
Verifying Timing Synchronization Constraints in
Distributed Embedded Architectures

A. C. Rajeev Swarup Mohalik S. Ramesh
Global General Motors R&D, India Science Lab, Bangalore, India.

{rajeev.c, swarup.mohalik, ramesh.s}@gm.com

Abstract—Correct functioning of automotive embedded con-
trollers requires hard real-time constraints on a number of
system parameters. To avoid costly design iterations, these timing
constraints should be verified during the design stage itself. In
this paper, we describe a formal verification technique for a class
of timing constraints called timing synchronization constraints in
the recent adaptation of AUTOSAR standard (WPII-1.2 Timing
Subgroup, Release 4.0). These constraints require, unlike the well
studied end-to-end latency constraint, simultaneous analysis of
multiple task/message chains or multiple data items traversing
through a task/message chain. We show that they can be analyzed
by model-checking with finite-state monitors. We also demon-
strate this method on a case-study from the automotive domain.

I. INTRODUCTION

Distributed embedded control systems in automobiles are
extremely complex with multiple Electronic Control Units
(ECUs) connected via communication buses. These systems
are usually safety-critical, and for such systems, correctness
is defined not only in terms of functionality but also in
terms of timeliness. Hence, analysis of timing constraints is
a crucial step in the design of distributed embedded control
systems. Such timing constraints can be divided into two
categories: local and global. Local constraints are restricted
to the tasks/messages on a single ECU/bus. An example of a
local constraint is the task/message response time constraint
(i.e., schedulability). On the other hand, global constraints are
system level constraints. An example is the end-to-end latency
constraint whose validation requires the analysis of individual
chains (i.e., data paths) made of tasks/messages allocated to
multiple ECUs/buses.

In addition to the well studied constraints on schedulability
and end-to-end latency, there are some constraints that require
simultaneous analysis over multiple chains or over multiple
data items traversing a chain. These constraints are referred
to as timing synchronization constraints. Examples include
difference between the sampling times of multiple sensor
inputs used to produce an actuator output, and difference
between the end-to-end latencies of multiple actuator outputs
produced using a sensor input. Such constraints have been
included in the component description template extensions in
the recent adaptation of the AUTOSAR standard (WPII-1.2
Timing Subgroup, Release 4.0). These constraints are also
supported by formal notations in TADL [4] and ARText [1],
enabling the timing analysis of systems during the design
phase itself. In this paper, we present a model-checking [6]

based method to analyze such constraints. We model the
system using Calendar Automaton [7], [12] (a discrete time
modeling formalism) and specify the given timing constraints
as properties to be satisfied by the model. SPIN [3] model-
checker is used to verify if the model satisfies the properties.

Related Work: Customized analysis modules using simu-
lation based [2] and stochastic [15] techniques can be em-
ployed to obtain average-case estimates of various timing
synchronization parameters. However, as our goal is to analyze
safety-critical systems, we are more interested in computing
the worst-case estimates. [9], [13] present constraint solving
based approaches to synthesize task parameters like periods
and deadlines from a given task graph and a set of timing
constraints. [10], [14] model the given system as a Timed
Automaton [5] and use model-checking to estimate the worst-
case values of timing parameters. Model-checking based meth-
ods can compute good worst-case estimates of various timing
parameters, provided the system is modeled accurately. This is
because model-checking explores all possible configurations of
the model. However, the more the accuracy of the model, the
less the scalability of model-checking. Hence, a challenge in
designing model-checking based methods is to have a proper
balance between accuracy and scalability. In this context, [14]
considers non-preemptively scheduled tasks only, and [10]
does the estimation using the worst-case response times of
tasks. In comparison, we consider both preemptively and non-
preemptively scheduled tasks, and use a Calendar Automaton
model of the system for increased scalability. In addition, our
method is more accurate as we use the worst-case execution
times of the tasks for estimating the parameters.

The rest of this paper is organized as follows. In Section II,
we present the system model and some timing synchronization
constraints. We then explain our analysis techniques in Section
III. Implementation details and case-studies are discussed in
Section IV. We conclude the paper in Section V.

