
NBTI Mitigation by Optimized NOP Assignment and Insertion

Farshad Firouzi, Saman Kiamehr, and Mehdi B. Tahoori
Chair of Dependable Nano-Computing (CDNC)

Karlsruhe Institute of Technology (KIT)

76131 Karlsruhe, Germany

Email: {farshad.firouzi, kiamehr, mehdi.tahoori}@kit.edu

Abstract—Negative Bias Temperature Instability (NBTI) is a major
source of transistor aging in scaled CMOS, resulting in slower devices
and shorter lifetime. NBTI is strongly dependent on the input vector.
Moreover, a considerable fraction of execution time of an application
is spent to execute NOP (No Operation) instructions. Based on these
observations, we present a novel NOP assignment to minimize NBTI
effect, i.e. maximum NBTI relaxation, on the processors. Our analysis
shows that NBTI degradation is more impacted by the source operands
rather than instruction opcodes. Given this, we obtain the instruction,
along with the operands, with minimal NBTI degradation, to be used
as NOP. We also proposed two methods, software-based and hardware-
based, to replace the original NOP with this maximum aging reduction
NOP. Experimental results based on SPEC2000 applications running on
a MIPS processor show that this method can extend the lifetime by 37%
in average while the overhead is negligible.

I. INTRODUCTION

As CMOS technology scales to the nano-meter regime, reliability

mostly due to transistor aging has become a critical issue of VLSI

digital circuits. Negative Biased Temperature Instability (NBTI) has

a significant effect on the circuit performance and lifetime, and is

considered as the dominant concern of reliability [1]. NBTI increases

the threshold voltage of PMOS transistors over time and occurs

when a negative bias voltage (Vgs = −Vdd) is applied on a PMOS

transistor. As a result, this phenomenon leads to degradation of circuit

performance over the time. This degradation is strongly dependent on

the input patterns and duty cycle (i.e the ratio between the times when

the transistor is under negative bias to the total time). Eventually,

when the post aging delay of the circuit, exceeds the timing limit,

the circuit starts to fail, and the lifetime is considerably reduced.

Over the past few years, several methods have been proposed

to alleviate and mitigate the effect of NBTI at various levels of

abstraction. Since NBTI strongly depends on the input patterns of

the circuit, Input Vector Control (IVC) is used in [5], [6] to mitigate

the NBTI effect at the circuit level. NBTI-induced delay is tackled

in [7] by applying appropriate input vector to the functional units

during standby mode (idle time). Unused bits in source operands

are exploited in [8] to alleviate NBTI effect on ALU. Authors of

[9] proposed a per-buffer-entry based NBTI recovery scheme during

idle cycles targeting functional units with storage cells such as

RS (reservation stations), ROB (reorder buffers) and PR (physical

registers).Dynamic Voltage and Frequency Scaling (DVFS), which is

traditionally used for reducing power consumption, has been adapted

to alleviate the NBTI effect in [3]. Moreover, different NBTI-aware

scheduling policies are studied in [10] to address aging effect in

functional units.

Due to data and control hazards and memory stalls, pipelined

processors need to execute instructions that have no effect on the

state of the processor [11]. These special instructions are referred as

NOP and their effects are actually to occupy the hardware resources

for a certain instruction slots with no effect on program execution.

It should be noted that there are multiple cases of instruction which

can act as NOP (e.g SLL R0, R0, 0 or ADD R0, R0, 0). Since

NOPs do not change the state of the executed application, the time

spent for executing NOP instructions in a processor can be viewed

as a pseudo-idle time. Based on out observation, a considerable

fraction of total executed instructions of SPEC2000 benchmark

programs are NOP instructions. This implies that, there are plenty

of opportunities for alleviating NBTI effect. Indeed, NBTI effect

strongly depends on the input vector. Therefore, the impact of the

NBTI can be reduced by executing a suitable instruction as a NOP.

The key idea in this paper is finding a new instruction with no
effect on the program state to replace the processor’s default NOP
instruction in order to minimize the NBTI effect.

