word (VLIW) processors. 

BIST moves the testing task from external resources (ATE) 
to internal hardware: additional hardware and software are 
integrated into the circuit to allow it to perform self-testing. 
The use of this technique leads to lower cost of test and 
shorter tests time, maintaining or improving the fault 
coverage, at the cost of additional silicon area. 

Another way for on-chip testing is SBST that is a non 
intrusive methodology since it adopts existing processor 
resources and instructions to perform self-testing. The 
advantage of this technology is that it uses only the processor 
functionality and instruction set for both Test pattern 
Generation and Output Data Evaluation, and thus does not 
introduce any hardware overhead in the design [8]. However, 
software-based methods suffer from long program sequences 
to achieve high coverage of the device under test.  

Recently, many techniques have been developed to test a 
generic superscalar processor [1], [7], [9] and the results 
obtained show that SBST is a valid and low cost methodology. 
Moreover, up to now, there are few SBST techniques that 
refer to VLIW processors, mainly due to the fact that the 
approaches developed for superscalar processors are not easily 
implementable on this architecture.  

A methodology combining functional test and Built-In Self-
Test and Repair for regular data path structures within VLIW 
processors is described in [11]. In this approach fault detection 
and localization are performed by software and then a 
hardware reconfiguration using redundant units is exploited. 
In this methodology Software-Based Self-Test guarantees high 
fault coverage; however, the VLIW core used as a test vehicle 
presents some peculiarities that differentiate it from the most 
common VLIW processors;  the main one refers to the register 
file: in fact, for each cluster within the processor there is a 
separate register file and there are not registers shared by all 
clusters. This implies that this processor does not include a 
structure that connects all functional units to all registers (i.e. a 
crossbar); this is an important constraint, since a crossbar is a 
significant structure in terms of area and the related faults are 
numerous and difficult to detect using the SBST methodology. 

Another technique developed to test VLIW processors 
combines scan and SBST in order to obtain a good diagnostic 
resolution at low hardware overhead [10]. The peculiarity of 
this approach, aimed at detecting faults in the functional units 
of the processor, is that the same test patterns are loaded 
directly into the fetch registers of all computational domain. 
The proper functioning of each domain is tested by comparing 
the test response of all domain, that should be the same in the 
fault-free case. This solution involves a hardware overhead of 



about 6% and requires that the processor runs in a special self-
test mode.  

III. BACKGROUND ON THE R-VEX VLIW ARCHITECTURE 
A generic VLIW processor may have different numbers of 

functional units (FUs). Generally, the VLIW processor 
architecture is parametric, so that different options such as the 
number and type of the functional units, the number of multi-
ported registers (i.e. the size of the register file), the width of 
the memory buses and the type of different accessible FUs can 
be modified depending on the application’s requirements [12].  
In the present work, we addressed on the Delft Reconfigurable 
VLIW processor (r-VEX) which includes all the features of 
the generic VLIW processors existing on the market [5]. The 
r-VEX processor is based on 32-bit data registers with the 
main processor architecture based on 4 FUs organized in four 
different computational domains. The r-VEX main processor 
architecture consists of four stages pipeline organization: 
fetch, decode, execute and write-back stages. The fetch unit 
fetches a VLIW instruction from the attached instruction 
memory and splits it into four syllables that are passed to the 
decode unit. In this stage, registers used as operands are 
fetched from the register file. The actual operations take place 
either in the execution unit, or in one of the parallel 
branch/control (CTLR) or load/store memory (MEM) units. 
The arithmetic logic unit (ALU) functions and multiplier 
(MUL) operations are performed in the execution stage, while 
CTRL unit manages branch operations. Vice versa the MEM 
unit handles all data memory load and store operations. All 
write activities are performed by the write-back unit at the 
same time. These operations are performed in specific 
computational domains, since ALU operations (A) are 
performed by all the execution units, while CTRL (B) and 
MEM (S) operations are executed only by the first and fourth 
computational units and MUL operations are executed by the 
second and third units.  The data are stored in two different 
register files: the general register file (GR) and the branch 
register file (BR). The two register files are included into the 
Decode unit, where the register input and output lines are 
controlled respectively by an input and an output cross-bar 
switch. The data memory stores the results of the execution.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.  The VLIW processor data path.  