II. SYSTEM MODEL AND TIMING SYNCHRONIZATION
CONSTRAINTS

We consider a distributed system S consisting of a set
of sensor, controller and actuator tasks allocated to multi-
ple ECUs and communicating through messages on multiple
buses. For ease of presentation, we assume the tasks and mes-
sages to be periodic. Each ECU/bus can have its own schedul-
ing algorithm. For ease of presentation, we assume fixed-
priority preemptive scheduling for tasks and fixed-priority non-978-3-9810801-8-6/DATE12/ c©2012 EDAA

preemptive scheduling (as in CAN bus) for messages.
We use the term object to denote a task/message, and

the term resource to denote an ECU/bus. An object oi is
represented as 〈ri, πi, Oi, Pi, Ei, Ini ,Outi〉 where ri is the
resource on which oi is scheduled, πi is the priority, Oi
is the initial offset, Pi is the period, Ei is the worst-case
execution/transmission time, Ini is the set of input buffers, and
Outi is the set of output buffers. Thus, oi triggers periodically
and executes/transmits according to the scheduler of ri. Every
activation of oi is called an instance of oi. Each instance of
oi reads data items from Ini , processes/transmits them, and
finally writes to Outi . The buffers are unit-sized registers that
are sticky and overwritable [8], [12]. We assume that i) a lower
π denotes a higher priority, and ii) Ei ≤ Pi.

The data items from the sensor tasks are processed by
several controller tasks and are transmitted in several messages
before the final output items are produced by the actuator
tasks. This computation/transmission sequence is usually mod-
eled as a chain of objects. A chain Ch of length ` is a sequence
of objects oi1 � · · · � oi` such that ∀j ∈ {1, . . . , `-1} :
(∃bj : (bj ∈ Out ij ∧ bj ∈ Inij+1)). Thus, bj can be seen as
a data dependency edge between oij and oij+1 . oi1 is called
the source object, oi` the sink object, and oi2 , . . . , oi`-1 the
intermediate objects. A data item is said to enter Ch when an
instance of oi1 triggers and is said to exit Ch when an instance
of oi` finishes. Due to the overwritable nature of buffers, some
data items read by oi1 may not have corresponding output
items from oi` . If a data item is processed/transmitted in
sequence by instances of the objects in Ch and finally results
in an output, the sequence of object instances is called a live
path. Note that there may be multiple outputs corresponding to
an input, through multiple live paths; the path corresponding
to the first output is called the LIFO (Last-In-First-Out) path.
The duration of a live path (from the trigger of oi1 to the finish
of oi`) is called the end-to-end latency of the path. Though
there are several notions of end-to-end latency [8], we consider
only LIFO latency in this paper.

We are interested in analyzing the following timing con-
straints defined on a data dependency graph:

a) LIFO Latency Constraint: A LIFO latency constraint
is given by the pair 〈Ch,∆Ch〉 where Ch is a chain and ∆Ch

is a non-negative integer. It specifies that the maximum end-
to-end latency of any LIFO path corresponding to chain Ch
should not be greater than ∆Ch .

b) Input/Output Separation Constraints: The time inter-
val between two instances of oi1 that result in consecutive
different output items from oi` is called the input separation
between those outputs. If t1 and t2 are the sampling times of
the inputs leading to consecutive outputs, the input separation
between these outputs is IS = t2 − t1. This gives a measure
of the number of data items lost due to overwriting, and can
be used to optimize object parameters. To illustrate this, we
consider a task τ1 = 〈ECU1, 0, 0, 10, 5, ∅, {b1}〉 communi-
cating with task τ2 = 〈ECU2, 0, 12, 10, 5, {b2}, ∅〉 through a
message m = 〈B, 0, 17, 20, 5, {b1}, {b2}〉. Thus, the chain in
this case is τ1 � m � τ2. For ease, we assume that τ1, m and

τ2 are the only objects in the system.1 Fig. 1 shows that the
input separation between the consecutive output items shown
in green and blue is 20ms. Since the period of the source
task τ1 is 10ms, this denotes that the input item read by τ1 at
20ms was overwritten. As the input separation between any
pair of consecutive output items from this chain is 20ms, we
may consider changing the period of τ1 to 20ms.