A key requirement to successfully exploit a NOP instruction for

aging reduction is understanding the effect of different instructions

on aging. For this purpose, we investigate the impact of all possible

instruction opcodes and instruction source operands on the delay-

degradation imposed by NBTI. The results illustrate that the NBTI

degradation effects of the instruction opcodes that can be used

as NOP are almost the same and minimal. On the other hand,

source operands have a significant influence on the amount of NBTI

degradation to the processor. Based on this observation, we use a

Linear Programming (LP) approach for finding the best Maximum
Aging Reduction (MAR) NOP (opcode and source operand values)

which leads to minimum NBTI-induced delay degradation while has

no effect on the state of the executed program and acts like a normal

NOP. Finally, two different techniques (software-based and hardware-

based) are proposed to show how the extracted MAR NOP can be

applied to the processor. We evaluate our proposed approach on a

MIPS processor with various SPEC2000 benchmark applications in

terms of lifetime improvement, power and area overheads. We show

that the lifetime of the processor can be extended by 37% in average

while the observed area and power overheads are less than 1%.

The rest of the paper is organized as follows. In Section II,

we introduce the NBTI model and the micro-architecture of the

processor (MIPS) that is used as the case study. The proposed MAR

NOP selection methodology is described in Section III. Section IV

presents the proposed approaches for implementing the extracted

MAR NOP. Experimental results are demonstrated in Section V.

Finally, Section VI concludes the paper.

II. PRELIMINARIES

A. NBTI Modeling

NBTI occurs in PMOS transistors when the transistor is under

negative gate-source bias i.e., Vgs = −Vdd, (stress mode). When

PMOS experiences the stress mode, some Si-H bonds are broken at

the interface Si−SiO2 due to the presence of holes in the channel.

The resulting H diffuses away and as a result some positive traps

(Si+) are left causing the magnitude of transistor threshold voltage

978-3-9810801-8-6/DATE12/ c©2012 EDAA IEEE



Time

Δ
V
th Stress Recovery

Fig. 1. The conceptual illustration of Vth change under stress and recovery
conditions

to increase [12]. When the stress mode is removed (recovery mode

i.e. Vgs = 0) some of the created interface traps are healed, and the

threshold voltage increase can partially be recovered [12]. Figure 1

shows the NBTI-induced threshold voltage change during stress and

recovery cycles.

The long-term NBTI-induced threshold voltage shift, ΔVth, can

be modeled by the following equation [13]:

ΔVth = AY ntn (1)

where A is a technology dependent factor, n is a fabrication process

dependent constant, t is the total time, and Y is the duty cycle.

The duty cycle represents the ratio between stress to total time. To

calculate the delay degradation of a gate due to ΔVth imposed by

NBTI, the alpha power model is used [14]:

τ =
K

(Vgs − Vth)α
(2)

Here K is a technology dependent factor, Vgs is the gate-source

voltage, and α represents the velocity saturation. If ΔVth is small, by

using first order Taylor expansion, the following equation for NBTI-

induced delay degradation can be derived from Equation (2):

Δτ =
αΔVth

Vgs − Vth0
× τ0 (3)

where ΔVth is the NBTI-induced threshold voltage change, Vth0 is

the original transistor threshold voltage, and τ0 is the pre-aging delay

of the gate. By using Equations (1) and (3), the total NBTI-induced

delay degradation can be estimated as follows:

Δτ = BY ntnτ0 (4)

where

B =
Aα

(Vgs − Vth)α

It should be noted that, the above equation is valid for simple

inverter which has one transistor in each pull-up/pull-down network.

For other gates (e.g. NAND and NOR) the stacking effect has to be

considered as well. In stacked structures, the delay of each gate is

affected by the threshold voltage change of all the internal transistors.

Moreover, the duty cycle of each transistor depends not only on

the state of its input, but also on the state of upper and lower

transistors [15].

B. The MIPS Architecture

In this section, we briefly overview the MIPS (Microprocessor

without Interlocked Pipeline Stages) in-order pipelined processor.

Please note that our methodology is general and can be easily applied

to other embedded processors. The choice of MIPS is due to its

simplicity for better explanation of our method, and its widespread

use in academia and industry. Moreover most modern embedded

processors, superscalars, and multi-core systems are based on the

MIPS multistage pipeline structure [16], [17]. The classic MIPS

pipeline consists of the following five stages: 1.Instruction fetch

(IF), 2.Instruction decode and register file read (ID), 3.Execution or

address calculation (EX), 4.Data memory access (MEM), 5.Write-

back (WB).