 
As outlined in the previous sub-section, the VLIW data path 

includes the operational register file and all the functional 
modules. Starting from the fetch stage the VLIW instructions 
are splitted into four different computational domain that will 
be executed in parallel. The computational domain division is 
maintained in all the processing units. 

In order to using the r-VEX processor as a test vehicle for 
our experiments, we synthesized and implemented it on a 
standard ASIC gate library. In order to develop a suitable 
SBST algorithm, it is important to understand which 
components of the processor have the largest contribution to 
the overall processor fault list [8]. As shown in [5] and [13], 
the register file of the r-VEX VLIW processor occupies the 
large percentage of logic resources of the entire VLIW 
architecture. In details, when the number of registers within 
the register file increases, the register file resource area 
exponentially increases. For example, a register file having 32 
or 64 registers requires 40% or 59% of the overall VLIW area 
respectively. This is mainly due to the high number of general 
purpose registers and to the logic circuitry necessary to 
provide their accessibility: indeed, registers are shared by all 
computational domains of the VLIW processor and several 
multi read and write ports are necessary with respect to 
traditional processor register files. This confirms that the 
register file of a VLIW processor is one of the components 
with the largest differences if compared to those of superscalar 
processors [5]. For this reasons we focused our efforts on this 
module. 

IV. THE PROPOSED SBST ALGORITHM 
The key characteristics of our SBST algorithm for VLIW 

processors are essentially two: the first is that in order to 
develop the test routine, it considers each component of the 
processor as a single independent unit, the second feature is 
that the test development is based only on the Instruction Set 
Architecture (ISA) of the VLIW processor. In this section we 
first describe the details of the register file and outlines some 
basic idea for testing it, then we focus on the description of the 
developed SBST algorithm. 

 
A. Register File 

 
The register file implemented within the r-VEX VLIW 

processor consists of 64 32-bit wide registers; 3 of them are 
special register: r0.0 is constant always settled at ‘0’, r0.1 is 
the stack register, and r0.63 is the link register. The rest of the 
registers are general-purpose. Each general-purpose register 
can be accessed by each computational domain of the r-VEX 
VLIW processor. In details, a single computational domain 
has one write-port to access to the register file to store a data 
in a register; and two read-ports by which it can read from two 
different registers at the same clock cycle as illustrated in 
Figure 2. This implies that within the register file there is a 
write address decoder, a read address decoder and two read-
ports for each domain. This architecture is taken into account 
in our developed test methodology in order to achieve high 
fault coverage.  



This structure, corresponding to a cross-bar can be 
implemented through a set of 2-to-1 multiplexers (for data 
output) and 1-to-2 demultiplexers (for data input); this allows 
to implement a cross-bar switch architecture where each 
domain’s data input can be stored in whatever register, and 
can be read by whatever domain’s read-port. In order to fully 
test this particular structure of the register file each register 
must be accessed for at least a read and a write operation by 
each of the four VLIW domains; moreover, with regard to 
reading operations, all registers must be accessed by 
read_port_1 and read_port_2 of each domain as shown in the 
pseudo code depicted in Figure 3. In this way, all the possible 
register datapaths inside the register file are exercised. 
Moreover, it is necessary that each register is assigned with a 
value and then with the complemented value in order to 
guarantee that each possible stuck-at fault in the register bits is 
detected. Therefore, considering that the r-VEX VLIW 
processor has four domains, 8 write operations and 16 read 
operations are necessary for each register.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.  Structure of Register file with focus on domain 1. 
 