The (output) separation between two consecutive different
output items is the difference between the times at which
the outputs are produced. It gives an estimate of the jitter
between consecutive output items [9], [10]. If t1 and t2
are the sampling times of the inputs leading to consecu-
tive outputs, the output separation between these outputs is
OS = (t2 + LIFO2) − (t1 + LIFO1), where LIFO1 and
LIFO2 are the LIFO latencies of the first and second live
paths. Fig. 1 shows that the separation between the outputs
shown in green and blue is 20ms. For this chain, the maximum
output separation is 20ms. An input separation (resp. output

Fig. 1: Input/Output separation.
separation) constraint is a pair 〈Ch,∆in〉 (resp. 〈Ch,∆out〉)
specifying that the maximum separation between consecutive
live inputs (resp. consecutive different outputs) is not greater
than ∆in (resp. ∆out).

c) Actuation Constraint: When an input is used to pro-
duce outputs from multiple chains in the system, there is a
constraint that the LIFO outputs should be within a prescribed
time interval. In Fig. 2, an input is processed and sent to
three actuators. The LIFO latency should be within 100ms,

Fig. 2: Actuation.
whereas the actuators should synchronize within 20ms. This is
crucial in features like braking, synchronous door opening and
hazard warning lights where almost simultaneous operations
of multiple actuators in response to a single sensor input
has to be ensured. An actuation constraint is specified as
〈CH ,∆CH ,∆act〉 where CH is a set of chains with a common
source object, ∆CH is the bound on the maximum LIFO
latency of any chain in CH , and ∆act is the bound on the

1This example looks simple as we do not consider the effect of scheduling.
Analyzing a real-life system with multiple tasks/messages allocated to each
ECU/bus can be very complex.

maximum difference between the LIFO latencies of the chains
in CH for the same input data item.

d) Correlation Constraint: When an output is dependent
upon multiple inputs processed through different chains, the
inputs need to be sampled within a small time interval so
that the controller will have a realistic and consistent view of
the environment [10], [13]. In Fig. 3, three sensors sample
the inputs and a controller uses this data to compute the
actuator command. Along with a LIFO latency constraint

Fig. 3: Correlation.

of 10ms for each chain, there is a correlation constraint of
1ms among the sensors. This constraint is relevant in vehicle
speed computation, where four wheel speed sensors sample
the RPM of wheels to compute vehicle speed. A correlation
constraint is specified as 〈CH ,∆CH ,∆cor 〉 where CH is a set
of chains with a common sink object, ∆CH is the bound on
the maximum LIFO latency of any chain in CH , and ∆cor is
the bound on the maximum difference between the sampling
times of the inputs leading to an output.

III. FORMAL MODELS AND ANALYSIS TECHNIQUE

In this section, we model the behaviour of a system as timed
event sequences and show that the timing constraints presented
in Section II can be defined as properties of finite segments
of these sequences. Hence, these constraints can be verified
using monitors encoding the corresponding properties.

A. System as a Calendar Automaton Model

In this section, we first recall the definition of Calendar Au-
tomaton (CA) [7] and then briefly discuss the modeling of ob-
jects using CA. We represent a CA as (Σ, V, s0, E) where [12]:
• Σ is a finite set of events.
• V is a finite set of state-variables. An important state-

variable is C, storing a calendar with events from Σ.
A calendar Cal is defined as a finite set of events ei
and their relative occurrence times (called time-steps)
ti ∈ Q≥0. Two operators on Cal are: min(Cal) returning
the minimum among the time-steps in Cal , and Cal − δ
returning a calendar obtained by subtracting δ from all
the time-steps in Cal . min(Cal) is valid only if Cal 6= ∅,
and Cal − δ is valid only if Cal 6= ∅ and δ ≤ min(Cal).

• s0 is the initial state. A state assigns appropriate values
to the state-variables in V .