There are situation called Hazards, in which the next instruction in

the instruction sequence stream cannot be executed during its desig-

nated clock cycle and it is resolved by inserting NOP instructions. In

addition to data hazards, which are caused by operand dependencies

and can often be resolved by data forwarding, and control hazards
(branches), there are memory stalls (due to memory access and

cache misses) which are all resolved by flushing the pipeline and/or

inserting NOPs in the pipeline.

III. MAR NOP SELECTION

In this section, we describe our proposed technique for reducing

the delay degradation imposed by NBTI based on modifying the NOP

instruction. The NBTI-induced degradation which each transistor

experiences strongly depends on the state of its input. Therefore, input

vector considerably affects the NBTI-induced delay degradation of

the circuit. Besides, NOPs are special instructions which are inserted

during the application execution to solve hazards, memory stalls,

and dependency problem. Although these instructions are executed

and use the hardware resources, they do not change the state of the

executed program. Moreover, a considerable portion of the execution

time is spent executing NOPs. Putting all together, the key idea of this

paper is finding a suitable NOP instruction which maximizes recovery

during the NOP execution and hence minimize the NBTI effect on

a processor. First, we investigate the NBTI effect of all possible

instructions which can potentially be used as a NOP instruction.

Next, we introduce a Linear Programming (LP) approach for selecting

maximum NBTI reduction NOP.

A. NBTI effect of Possible NOPs

NOP is an instruction with no effect on the program execution

and since it has a neutral effect, it can be inserted at any location in

the program execution. For example in a MIPS processor the default

NOP instruction is:

SLL R0, R0, 0

This instruction denotes, the content of R0 is shifted left zero times.

Since the R0 is hardwired to 0, this instruction has no effect on the

status of the program. Many instructions such as ADD, OR, SUB

with R0 or immediate operands can be used alternatively as a NOP.

It should be noted that, using any other register rather than R0 even

as a source operand, may cause a data hazard. For example, the

following instruction is an alternative for default NOP.

ADDI R0, R0, 8

Both introduced NOPs (default NOP and the ADDI example) can

be used as NOP with no effect on program execution. However,

since they have different opcode and source operands, they may cause

different amount of NBTI-induced delay degradation on the proces-

sor. We investigate the effect of applying different NOP candidates

on NBTI-induced delay degradation of the processor, based on the

flowchart depicted in Figure 2(a). First, a logic synthesis tool is used

to map the processor to a gate-level description. Besides, all critical

paths of the processor are extracted using a Static Timing Analysis



Δdelay
calculation

Accuracy &
Runtime

improvement

MIPS simulator

Spec2000
application

Lifetime
improvement

Δdelay
calculation

LP formulation

LP-solver

Optimized LP
NOP

MC simulation

Optimized MC
NOP

Default NOP of
the MIPS

NOP selection &
evaluation

Lifetime
improvement(b) (c)

Synthesis & Static
Timing Analysis Tool

Unrolling

Netlist

Signal Probability

Vulnerable
Critical Paths

Path-based Aging
Model

Gate level NBTI
Model

Logic Simulator

Delay
degradation due
to different
NOP

Δdelay
calculation

Equivalent
combinational netlist

Processor

(a)

Technology file

Fig. 2. Overall flow of the proposed NBTI-aware NOP selection and evaluation

(STA) tool. The netlist extracted from the logic synthesis tool is given

to a logic simulator to obtain the signal probabilities (SP) of internal

nodes. SP of a node is the probability of being one and represents

the duty cycle of the corresponding transistors. Since processor is

a sequential circuit, unlike combinational circuits, it contains some

flip-flop (for example pipeline registers) and feedbacks. For example

in MIPS, some inputs of the ALU depend on the output of the

forwarding unit which themselves are the outputs of the ALU in

a previous cycle. As a result, unrolling has to be performed n-times

to remove feedbacks and flip-flops. Where n is the sequential depth

of the circuit which here is equal to the number of pipeline stages.

