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Abstract — Many companies deploy multiple data centers across 

the globe to satisfy the dramatically increased computational 

demand. Wide area connectivity between such geographically 

distributed data centers has an important role to ensure both the 

quality of service, and, as bandwidths increase to 100Gbps and 

beyond, as an efficient way to dynamically distribute the 

computation.  The energy cost of data transmission is dominated 

by the router power consumption, which is unfortunately not 

energy proportional.  In this paper we not only quantify the 

performance benefits of leveraging the network to run more jobs, 

but also analyze its energy impact. We compare the benefits of 

redesigning routers to be more energy efficient to those obtained 

by leveraging locally available green energy as a complement to 

the brown energy supply. Furthermore, we design novel green 

energy aware routing policies for wide area traffic and compare 

to state-of-the-art shortest path routing algorithm.  Our results 

indicate that using energy proportional routers powered in part 

by green energy along with our new routing algorithm results in 

10x improvement in per router energy efficiency with 36% 

average increase in the number of jobs completed. 

Keywords-green energy, network, energy proportional,  routing.  

I.  INTRODUCTION  

The number of online services—such as search, social 
networks, online gaming and video streaming— has exploded.  
Due to data locality issues and the demand for fast response 
times, such services are usually distributed across 
geographically diverse set of data centers.  This is clearly 
already the case for larger companies, such as Google and 
Facebook, but is also increasingly true of smaller companies 
who can leverage cloud offerings from companies such as 
Amazon [26].  This trend is also fueled by a dramatic increase 
in the usage of virtualization technology. For example, 
Amazon’s EC2 allows load balancing between virtual machine 
instances [26].    

Internet services usually have frontline service jobs and a 
background set of batch jobs that prepare data for the online 
services.  For example, in order for eBay to be able to 
guarantee very low response times to their customer’s requests, 
they need to have an updated and well indexed database of 
items, usually obtained by running batch jobs.  Often, there are 
two classes of performance metrics used – services response 
times, usually measured in 10s to 100s of milliseconds, and 
batch job throughput.  Normally the service providers’ goal is 
to ensure that service times are within specified bounds, while 
batch jobs are expected to progress at a reasonable rate.  

In addition to performance, a key challenge in such 
distributed data centers is the energy cost which includes the 
cost of computing and data transmission. A recent study [8] 
shows that as of 2007 at least 2% of the total carbon emission 
of the world comes from IT. World-wide power consumption 
due to IT has been growing, with more than 80% due to the 
way equipment is used [29][30]. The telecommunication 
infrastructure takes up to 40% of the total IT energy cost, and is 
expected to continue growing as demand for distributed data 
processing continues to rise [30].    

One of the key tradeoffs in the design of distributed 
services is how data center operators and network providers 
deliver the needed performance at minimum energy cost. While 
quite a bit of work has focused on energy optimization of data 
center computing, relatively little has been done for 
geographically distributed networks connecting the data 
centers. The overall electricity cost (“brown energy”) of 
networking can be very high.  For example, Telecom Italia is 
the second largest consumer of electricity in Italy [31]. One 
way to reduce these costs is to leverage green energy sources 
such as solar and wind.  Intermittent green energy has been 
explored as a way to perform additional work in data centers 
[9] and to cap the peak power of a data center [7], but has not 
been leveraged to offset the cost of backbone networking. 

An alternate way is to redesign network elements so that 
they consume less power.  For simplicity purposes we model 
the total energy cost of backbone networking as a function of 
power consumption of routers and links.  Typically the power 
cost of the links is a function of distance due to the need for 
signal amplification, while router power cost is largely fixed at 
the peak level as the primary objective of router design has 
been maximizing performance at all cost.  As a result, routers 
dominate the backbone network’s energy consumption [14]. 
Recently there have been a few publications studying how 
routers could be redesigned to be more energy proportional 
[13] [15].  As the utilization levels of backbone networks tend 
to be low, around 30% [15], redesigning routers to be energy 
proportional and then enabling network to leverage this is 
important.  Furthermore, routers are the primary network 
elements that ensure high speed connectivity between 
distributed data centers.  Currently routes are typically 
determined statically by using shortest-path algorithm.  
However, as routers become more energy proportional, and as 
their supply is complemented by using highly variable green 
energy, there will be a need for dynamic route adjustment 
depending on the current state of the load on particular 
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connections, the performance needs of applications running in 
the data centers, and green energy availability.   