• E is a finite set of transitions between the states. They are
of two types: (i) discrete transitions that are instantaneous.
Such a transition from s to s′ is enabled iff min(s(C))
= 0, i.e., at least one event has 0 as time-step. s′(C)
is obtained from s(C) by deleting the processed event,

adding new events and/or updating the time-steps of
existing events. The remaining state-variables are updated
as required. (ii) timed transitions that represent time
elapse. Such a transition from s to s′ is enabled iff
min(s(C)) > 0, i.e., no event has 0 as time-step. s′(C)
is obtained as s(C) − min(s(C)). Note that this is the
maximum time elapse possible without missing any event
in the calendar. As a result, the state-space of a CA
model is smaller than that of a similar model based on
continuous time formalisms such as Timed Automaton [5]
or Hybrid Automaton [11]. The remaining state-variables
are updated as required.

Next, we recall the behaviour of preemptively scheduled
tasks and non-preemptively scheduled messages [12]. The
state diagram of a preemptively scheduled task τi is shown
in Fig. 4. On a period expiry (shown as triggeri), it moves to

Fig. 4: State diagram of τi.

waiti denoting that it is waiting in the ready queue. When it
is selected for execution (shown as starti), it reads the input
buffers and moves to execi . The time interval from triggeri
to starti is called the start time of this instance of τi. From
execi , it may be preempted (shown as triggerj (πj < πi))
to waiti by a higher priority task τj ; when it restarts after
preemption, it again takes the starti edge to execi but does
not read any buffer. Once it finishes execution (shown as
finishi), it writes to the output buffers and moves to sleepi .
The interval from triggeri to finishi is called the response time
of this instance of τi. Note that the event sequence from τi is
of the form (triggeri starti

+ finishi)
ω . The event sequence

from a non-preemptively scheduled message mi is of the form
(triggeri starti finishi)

ω , as its behaviour is similar but with
no preemptions.

The CA model of a system S is obtained as the composition
of the CA models of the tasks and messages in S. These
models can be easily derived from the ones in [12]; we omit
them here due to space limitation. As the offsets, periods and
execution times of the tasks/messages in S are finite, time-
steps in the calendar are finite. Also, the maximum size of the
calendar is 2 times the number of tasks/messages in S [12].
Hence, we have (on the lines of [12]):

Proposition 1: The CA model of a system S is finite-state.

B. Constraints as Properties of Finite Timed-Event Sequences

In this section, we show the formulation of various timing
constraints as properties of a finite sequence of events and
time-steps. Let E =

⋃
m{triggerm, startm,finishm} be the

set of events from the objects oms in a system S. The

behaviour of S can be seen as a set of runs; each run ρ
being a pair 〈σ, α〉 where i) σ ∈ Eω is a sequence of events
whose projection onto the set of events from a task τk is
of the form (triggerk startk

+ finishk)ω and onto the set of
events from a message mk is of the form (triggerk startk
finishk)ω , and ii) α ∈ Qω is a sequence of time-steps. The
interpretation of ρ is that σ[i + 1] occurs α[i] time units
after σ[i]. We use the notation ρ(i, j) to denote the finite
segment 〈σ(i, j), α(i, j)〉. We define the duration of ρ(i, j)
as duration(ρ(i, j)) ,

∑j−1
h=i α[h].

Given a run ρ, we define three types of causal order relations
between the indices as follows:

1) i <ink j if σ[i] = triggerk and σ[j] = startk and
NO FINISH(k, i, j).

2) i <kk j if σ[i] = startk and σ[j] = finishk and
NO FINISH(k, i, j).

3) i <kl j if σ[i] = finishk and σ[j] = startl and
NO FINISH(k, i, j).

where NO FINISH(k, i, j) ≡ ((i < j)∧(∀h ∈ {i+1, . . . , j−
1} : σ[h] 6= finishk)). Given a chain Ch = oi1 � · · · � oi` in
S, we define �Ch as <ini1 ◦ <

i1
i1
◦ <i1i2 ◦ <

i2
i2
◦ · · · ◦ <i`i` ,

where ◦ denotes the standard composition operator. An il-
lustration of �Ch and the corresponding causal order rela-
tions is given in Fig. 5. Here, the chain being considered is
Ch = τ1 � τ2 � τ3. The shaded portion in each task instance
shows the start time of that instance.