The output of the unrolling process (a pure combinational logic) as

well as SPs are inputs of the gate-level NBTI model introduced

in Section II-A. Finally, the NBTI-induced delay degradation is

calculated considering all critical paths.

Based on the introduced methodology, we investigate the effect

of different instruction opcodes and operands on the NBTI-induced

delay degradation of the processor. For each instruction opcode,

the delay degradation imposed by NBTI is calculated for 100,000

randomly generated source operands (e.g. the immediate values and

the data stored in source registers). According to the results illustrated

in Figure 3, the average of the delay degradations for all instruction

opcodes are almost the same. On the other hand, the variation of

the NBTI-induced delay degradation is very sensitive to the values

of source operands (the ranges shown in Figure 3). Therefore, it can

be concluded that NBTI-induced delay degradation of a processor

is mostly affected by the source operands rather than the instruction

opcode. This phenomenon is mainly due to the following reasons:

• According to the analysis of critical paths, most of the aging

vulnerable paths which can change the post-aging delay of the

processor, are located in the EX-stage. Since the instruction

opcode mostly affects the decoder rather than the EX-stage

(specially ALU), the effect of the instruction opcode on the

NBTI-induced delay degradation of the processor is negligible.

• Since the width of the opcode is considerably smaller than the

operand width, the number of gates affected by the opcode is

less than those affected by source operands.

Based on the above observations, to exploit NOP as a mechanism

to efficiently minimize NBTI effect, one need to choose both opcode

instruction and the values of source operands of NOP precisely. As

a result two concerns should be addressed. First, optimized source

5%

6%

7%

8%

9%

De
la
y
in
cr
ea
se

(%
)

Fig. 3. The effect of different NOPs (opcode and operand values) on NBTI-
induced delay degradation (the range shows the impact of operand values)

operand values should be obtained for each opcode instruction in

terms of NBTI. For this purpose, a Linear Programming approach

is presented. Second, a mechanism should be devised to replace the

default NOP and apply the opcode and its corresponding optimized

source operands as a MAR NOP.

B. Linear Programming Approach

The straightforward solution for finding MAR NOP is to exhaus-

tively apply and analyze all possible NOPs (and operand values)

which is infeasible. In this section we present a Linear Programming

(LP) approach for obtaining MAR NOP which results in minimum

NBTI-induced delay degradation. The main characteristic of NOPs

is that they do not change the state of the program. Therefore, only

a subset of the instruction set can be employed as NOP. Moreover,

as observed in Section III-A, the NBTI effect mostly depends on

the source operand rather than the instruction opcode. As a result,

we need to modify NOP in a way that, it consists of not only

a suitable instruction opcode, but also the corresponding NBTI-

optimized operands value. To find a MAR NOP, first, all possible

instruction opcodes that can be act as a NOP are considered. The first

column of Table III shows all possible instruction opcodes that can

be used as NOP instruction opcode. Next, for each opcode, the best

operand values which minimize the NBTI effect on the processor is

extracted. Due to the large input set of processor (number of operand

values), we exploit an LP approach to find the optimized operand

value for each opcode. Finally, the pair of opcode and corresponding



operand values resulting in the minimum delay degradation is selected

as MAR NOP.
For each opcode, the objective is to minimize the overall post

aging delay of the processor imposed by NBTI considering all critical
paths. The result of this optimization is a source operand leading to
minimum NBTI of a processor for each instruction opcode. This
objective can be represented by the following equation:

minimize : x | ∀j : x ≥ τ(CPi) =
i∑

gi in CPj

(
τ(gi) + Δτ(gi)

)
(5)

where CP is a critical path and gi is the gate i in the critical path.

For each critical path, the post-aging delay is the sum of the post-

aging delay of all the gates along that path. The post-aging delay

of each gate is equal to summation of pre-aging delay of the gate

,τ(gi), and the NBTI-induced delay increase ,Δτ(gi),. As mentioned

before, the NBTI-induced delay increase of each gate depends on the

state of its inputs. To represent Δτ(gi) of each primitive gate in a

LP compatible format we use the equations shown in Table I [5].