In this paper, we analyze the use of wide area network in a 
multiple data center system. The main goal is to improve the 
energy efficiency of the networking infrastructure, while 
ensuring service times and batch job throughput constraints are 
met for large scale distributed data center deployments. The 
main contributions of our work can be summarized as follows: 

� We quantify the energy cost of a data transfer over the 

backbone network. 

� We show that energy proportionality and green energy can 

make a dramatic difference to network energy efficiency. 

� We design a novel green energy aware routing algorithm 

capable of ensuring quality of service needs are met while 

improving energy efficiency by 10x. 

II. RELATED WORK 

A number of projects have explored the idea of wide area 
job balancing for distributed data centers.  A number of 
strategies have been developed to determine the best strategy 
for transferring data center jobs to locations where the 
electricity is cheaper [1, 4, 5]. This has been aided by the fast 
live VM migration that is possible with very short downtimes, 
on the order of a few seconds [28].   Green energy usage in 
data center systems is a very recent topic [2,3,7-10]. Work 
presented just this year explored how to effectively leverage 
green energy availability to complement brown energy supply 
for data centers [2, 3, 9].  Green energy has been used to cap 
the peak power in the system [7]. Green energy prediction has 
been shown to dramatically increase the effective renewables 
utilization for data center operations in [25]. However, none of 
the projects that have looked at job balancing in distributed 
data centers consider the energy cost of the backbone networks 
while transport energy consumption can be significant for 
distributed cloud-based data center applications [38]. 

On aggregate, network service providers consume a lot of 
electricity, with Telecom Italia and British Telecom taking 
around 1% of nation’s electricity [12]. This comes at a steep 
cost, with electricity costs reaching up to 50% of operating 
expenses for some providers. There has been quite a bit of 
research on energy efficient backbone networks. The first 
category includes shutting down idle network elements [15] 
and provisioning the network to identify the elements that can 
be shut down without affecting the connectivity [17], [14], 
[20]. Another way to increase network energy efficiency is to 
leverage the fact that line cards consume a large portion of the 
router power and by adjusting the number of active line cards 
the power consumption can be decreased significantly [24]. 
Additionally, dynamic software solutions such as energy aware 
routing [18], [32] to select the energy efficient path and 
bandwidth adjusting to reduce the router power consumption 
[27] are used to improve network energy efficiency. Recent 

projects, like the GreenStar network, propose to experiment 
with using green energy to power zero-carbon data centers and 
migrating workloads over the network based on presence of 
renewable energy [37]. Another work uses brown and green 
energy together in a problem formulation to minimize carbon 
emissions [16]. However, energy aware policy they deploy and 
the green energy supply do not change and adapt over time. 

In contrast to the previous work, our work focuses on 
increasing the energy efficiency of the backbone network 
without shutting down any connected data centers, network 
devices or links connecting them. We showcase the effects of 
theoretical and practical proportionality in network elements on 
energy efficiency. We use dynamic prediction of green energy 
availability to improve the reliability and decrease the carbon 
footprint of the network. In addition, we show that the design 
of dynamic routing policies leveraging green metrics 
effectively utilizes energy-efficiency of the routers and 
decreases the brown energy use significantly.  

III. DATA CENTER AND NETWORK MODELING 

An effective strategy for managing backbone network 
energy costs, while at the same time ensuring that data center 
jobs meet their performance constraints, requires careful 
modeling of not only the network links, but also of the data 
centers and the servers within them.  In this section, we present 
the models we use to represent data centers and the network 
elements. For the data center validation we used a fully 
operational data center container, while for validating backbone 
network energy costs we leverage models of energy 
consumption of state-of-the-art backbone routers [14]. 

TABLE I: Inter-arrival and service time parameters  
Lognormal Distribution Parameters  α µ 

Rubis 1600 Clients Inter-arrival time (ms) 1.23 0.59 

Rubis 3200 Clients Inter-arrival time (ms) 1.12 0.43 

MapReduce Job Service time (sec) 1.44 5.24 

A. Data Center Model 

Each data center container is modeled after the one we have 
on campus.  It has 200 Intel’s Nehalem servers running Xen 
VM.  We run Rubis on our machines to model service-sensitive 
eBay-like workload [6] with 90

th
%ile of response times at 

150ms.   Multiple MapReduce instances are run as batch jobs.  
A single MapReduce job consists of a number of tasks that are 
dispatched in parallel.  The job is complete when all tasks 
finish.   Although we have two types of jobs in a data center, 
we transfer only batch jobs between geographically distributed 
data centers, as service request sensitive tasks have very tight 
timing constraints, and often relay on fast local connections to 
ensure those constraints are met.  We assume that data is 
replicated among the data centers automatically in order to 
ensure better reliability [36]. Thus, when a batch job is moved, 
relatively little data has to be moved with it. 