Fig. 5: Relation �Ch .

a) LIFO Latency: A segment ρ(i, j) is Ch-live if σ[i] =
trigger i1 and σ[j] = finishi` and i�Ch j. A Ch-live segment
ρ(i, j) is said to be Ch-LIFO if ∀i < j′ < j : ρ(i, j′)
is not Ch-live. The latency of a Ch-live segment ρ(i, j) is
given by duration(ρ(i, j)). System S satisfies a LIFO latency
constraint 〈Ch,∆Ch〉 if for every Ch-LIFO segment ρ(i, j) in
the behaviour of S, duration(ρ(i, j)) ≤ ∆Ch .

b) Input/Output Separation: A segment ρ(i, j) is Ch-
separation-checkable if ∃i′, j′ : ((i < i′, j′ < j) and
(ρ(i, j′) is a Ch-LIFO segment) and (ρ(i′, j) is a Ch-LIFO
segment) and (∀j′′ ∈ {j′ + 1, . . . , j − 1} : ((σ[j′′] =
finishi`) =⇒ (ρ(i, j′′) is a Ch-live segment)))). We
define δin(ρ(i, j)) as duration(ρ(i, i′)) and δout(ρ(i, j)) as
duration(ρ(j′, j)). System S satisfies an input (resp. output)
separation constraint 〈Ch,∆in〉 (resp. 〈Ch,∆out〉) if for every
Ch-separation-checkable segment ρ(i, j) in the behaviour of S,
δin(ρ(i, j)) ≤ ∆in (resp. δout(ρ(i, j)) ≤ ∆out).

c) Actuation: Given a set CH = {Ch1, . . . ,Chn} of
n chains with a common source object, a segment ρ(i, j) is
CH-actuation-checkable if ∃j1, . . . , jn : ((i < j1, . . . , jn ≤

j) and (∃m ∈ {1, . . . , n} : jm = j) and (∀m ∈
{1, . . . , n} : ρ(i, jm) is a Chm-LIFO segment)). The end-
to-end latency of the longest among these Ch-LIFO segments
is δCH (ρ(i, j)) , duration(ρ(i, j)), and the actuation interval
is δact(ρ(i, j)) , duration(ρ(min(j1, . . . , jn), j)). System S
satisfies an actuation constraint 〈CH ,∆CH ,∆act〉 if for every
CH-actuation-checkable segment ρ(i, j) in the behaviour of S,
δCH (ρ(i, j)) ≤ ∆CH and δact(ρ(i, j)) ≤ ∆act . Refer Fig. 6
for an illustration of a CH-actuation-checkable segment.

Fig. 6: A CH-actuation-checkable segment.

d) Correlation: Given a set CH = {Ch1, . . . ,Chn} of
n chains with a common sink object, a segment ρ(i, j) is
CH-correlation-checkable if ∃i1, . . . , in : ((i ≤ i1, . . . , in <
j) and (∃m ∈ {1, . . . , n} : im = i) and (∀m ∈
{1, . . . , n} : ρ(im, j) is a Chm-LIFO segment)). The end-to-
end latency of the longest among these Ch-LIFO segments is
δCH (ρ(i, j)) , duration(ρ(i, j)), and the correlation interval
is δcor (ρ(i, j)) , duration(ρ(i,max(i1, . . . , in))). System S
satisfies a correlation constraint 〈CH ,∆CH ,∆cor 〉 if for every
CH-correlation-checkable segment ρ(i, j) in the behaviour of
S, δCH (ρ(i, j)) ≤ ∆CH and δcor (ρ(i, j)) ≤ ∆cor .

C. Monitors for Checking the Properties

To check whether a system S satisfies a timing constraint,
we have to check whether the constraint is satisfied by all
relevant segments in all the runs of S. In this section, we
discuss about the monitors used to detect the relevant segments
in a run and to verify the constraints.