TABLE I
LP COMPATIBLE OBJECT FUNCTIONS FOR GATE ΔDELAYS

Function Logic operation Object function

INV z = NOT (x) τ0z + τ1x

(τ10 − τ00)x + (τ01 − τ00)y +
NAND z = NAND(x, y) (τ10 + τ01 − τ00 − τ11)z

+(2τ00 + τ11 − τ01 − τ10)

(τ11 − τ01)x + (τ11 − τ10)y +

NOR z = NOR(x, y) (τ11 + τ00 − τ10 − τ01)z

+(τ10 + τ01 − τ11)

where (x and y ∈ {0, 1}) are the inputs of the gate, z is the

output of the gate, and τxy indicates the NBTI-induced delay increase

corresponding to the gate inputs xy. Moreover, the functionality of

the circuit is required to be represented as a set of linear constraints.

Table II shows the LP compatible constraints for basic logic gates.

TABLE II
LP CONSTRAINTS FOR BASIC LOGIC OPERATIONS

Function Logic operation LP
constraints

INV z = NOT (x) z + x = 1

z ≤ 2− x− y

NAND z = NAND(x, y) z ≥ 1− x
z ≥ 1− y

z ≥ 1− (x+ y)
NOR z = NOR(x, y) z ≤ 1− y

z ≤ 1− x

IV. APPLYING MAR NOPS

In this section, we present two different methods for applying the

instruction opcodes and their corresponding optimized source operand

values as an MAR NOP.

A. Software-based implementation

In order to apply the operand values of MAR NOP without affect-

ing the program execution, we need to reserve some registers. These

registers are dedicated only to save the corresponding operands of the

MAR NOP (not available for application anymore) and are loaded

right before the application is executed. Table III shows all possible

instructions of MIPS which can be used as a NOP instruction. For

example, ADD R0, Ri, Rj can act as a NOP instruction only if the

registers Ri and Rj are reserved. Otherwise, since the application

might use these registers, the output of the program could be affected.

TABLE III
NOP CANDIDATES OF MIPS PROCESSOR IN THE SOFTWARE-BASED

IMPLEMENTATION

Operation Operand # of reserved
(OP) registers

ADD, ADDU, SUB R0 ← Ri OP Rj 2
SUBU, XOR Ri ← Ri OP R0 1

R0 ← Ri OP Rj 2
OR Ri ← Ri OP R0 1

Ri ← Ri OP Ri 1

ADDI, ADDIU R0 ← Ri OP Imm 1
ORI, XORI Ri ← Ri OP 0 1

R0 ← Ri OP Rj 2
AND Ri ← Ri OP Ri 1

R0 ← Ri OP Imm 1
ANDI Ri ← Ri OP 1 1

NOR R0 ← Ri OP Rj 2

SRA, R0 ← Ri OP SA 1
SLL, SRL Ri ← Ri OP 0 1

SRLV, ROTRV R0 ← Ri OP Rj 2
SLLV,SRAV Ri ← Ri OP R0 1

R0 ← Ri OP SA 1
ROTR Ri ← Ri OP 0 1

Ri ← Ri OP 32 1

Default R0 ← R0 SLL 0 0
NOP of MIPS

The last column of Table III shows the number of registers needed

to be reserved for the corresponding NOP instructions. It should be

noted that, these instructions are selected in a way that, the data stored

in the reserved registers does not change during the NOP execution.

In other words, the reserved registers keep the NBTI-optimized source

operand during NOP execution. In conclusion, to apply a MAR NOP

in software-based approach the following steps are performed:

1) Modify the compiler directives to generate the binary/assembly

code while reserving the required (one or two) registers

2) Replace the default NOPs in the code with MAR NOP

3) Add necessary instructions to the beginning of the code to

assign those reserved registers to the optimal values of MAR

operands

Another alternative of software realization of MAR NOP is round-

robin allocation of the registers to the operands of the MAR NOP,

however, it requires further modifications to the compiler.

B. Hardware-based implementation

Here we present a hardware-based method for replacing the default

NOP with the MAR NOP applying them during program execution.