B. The proposed SBST algorithm 
 
The SBST algorithm we propose is intended to be 

implemented in assembly code. For convenience, in this 
section we formalize it describing the pseudo-code of the main 
procedure. The algorithm essentially focuses on the generation 
of test instructions for addressing the register file crossbar 
switches architecture. Since the crossbar switches are 
generally implemented using multiplexers and demultiplexer 
modules, which physical implementation depends on the 
selected technology, it is important to analyze the physical 
implementation of this components in order to cope with the 
internal stuck-at faults. The method we used to assign values 
to register were developed inspiring from the methodology 
previously developed in [1]. The main procedure, which is 
illustrated in Figure 3, consists of two parts, in each part, half 
of the registers are under test while the others are used to 
manage the test execution. This allows using all the VLIW 
registers without adding external hardware resources in order 
to support the test execution. The two parts are executed for a 
given number of phases, in our cases eight times according to 

the register file functional analysis illustrated in the previous 
section. For each phase execution, the logic value assigned to 
the registers changes. 

The logic value assignment is performed by the function 
assign_value_to_reg_R_R that, on the basis of the 
received parameters, selects which type of assignment has to 
be used. For instance, considering the register assignment 
rules, illustrated in Table I, if the phase A1 is considered, the 
set of registers r0.0 to r0.31 are assigned as illustrated in 
Figure 4. 

 
//part 1 
assign_value_to_reg_R0_R31(Phase);  
for (each domain D){ 

for (each register R ε(R0…R31){ 
for (each read_port P){ 

read value V of register R using domain D and 
read_port P; 

use V to compute a signature S; 
} 

} 
store S in memory; 

} 
//part 2 
assign_value_to_reg_R32_R63(Phase);  
for (each domain D){ 

for (each register R ε(R0…R31){ 
for (each read_port P){ 

read value V of register R using domain D and 
read_port P; 

use V to compute a signature S; 
} 

} 
store S in memory; 
} 

Figure 3.  The pseudo-code of the proposed algorithm. 
 

The eight types of logic value assignment performed are 
illustrated in Table I where each row of the table represents a 
single macro-instruction of the r-VEX VLIW processor: the 
first instruction is executed by the first domain, the second by 
the second domain and so on. These executions are performed 
during the same clock cycle. Please notice that within each 
macro-instruction the order of the registers is changed 
between phase A1, B1, C1 or D1, whereas the data assigned to 
the registers are the same. Vice versa, the difference between 
phase A1 and A2, or between B1 and B2, or C1 and C2, or D1 and 
D2 are the data used to assign the registers, that in phases A2, 
B2, C2 and D2 are complemented respect to A1, B1, C1 and D1. 

It is mandatory that the main procedure is performed with 
this eight types of assignment in order to exploit all possible 
datapaths within the register file, using first a value and then 
the complemented one. This procedure allows effectively 
covering stuck-at faults affecting the crossbar switches 
circuitry. The procedure is based on the idea that n-to-1 
multiplexers are generally decomposed and implemented by 
smaller muxes ordered in a tree structure [1]; therefore, in 
order to minimize the probability that a fault occurred in a 
crossbar cannot be traced it is important that the registers are 
assigned following the rules reported in Table I. In particular, 
it is mandatory that registers encoded with a bit string having 
Hamming distance equal to 1 are assigned with different logic 
values, in order to detect stuck-at faults that occur on the 



selection of a register in both writing or reading operations. 
Since the register index in encoded with 6 bits, 8 different 
logic values are used. They are represented with 
A,B,C,D,E,F,G,H where B=NOT(A), D=NOT(C), 
F=NOT(E) and  H=NOT(G) and A≠C≠E≠G. The actual 
values for A, C, E and G are not important. 