Monitor 1 detects all CH-actuation-checkable segments in
a run and identifies whether any of those segments violates
the given actuation constraint. Monitors for other constraints
can be obtained similarly; we omit their descriptions due
to space limitation. Monitor 1 is based on the actuation
constraint 〈CH = {Ch1, . . . ,Chn},∆CH ,∆act〉. It monitors
a run ρ of the CA model of the system, and processes the
events (corresponding to discrete transitions) and time-steps
(corresponding to timed transitions) in ρ. For this, it stores a
finite history h = 〈σh, αh〉 of ρ. If h is non-empty, σh[0]
will be a triggeri1 event from the common source object
oi1 . The monitor also stores the indices of finishi`j

s and the
indices of the corresponding triggeri1 s – these are stored in
TF = {(t, f), (t′, f ′), . . . } as (trigger index, finish index)
pairs. When a time-step e arrives, the monitor updates the
last entry in αh (lines 4-6). Note that all time-steps before the
first event are ignored. When an event e arrives, the monitor
updates σh and αh. It then checks whether e is the finish
event from the sink object of any chain (line 10). If yes, it
identifies the index of the corresponding trigger event from

the source object (line 12). The check on line 13 confirms
that the t computed on line 12 corresponds to a LIFO segment.
After this, the pair (t, f) is inserted into TF (line 14). If TF
contains indices of finishi`m

events from all the sink objects
oi`m s such that they have a common corresponding triggeri1
event at index k, h(k, length(h) − 1) is a CH-actuation-
checkable segment (line 15). So h is resized (line 16), and
k is subtracted from all the ts and fs in TF so that TF is
updated with respect to the resized h (line 17). If any t or f
in the updated TF is less than 0, that pair is deleted (line 18).
If the duration of the resized h is greater than ∆CH , ‘LIFO
Latency Constraint Violated’ error is raised. f1 computed on
line 22 is the minimum among the f ′′s satisfying the condition
on line 15. If duration(h(f1, length(h) − 1)) is greater than
∆act , ‘Actuation Constraint Violated’ error is raised.

Monitor 1: Monitor for Actuation Constraint
1 h← 〈〉
2 TF ← ∅
3 while true do
4 if e is a time-step then
5 if length(h) > 0 then
6 αh[length(h)− 1]← e
7 if e is an event then
8 σh ← σh · e
9 αh ← αh · ∞

10 if e is finishi`j
then

11 f ← length(h)− 1
12 t← source(Chj , h, f)/* Algorithm 1 */
13 if (t 6= −1) ∧ (6 ∃(t′′, f ′′) ∈ TF : σh[f ′′] =

finishi`j
∧ t′′ = t) then

14 TF ← TF ∪ {(t, f)}
15 if ∃k : (∀m ∈ {1, . . . , n} : (∃(t′′, f ′′) ∈ TF :

(σh[f ′′] = finishi`m
∧ t′′ = k))) then

/* h(k, length(h)− 1) is

CH-actuation-checkable */
16 h← h(k, length(h)− 1)
17 TF ← TF − k
18 TF ← TF \ {(t′′, f ′′) | t′′ < 0∨ f ′′ < 0}
19 if duration(h) > ∆CH then
20 Print ‘LIFO Latency Constraint

Violated’
21 return
22 f1 ← min{f ′′ | ∀m ∈ {1, . . . , n} :

(∃(t′′, f ′′) ∈ TF : (σh[f ′′] =
finishi`m

∧ t′′ = 0))}
23 if

duration(h(f1 , length(h)− 1)) > ∆act

then
24 Print ‘Actuation Constraint Violated’
25 return

We also present Algorithm 1 that is used by the monitors
to identify Ch-live segments. It takes a chain Ch = oi1 �
· · · � oi` , a finite segment h of a run, and the index k of
a finishi` event in h as inputs, and returns the index of the
corresponding triggeri1 event in h. If there is no such index,
it returns −1.

As Monitor 1 stores only a finite segment of a run, h and
TF are of finite size. Hence,

Proposition 2: Monitor 1 is finite-state.
Due to Proposition 1, a model-checker can be used to generate
all the runs of the CA model of a system S. Thus, by model-
checking the composition of Monitor 1 and the CA model of
S, we can identify whether S violates the actuation constraint:

Proposition 3: Given a system S and an actuation con-
straint AC, Monitor 1 reports violation iff S does not satisfy
AC.