In this approach, we modify the input multiplexers of the ALU

in a way that the NBTI-optimized source operand for the NOP-

instruction is directly provided in the EX-unit (see Figure 4). For

this purpose, an extra input is added to each of the input multiplexer

of the ALU. These inputs provide the NBTI-optimized data for MAR

NOP. In addition, decoder should be slightly changed accordingly to

support the modification of the input multiplexer of the ALU. Since

the operand values of the NOP are available in the EX-stage, the

hardware-based NOP implementation can handle all the situations

stem in hazards (e.g when a NOP is needed to be inserted from the

EX-stage into the processor). Moreover, to insert a NOP instruction

from IF stage, due to branch hazard, the Hazard Detection Unit should



be accordingly changed to reset the instruction field of the IF stage

to the MAR NOP (In base MIPS processor, this field is set to the

default NOP).

C. Comparing Hardware vs Software Implementations

As mentioned, the software-based NOP implementation needs at

least one reserved register. This implies that, the number of available

registers for compiling a program is reduced. As a result, the

performance might be decreased. Another limitation of the software-

based approach is that, it cannot be used for all types of hazard

which have been handled by the traditional NOP. There are some

situations which might occur when the forwarding unit cannot avoid

data hazards. As an example, consider an instruction which needs

data that is provided by a preceding load instruction. In this case,

the Hazard Detection Unit in the ID-stage identifies this situation in

advance and inserts a stall between these dependent instructions. As a

result, we should force the EX stage to perform a special instruction

that does not change the state of the processor. Since here NOP is

inserted from EX stage, software-based method cannot handle this

situation. This is due to the fact that the source registers are read in

the ID-stage and since this type of NOP is inserted after the ID-stage,

the registers which contain the NBTI-optimized operands cannot be

read. This phenomenon might also occur in control hazards. The most

well-known method for resolving control hazards and reducing the

branch penalty is branch prediction method. In case of misprediction,

all of the instructions fetched according to the prediction, are flushed

from the pipeline. To flush an instruction, the instruction field of

the register is set to a NOP instruction. Depending on the branch

execution unit, NOPs might be inserted from the EX-stage. Similar

to the previous situation in case of data hazards, software-based

MAR NOP implementation cannot be used here as well. In order

to overcome these cases, compiler can be configured to take care

of all possible hazards and stalls and hence bypass the hardware

supports by applying the necessary NOPs statically at the compile

time. However, this may result in some performance degradation,

particularly for branches.

Despite the discussed limitations of software-based implementa-

tion, this approach is flexible and does not need any special hardware

support or modification. In addition, since the critical paths of

the circuit might change due to the different data patterns of the

applications during the circuit lifetime, the optimized operands of

the MAR NOP might change as well. Changing the appropriate

operands of the MAR NOP in a software-based implementation is

very straightforward and only needs to load new operands into the

corresponding reserved registers before the program execution.

The main advantage of the hardware-based implementation of

MAR NOP is that it can be used for all situations when a NOP must

be inserted to the processor even from the EX-stage. However, since

the optimized operands of the MAR NOP are provided by a hardwired

method, it is not as flexible as the software-based implementation. To

remove this drawback it is possible to use the already available scan-

chain registers for modifying the operands according to the current

state of the processor in terms of timing properties of the critical

paths, with some additional design changes and overhead.

In in-order processors, when an instruction cannot be executed due

to hazards and stalls, all the following instructions should be stalled

and NOP instructions are inserted until the new instruction can be

executed. On the other hand, in out-of-order superscalar processors,

Functional Units (FUs), such as ALU, reservation stations, reorder

buffers and physical registers, are isolated from each other with some

sort of buffers. Therefore, when an instruction faces a hazard or stall,

0%

10%

20%

30%

40%

50%

60%

mcf bzip parser vortex twolf gzip gcc perl crafty eon vpr

Li
fe

tim
e
im

pr
ov
em

en
t(
%
)

Fig. 5. Lifetime improvement for selected spec2000 application using NBTI-
aware NOP assignment

the following instructions can be executed. Typically, the utilization

of FUs is far less than 100% and clock-gating is used during idle

cycles to reduce power consumption. Therefore, the idle time of

each FU can be exploited to apply MAR NOP. For each FU, based

on its functionality and gate-level implementation, a suitable MAR

NOP can be extracted and can be applied to the corresponding FU

for any cycle that the FU is idle. In this case, the hardware-based

implementation of MAR NOP is more favorable because software-

based implementation might lead to some performance overhead.