 
0]  ------------------------- 
mov $r0.32,01010101010101010101010101010101   #A 
mov $r0.33,10101010101010101010101010101010  #B 
1]  ------------------------- 
mov $r0.34,00110011001100110011001100110011  #C 
mov $r0.35,11001100110011001100110011001100  #D 
2]  ------------------------- 
mov $r0.36,00001111000011110000111100001111  #E 
mov $r0.37,11110000111100001111000011110000  #F 
3]  ------------------------- 
mov $r0.38,00000000111111110000000011111111  #G 
mov $r0.39,11110000111100001111000011110000  #H 
4] ------------------------- 
mov $r0.0 = $r0.32 #A 
mov $r0.1 = $r0.33 #B 
mov $r0.2 = $r0.33 #B 
mov $r0.3 = $r0.32 #A  
5] ------------------------- 
mov $r0.4 = $r0.34 #C 
mov $r0.5 = $r0.35 #D 
mov $r0.6 = $r0.35 #D 
mov $r0.7 = $r0.34 #C 
6] ------------------------- 
… 
8] ------------------------- 
mov $r0.24 = $r0.38 #G 
mov $r0.25 = $r0.39 #H 
mov $r0.26 = $r0.39 #H 
mov $r0.27 = $r0.38 #G 
9] ------------------------- 
mov $r0.28 = $r0.36 #E 
mov $r0.29 = $r0.37 #F 
mov $r0.30 = $r0.37 #F 
mov $r0.31 = $r0.36 #E 
10] ------------------------- 
 

Figure 4.  Assembly code example used during the register file logic value 
assignment. 

TABLE I.  LOGIC VALUE REGISTER ASSIGNMENT RULES  FOR THE FIRST 
TWO MACRO-INSTRUCTIONS 

Phase A1 Phase B1 Phase C1 Phase D1 
R0 = A 
R1 = B 
R2 = B 
R3 = A 

R1 = B 
R0 = A 
R3 = A 
R2 = B 

R2 = B 
R3 = A 
R0 = A 
R1 = B 

R3 = A 
R2 = B 
R1 = B 
R0 = A 

R4 = C 
R5 = D 
R6 = D 
R7 = C 

R5 = D 
R4 = C 
R7 = C 
R6 = D 

R6 = D 
R7 = C 
R4 = C 
R5 = D 

R7 = C 
R6 = D 
R5 = D 
R4 = C 

Phase A2 Phase B2 Phase C2 Phase D2 
R0 = B 
R1 = A 
R2 = A 
R3 = B 

R1 = A 
R0 = B 
R3 = B 
R2 = A 

R2 = A 
R3 = B 
R0 = B 
R1 = A 

R3 = B 
R2 = A 
R1 = A 
R0 = B 

R4 = C 
R5 = D 
R6 = D 
R7 = C 

R5 = C 
R4 = D 
R7 = D 
R6 = C 

R6 = C 
R7 = D 
R4 = D 
R5 = C 

R7 = C 
R6 = D 
R5 = D 
R4 = C 

 
  Once the initialization is executed, a set of permutations are 
performed in order to stimulate the access to the register files 

in all the possible access permutations. In Figure 5 an example 
of assembly code is reported by which it is possible to read a 
register with all read_ports of the selected domain. 
Particularly, considering the domain 1 and the register r0.0 we 
notice that this register is used as operand 1 in the first 
instruction of the macro-instruction 1 and then as operand 2 in 
the first instruction of macro-instruction 2. Therefore, the 
register r0.0 is accessed by all the read_ports of domain 1. 
This procedure must be repeated for each register in order to 
consider all paths. 
 

       1]  ------------------------- 
xor $r0.34 = $r0.0, $r0.1 
xor $r0.35 = $r0.2, $r0.3 
xor $r0.36 = $r0.4, $r0.5 
xor $r0.37 = $r0.6, $r0.7 

    2]  ------------------------- 
xor $r0.34 = $r0.1, $r0.0 
xor $r0.35 = $r0.3, $r0.2 
xor $r0.36 = $r0.5, $r0.4 
xor $r0.37 = $r0.7, $r0.6 

    3]  ------------------------- 
 

Figure 5. Assembly code by which is possible to read r0.0 using the two 
read_port of the first domain. 

 
Finally, in order to minimize the number of memory 

accesses and therefore limiting the length of the whole test 
program, the proposed algorithm compute a signature 
calculation using a small LFSR algorithm implemented in few 
assembly instructions. The implemented LFSR algorithm 
avoid logic fault masking.  