Algorithm 1: source(Ch , h, k)
1 idx← k
2 for j ∈ {`, . . . , 1} do
3 while idx ≥ 0 ∧ σh[idx] 6= start ij do
4 idx← idx− 1
5 while idx ≥ 0 ∧ ((j > 1 ∧ σh[idx] 6= finishij−1

) ∨ (j =

1 ∧ σh[idx] 6= trigger ij
)) do

6 idx← idx− 1
7 if idx < 0 then
8 return −1
9 return idx

IV. IMPLEMENTATION AND CASE-STUDIES

The analysis techniques discussed in Section III have been
implemented as a tool that takes as input an excel sheet
containing the system specification and the chains/graphs to
be analyzed, and outputs an excel sheet containing the values
of the required timing parameters.

The case-studies are based on a dual-core ECU (core C-
1 with 13 tasks and core C-2 with 12 tasks) implementing
a Collision Preparation System [12]. Table I shows the task
parameters. It also shows the input/output buffers of the
relevant tasks. T3 and T22 read the input data items delivered
on CAN1 and CAN2 buses, and T6 generates the output data
items transmitted on CAN3 bus. T8, T25, T24 and T4 are the
IPC tasks handling the data transfer between C-1 and C-2.
The remaining tasks process intermediate data [12]. We have
computed the input/output separations of 40 chains between T3
and T6, and of 12 chains between T22 and T6. 5 of these chains
are shown in Table II. Our method took ≈ 0.13s time and
≈ 330Mb memory for each chain, on a Windows XP laptop
with Intel Centrino Duo processor (2.2 GHz) and 2GB RAM.

TABLE II: 5 chains from Table I.

No. Chain IS OS
(ms) (ms)

1 T3 → T8 → T2 → T5 → T1 → T13 → T6 100 100

2 T3 → T11 → T12 → T8 → T25 → T15 → T14 50 50→ T17 → T24 → T4 → T6

3 T3 � T11 � T12 � T2 � T5 � T8 � T25 � T15 50 50� T21 � T23 � T18 � T24 � T4 � T6

4 T22 → T14 → T17 → T24 → T4 → T6 50 50

5 T22 � T14 � T17 � T20 � T24 � T4 � T7 � T8 100 100� T2 � T5 � T1 � T13 � T6

We also carried out a variant of actuation constraint analysis
between chain T2 � T5 � T13 � T6 (generating a command
signal) and chain T14 � T17 � T20 � T24 � T4 � T6
(generating the confirmation signal). The constraint in this case
is that the confirmation signal should arrive within 10ms of

TABLE I: Tasks on two cores of an ECU.

Core τi πi
Oi Pi Ei Ini Outi(ms) (ms) (ms)

C-1

T1 1 28 100 0.013 {b5 1} {b1 3, b1 13}
T2 2 1 50 3.644 {b8 2, b12 2} {b2 5}
T3 3 3 10 0.01 {b1 3, b6 3, CAN1} {b3 8, b3 11}
T4 4 2 10 0.01 {b24 4} {b4 6, b4 7}
T5 5 1 50 2.54 {b2 5} {b5 1, b5 8, b5 13}
T6 6 0 10 0.02 {b4 6, b13 6} {b6 3, CAN3}
T7 7 1 10 0.01 {b4 7} {b7 8}
T8 8 3 10 0.01 {b3 8, b5 8, b7 8, b12 8} {b8 2, b8 25}
T9 9 1 100 0.025 - -
T10 10 2 50 0.025 - -
T11 11 3 10 0.115 {b3 11} {b11 12}
T12 12 2 10 0.258 {b11 12} {b12 2, b12 8, b12 13}
T13 13 1 50 0.167 {b1 13, b5 13, b12 13} {b13 6}

C-2

T14 1 1 50 0.167 {b15 14, b22 14} {b14 17}
T15 2 1 10 0.115 {b25 15} {b15 14, b15 21}
T16 3 1 50 0.148 - -
T17 4 1 50 0.11 {b14 17, b25 17} {b17 18, b17 20, b17 24}
T18 5 1 10 0.01 {b17 18, b23 18} {b18 24}
T19 6 0 100 0.017 - -
T20 7 1 50 0.167 {b17 20, b21 20} {b20 24}
T21 8 2 10 0.377 {b15 21} {b21 20, b21 23}
T22 9 1 10 0.01 {CAN2} {b22 14, b22 24}
T23 10 2 10 0.11 {b21 23, b25 23} {b23 18, b23 24}
T24 11 1 10 0.01 {b17 24, b18 24, b20 24, b22 24, b23 24} {b24 4}
T25 12 3 10 0.01 {b8 25} {b25 15, b25 17, b25 23}