Each data center scheduler uses two separate job arrival 

TABLE II: Parameters and values used in the simulation 

Parameter Value Parameter Value Parameters Value 

Mean Web Request Inter-arrival time 5ms Average # tasks per MapReduce job 70 Idle Server Power 212.5W 

Mean Web Request Service time 20ms Average required throughput level per MR job 0.35 Peak Server Power 312.5W 

Service Request SLA 150ms Number of servers in a data center 200 Idle Router Power 1381W 

Mean MapReduce Job Inter-arrival time  2 min Number of data centers 5 Peak Router Power 1781W 

Mean MapReduce Task Service time 4 min Number of routers 12 # line cards 10 



queues: web services (Rubis) and batch jobs (MapReduce).  
Service and batch job interarrival times are modeled using log 
normal distribution based on our measurements of Rubis and 
MapReduce running on Nehalem servers and results of analysis 
presented in [34] and [35] respectively (see Table I for 
parameters).  For simplicity, we assume that each server has at 
minimum one web services request queue, and one or more 
batch jobs slots to execute. Web services start execution 
whenever there are available computing resources (CPU and 
memory) to ensure their response time requirements are met 
whenever possible. Load balancing strategy described in [25] is 
used to distribute requests within data centers. Although data 
centers have the same number and type of servers, the request 
arrival rates are different for each of them representing varying 
demands based on location and the time of day. We leverage 
these differences for geographically distributed load balancing.   

For simplicity we have a single controller that monitors and 
manages load of the data centers and the network. Each data 
center sends the available resource (CPU, memory etc.) profile 
to the controller every 30 min as MapReduce jobs typically 
take less than 30min to complete. Based on this information, 
the controller computes the average resource usage of the 
overall set of data centers. Then, starting from the center with 
least amount of extra resources, it balances the resources across 
the system. This process continues until the amount of 
available resources in each data center is more balanced under 
the constraint of available network bandwidth or a data center 
cannot find a task to transfer. The actual transfer of batch jobs 
is initiated by the controller once the rebalancing analysis 
completes.  Data centers provide lists of candidate jobs, while 
the network computes the path and the available bandwidth of 
the path, depending on the routing policies used. Then the 
controller computes the traffic matrix between data centers in 
terms of size of data (a function of the number of VMs) and 
initiates the transfers accordingly.  

We compare the simulation results with a real experimental 
setup running a mix of Rubis and MapReduce workloads on a 
set of Intel Nehalem servers from our data center container. 
Tables I & II list the values of the parameters we use in our 
simulation. We observed only 3% average error in modeling 
power consumption, 8% on MapReduce job completion times 
and 6% on service job’s response times, which is more than 
accurate enough for our purposes. 

B. Backbone Network 

Our model is based on typical telecom network 
characteristics [19] consisting of routers, hubs, storage and 
computation elements, complemented with infrastructure 
PDUs, UPS, and air conditioners to keep them operational. 
Given that the large fraction of the overall network energy cost 
is due to routers, we specifically focus on this aspect.  In 
addition, routers maybe designed to be more energy 
proportional going forward, while optical links have a fixed 
energy cost that is a function of the distance between amplifiers 
[15].  Thus, in our analysis we neglect the link cost, as it is just 
a fixed offset to the overall energy consumed.  The power 
consumption of the router can be estimated using a linear 
model [11] with bandwidth utilization ratio 0<u<1, idle power, 
Pidle and peak power, Ppeak as follows: 

                     P = Pidle + u * (Ppeak - Pidle)                                  (1) 

 

Figure 1: Power curves for different network power schemes 

In current routers, Pidle is high, thus the energy consumption 
is not at all proportional to network load limiting the potential 
savings.  However, there have already been a number of 
proposals on how routers can be made more energy 
proportional [13,15], ranging from turning off line cards that 
are not being used, to more complex circuits and system 
solutions.  Figure 1 shows the power models of routers we use 
in our simulations. The non-proportional model represents 
measurements of an actual state-of-the-art router [14] that is 
capable of supporting four 100Gbps links concurrently.  Its 
peak and idle power value are listed in Table II. The step 
function proportional is the power curve we measured by 
removing line cards from the same router – similar to on/off 
approach presented in [11]. Smooth proportionality model 
assumes techniques have been developed to “smooth out” the 
step proportional curve, while the ideal proportionality 
represents the best case linear proportionality.   