V. EXPERIMENTAL RESULTS

To evaluate the efficiency of the proposed method a five-stage

MIPS processor is used. It should be noted that our methodology

is generic and can be applied to other processors. The processor

is synthesized by Synopsys Design Compiler and is mapped to

TSMC 65nm standard cell library. By assuming a delay degradation

of 10% in 3 years, all critical paths with 10% positive slack are

extracted using PrimeTime static timing analyzer. Then, the unrolling

method is applied to remove the logic feedbacks and convert the

sequential structure of the processor to a combinational one. The

signal probability (duty cycle) of each transistor is calculated by a

logic simulator as well (see Figure 2(a)).

By the method presented in III-B the problem of finding the best

source operand for each opcode instruction is obtained using CPLEX

(LP solver) and then the best pair (opcode and corresponding operand

values) is selected as MAR NOP. We have also implemented a

Monte Carlo (MC) simulation to obtain the optimal source operand

for each opcode instruction to validate the LP approach. The MC

approach is terminated when the obtained solution is not improved

more than 0.1% after 100,000 iteration (see Figure 2(b)). According

to the results, due to large input set of the processor, the MAR NOP

obtained by LP is better optimized than MC (5%) while reduces the

runtime by 150x in average.

To analyze the efficiency of the extracted MAR NOP on the

processor lifetime, we choose SPEC2000 benchmarks. We do a

profiling on these applications with the M5 simulator [18]. Based

on the output of the profiling, extracted MAR NOP, and default

MIPS NOP the lifetime improvement is calculated by using the flow

depicted in Figure 2(c). Figure 5 shows the lifetime improvements

for the SPEC2000 applications, when the default NOPs are replaced

with MAR NOPs. According to the results our proposed approach can

extend the lifetime of the processor by 37% in average. It should be

noted that the actual results strongly depend on the technology node,

circuit design, and architecture which varies from one processor to

another.

The software-based implementation needs to reserve one or two

registers for storing the optimized source operands of the MAR NOP.

To investigate the effect of register reservation on the performance



IF/ID ID/EX EX/ME MEM/WB

control

ALU

Hazard
detection
unit

Sign
extend

Registers

A

B

Imm

Data
memory

WB

MEM

EX MEM

WB

WB

NBTI-aware
operand
value

NBTI-
aware
control
signals

M
U
X

M
U
X

NBTI-aware
control signals

NBTI-aware
control signals

NBTI-aware
operand
value

IF.Flush
ID.Flush

EX.Flush

M
U
X

M
U
X

M
U
X

Fig. 4. Hardware-based implementation of NOP in MIPS architecture

of the processor, we apply it to several selected SPEC2000 bench-

marks. Each of the application is compiled with gcc-3.4.3 with -

O1. According to the results illustrated in Table IV, reserving one

register registers reduce the Instructions Per Clock (IPC) by only

0.1%. Moreover, IPC decreased around 0.5% due to reservation of

two registers.

TABLE IV
REGISTER RESERVATION OVERHEAD ON IPC

Application One register Two registers

mcf 0.0% 0.2%

bzip2 0.0% 0.0%

parser 0.1% 0.5%

vortex 0.0% -0.4%

twolf 0.0% 0.4%

gzip 0.0% 2.1%

gcc 0.6% 1.1%

perl 0.0% 0.0%

Average 0.1% 0.5%

To analyze the hardware-based approach, the modifications, ac-

cording to Section IV, have been applied to the RTL description of

the MIPS processor and the modified version is synthesized with

Synopsys Design Compiler. The results, as shown in Table V, confirm

that the overhead of this approach is quite negligible.