the corresponding command signal. Note that this constraint is
stronger than the vanilla actuation constraint, as it additionally
specifies an order among the outputs from different chains.
This extra check was easily incorporated into Monitor 1. Thus,
we could verify that the following issues do not occur:
• Command signal is lost due to overwriting, but confirma-

tion signal is not.
• Confirmation signal is lost due to overwriting, but com-

mand signal is not.
• Confirmation signal arrives before the corresponding

command signal.
• Confirmation signal arrives 10ms after the corresponding

command signal.
• An old confirmation signal arrives after a new (unrelated)

command signal.

V. CONCLUSION

Schedulability analysis and end-to-end latency analysis are
well-studied in the literature. However, timing synchronization
problems like input/output separation, actuation and correla-
tion have not gained as much attention. In this paper, we
have presented the details on formalizing these constraints
and verifying them via model-checking a Calendar Automaton
model of the system. Due to the complex interactions among
the tasks and messages in a system, one can ask additional
questions like ‘Does every input lead to outputs satisfying the
actuation constraint?’, ‘Are the inputs at every intermediate
task correlated?’, ‘What is the synchronization restriction on
duplicate outputs from different chains?’, etc. We believe
that most of these questions can be formulated as described
in this paper and can be verified via model-checking. As
future work, scalability and accuracy of our method are to
be compared with constraint programming based methods.
Such methods are usually less expressive than model-checking

based methods, but for specific timing synchronization prob-
lems, one may be able to find suitable abstractions so that the
resulting formulations can verify the system within a tolerable
approximation.

REFERENCES

[1] ARText. https://www.artop.org/artext/
[2] MLDesigner. http://www.mldesigner.com.
[3] SPIN Model-checker. http://www.spinroot.com.
[4] TIMMO-2-USE. http://www.timmo-2-use.org/timmo/pdf/TIMMO Bro

chure.pdf
[5] R. Alur, and D. L. Dill. A Theory of Timed Automata. Theor. Comput.

Sci., 126(2):183–235, 1994.
[6] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The

MIT Press, 2000.
[7] B. Dutertre, and M. Sorea. Modeling and Verification of a Fault-

Tolerant Real-Time Startup Protocol using Calendar Automata. In
FORMATS/FTRTFT, pp. 199–214, 2004.

[8] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. A Compositional
Framework for End-to-End Path Delay Calculation of Automotive
Systems under Different Path Semantics. In CRTS, 2008.

[9] R. Gerber, S. Hong, and M. Saksena. Guaranteeing Real-Time Require-
ments with Resource-Based Calibration of Periodic Processes. IEEE
TSE, 21(7):579–592, 1995.

[10] Z. Gu. Timing Analysis of Distributed End-to-End Task Graphs with
Model-Checking. In EUC, pp. 214–223, 2005.

[11] T. A. Henzinger. The Theory of Hybrid Automata. In LICS, pp. 278–
292, 1996.

[12] A. C. Rajeev, S. Mohalik, M. G. Dixit, D. B. Chokshi, and S. Ramesh.
Schedulability and End-to-end Latency in Distributed ECU Networks:
Formal Modeling and Precise Estimation. In EMSOFT, pp. 129–138,
2010.

[13] M. Saksena, and S. Hong. Resource Conscious Design of Distributed
Real-Time Systems: An End-to-End Approach. In ICECCS, pp. 306–
313, 1996.

[14] Anders Wall, K. Sandström, J. Mäki-Turja, C. Norström, and W. Yi.
Verifying Temporal Constraints on Data in Multi-rate Transactions using
Timed Automata. In RTCSA, pp. 263–270, 2000.

[15] H. Zeng, M. Di Natale, P. Giusto, and A. Sangiovanni-Vincentelli.
Stochastic Analysis of CAN-Based Real-Time Automotive Systems.
IEEE TII, 5(4):388–401, 2009.