The major advantage of  the proposed algorithm is that it is 
designed to be adopted to test a generic register file for VLIW 
processors and it not specific for the register file of the r-VEX 
processor. This is due to the fact that the algorithm is fully 
parametric and can be used to test a register file with different 
number of read- and write- ports and a different number of 
computational domains.  

V. EXPERIMENTAL RESULTS 
We analyzed the efficiency of the proposed SBST 

algorithm by performing several fault simulation campaign 
injecting stuck-at faults into the r-VEX VLIW model. We 
firstly analyzed the structure of the register file in order to 
identify the instructions that properly excite this component 
operations and the instructions for controlling and observing 
the registers.  
 
A. Fault simulation results 

Fault simulation is performed with respect to the stuck-at 
fault model. The results of the fault simulation experiments, 
related to the register file, are reported in Table II, where for 
each test program, we showed the duration in terms of number 
of clock cycle and reached fault coverage. The whole fault list 
is composed of 259,716 faults.  

The test program 1 consists of a simple assignment of all 
registers with a value and then with a complemented value; 
the coverage reached using this basic method is very low. The 
test program 2 implements a test methodology developed to 
test a generic register file of a superscalar processor. It is 



possible to notice that there are problems similar to those of 
the previous algorithm, although the coverage is increased, it 
still remains overall low. This is mainly due to use of the write 
and read ports that, using a generic techniques cannot be fully 
tested.  

TABLE II.  FAULT SIMULATION RESULTS 

Algorithm Coverage # Clock Cycles 

Test Program 1 35.74% 130 

Test Program 2 [1] 56.26% 190 

Test Program 3  72.44% 477 

Test Program 4 91.49% 949 

Test Program 5 95.44% 849 

Test Program 6 95.71% 1050 

Our SBST Algorithm 97.12% 760 

 
The test program 3 makes write operations exploiting all 

possible datapaths; however it has the drawback that each 
register is read by only one read port of each domain: in this 
manner the coverage slightly increases. In the test program 4 
we took into account the need of using all the read_port, thus 
increasing the coverage by 19.5%. The test program 5 
improves the previous ones by including the assignment 
methodology derived from the approaches reported in [1]; 
special registers r0.63 and r0.1 are also covered. The test 
program 6 uses eight different values assigned to the registers 
in order to guarantee that registers whose index has a 
Hamming distance equal to 1 are assigned with different logic 
values. Finally, we wrote the last program according to the 
proposed algorithm described in Section IV. Please note the 
corresponding reduction in the test duration, due to the 
optimizations introduced by the algorithm. When analyzing 
the faults that remain untested, it is important to note that the 
large part of them are located on the reset signal of the 2,272 
Flip-Flops composing the register file, and this signal cannot 
be controlled via software access, resulting in a 0.87% of 
faults that are untestable. Moreover, another feature that 
avoids that the coverage reaches the maximum is the register 
r0.0, which by its nature cannot be written. 

VI. CONCLUSIONS AND FUTURE WORKS 
In this paper, we first showed that the register file is a 

significant and critical component for most VLIW processors 
in terms of testing, and then presented an SBST algorithm 
specifically developed to test it.. The algorithm provides an 
advancement with respect to state-of-the-art techniques in the 
area, since it is the first algorithm able to effectively test cross-
bar switch-based register files embedded into VLIW 
processors. The proposed algorithm has a small impact in 
terms of memory used to store the test code and the execution 
time is drastically limited with respect to other solutions. It 
extends test capabilities with respect to previously developed 

approaches since it is applied after the compile-time, therefore 
having full control on the execution code. We checked the 
effectiveness of this algorithm on a real VLIW platform based 
on the r-VEX VLIW processor [6]. The obtained results 
clearly demonstrate the efficiency of our algorithm, since we 
achieved a fault coverage on stuck-at faults higher than 97%. 
As future works we plan to better evaluate the performances 
of the proposed solution and to investigate its applicability to 
on-line testing and to evaluate the fault coverage with respect 
to transition delay faults. 
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