TABLE V
NORMALIZED OVERHEAD OF HARDWARE-BASED IMPLEMENTATION OF

NOP TO ORIGINAL MIPS

Original Modified Overhead

Power(mW ) 1.897 1.919 1.1%

Area(μm2) 35591 35717 0.3%

Delay(ns) 4.38 4.38 0.0%

VI. CONCLUSIONS

As CMOS technology enters advanced nanometer regime, tran-

sistor aging mostly due to Negative Bias Temperature Instability

(NBTI) is becoming a major reliability concern. NBTI has a strong

dependency on the input vector of the circuit. Since NOP (No

Operation) instruction is a considerable contributor of total execution

time in processors, it can be exploit to tackle the NBTI effect. In this

paper, we replace the default NOP with a neutral instruction resulting

in maximum aging reduction. We have presented an effective flow

to obtain such instructions. We proposed both software-based and

hardware-based approaches to apply such MAR NOPs. The results

show that this method can extend lifetime by 37% in average, with

negligible performance, power, and area overhead.

REFERENCES

[1] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nassif, E. J.
Nowak, D. J. Pearson, and N. J. Rohrer. High-performance CMOS variability in the
65-nm regime and beyond. IBM Journal of Research and Development - Advanced
silicon technology, 50:433–449, 2006.

[2] Y. Wang, X. Chen, W. Wang, Y. Cao, Y. Xie, and H. Yang. Leakage power and circuit
aging cooptimization by gate replacement techniques. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, (99):1–14, 2011.

[3] A. Tiwari and J. Torrellas. Facelift: Hiding and slowing down aging in multicores.
In International Symposium on Microarchitecture, pages 129–140, 2008.

[4] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers. Lifetime reliability: Toward an
architectural solution. Micro, IEEE, 25(3):70–80, 2005.

[5] F. Firouzi, S. Kiamehr, and M.B. Tahoori. A linear programming approach for
minimum nbti vector selection. In Great lakes symposium on Great lakes symposium
on VLSI, pages 253–258. 2011.

[6] Y. Wang, X. Chen, W. Wang, V. Balakrishnan, Y. Cao, Y. Xie, and H. Yang. On
the efficacy of input Vector Control to mitigate NBTI effects and leakage power. In
Quality Electronic Design Int’l Symp., pages 19–26, 2009.

[7] J. Abella, X. Vera, et al. Penelope: The nbti-aware processor. In micro, pages 85–96.
IEEE Computer Society, 2007.

[8] X. Fu, T. Li, and J. Fortes. Nbti tolerant microarchitecture design in the presence
of process variation. In International Symposium on Microarchitecture., pages 399–
410, 2008.

[9] L. Li, Y. Zhang, J. Yang, and J. Zhao. Proactive nbti mitigation for busy functional
units in out-of-order microprocessors. In Design, Automation and Test in Europe,
pages 411–416, 2010.

[10] T. Siddiqua and S. Gurumurthi. A multi-level approach to reduce the impact of
nbti on processor functional units. In Great lakes symposium on VLSI, pages 67–72,
2010.

[11] J.L. Hennessy, D.A. Patterson, and D. Goldberg. Computer architecture: a
quantitative approach. Morgan Kaufmann, 2003.

[12] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula. Predictive modeling
of the NBTI effect for reliable design. In Custom Integrated Circuits., pages 189–
192, 2006.

[13] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and Y. Cao. The impact
of NBTI effect on combinational circuit: modeling, simulation, and analysis. Very
Large Scale Integration (VLSI) Systems, IEEE Trans., 18(2):173–183, 2010.

[14] K.A. Bowman, B.L. Austin, J.C. Eble, X. Tang, and J.D. Meindl. A physical alpha-
power law MOSFET model. In Low power electronics and design, pages 218–222,
1999.

[15] K.C. Wu and D. Marculescu. Joint logic restructuring and pin reordering against
nbti-induced performance degradation. In Design, Automation and Test in Europe,
pages 75–80, 2009.

[16] Sun Microsystems. OpenSPARC T1 Microarchitecture Specifications. 2006.
[17] H.Q. Le, W.J. Starke, J.S. Fields, F.P. O’Connell, D.Q. Nguyen, B.J. Ronchetti,

W.M. Sauer, E.M. Schwarz, and M.T. Vaden. Ibm power6 microarchitecture. IBM
Journal of Research and Development, 51(6):639–662, 2007.

[18] N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G. Saidi, and S.K. Reinhardt.
The m5 simulator: Modeling networked systems. Micro, IEEE, 26(4):52–60, 2006.