 

Figure 2: Network Topology; squares = data centers, circles = routers 

In our simulations we model a subset of LBNL ESnet’s 
network topology as shown in Figure 2 [33]. We use 5 
endpoints where data center containers reside (represented by 
squares) with 12 intermediate routers connected with all 
relevant connections (circles on Figure 2).  Upon request for a 
larger backbone data transfer, the network identifies a path to 
carry the data between two endpoints of a transfer. State-of-the-
art systems determine and configure that path statically by 
using shortest path algorithm.  

ESnet dramatically improved on the state-of-the-art routing 
and bandwidth allocation algorithms by developing On-
Demand Secure and Advance Reservation System (OSCARS) 
[23]. OSCARS enables users to reserve dynamic virtual circuits 
(VC) by computing path online to construct VCs with required 
bandwidth.  This solution works well in situations where the 
only goal is performance. However, the energy consumption is 
becoming another key constraint. As a result, an energy-aware 
dynamic routing algorithm is needed to identify and adjust the 
path during the transfer so both performance and energy 
constraints can be met in the most effective way. 
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To reduce the router’s brown energy consumption, we 
assume that each routing site has its own green energy source, 
solar &/or wind. Table III lists the types of renewable energy 
available in different locations. The renewable energy data, 
including location, and amounts generated over time has been 
provided by NREL [21,22]. We use a weather-conditioned 
moving average (WCMA) for solar and weighted nearest-
neighbor (NN) table based algorithm for wind energy 
availability prediction over 30min intervals [25]. We also 
assume that green energy supply systems provide on average 
80% of the energy need per router, 1.6 kW, where available. 

TABLE III: Renewable energy types for each location 

Location Type Location Type Location Type 

Chicago Wind New York Wind San Francisco Solar & Wind 

Atlanta Solar San Diego Solar Denver - 

Kansas - El Paso Solar Houston Solar 

Nashville Wind Cleveland Wind Washington DC - 

To best leverage green energy availability, we design a 
novel green energy aware routing (GEAR) algorithm and 
compare it to shortest path routing (SPR) which is based on 
Dijkstra’s algorithm [23]. GEAR selects the path capable of 
reserving the required bandwidth while ensuring it also has the 
lowest brown energy consumption. Algorithm I provides the 
overview of GEAR.  GEAR analyzes brown energy need of 
each path with required bandwidth between a pair and selects 
the one with least brown energy need. The paths are pre-
computed to avoid recomputation. We leverage the dynamic 
circuit construction capability of OSCARS to not only compute 
paths that best leverage green energy availability, but to also 
dynamically allocate those paths.  

 

In addition to green energy aware routing, step proportional 
router design can be best leveraged by a new routing policy as 
well.  In this case the additional bandwidth utilization might 
not always increase the power consumption of a router due to 
fairly coarse set of steps as shown in Figure 1. The network 
controller calculates how much extra power a path between two 
points would need and selects the path with the least extra 
power required. The algorithm is similar to GEAR, except that 
green energy usage in line 8 is set to zero. 

C. Simulation of backbone network with data centers 

We use a discrete event-based simulation platform that 
models the performance and energy cost of a large scale 
backbone network connecting geographically distributed data 
centers [25]. The simulator keeps track of each process in every 
data center.  The main controller of the simulator is responsible 
for synchronizing both the data centers and the network. In our 
simulation, we set the load balance control interval to 30 min. 

This duration is appropriate given the typical length of batch 
jobs, and the fact that individual service requests are much 
shorter lasting.  The load in each data center follows a 
day/night pattern appropriate for the particular location [17]. 
Power is estimated using models presented in [25] for the data 
center, and using Figure 1 for power cost of routing.  
Renewable energy data has been obtained from NREL [21,22].  
We do not quantify the power cost of supporting systems such 
as cooling as our goal is to compare the improvements to 
energy efficiency of backbone network as a function of 
changing availability of green energy and novel router designs.  
This could be easily accounted for by using a PUE factor.   

TABLE IV: Metrics and their definitions 
Metric Definition 

Network Related Metrics 

BWave Average bandwidth per link in Gbps 

TotPave Average  power consumption per router 

TotPmax Maximum power consumption per router 

BrownPave Average router “brown” power consumption  

Energy Efficiency Metrics 

Metric  Definition 

BrownE % Brown energy used per router relative to total energy 

BWave/BE Ave. bandwidth util. efficiency per brown energy spent 

NetEeff # MapReduce jobs completed per brown energy spent 

IV. RESULTS 

In the previous sections we described the models we use for 
data centers and the backbone network, along with the 
simulator that we developed to evaluate the benefits of 
changing the design of routers, and leveraging green energy 
availability along the routes.  The parameters that we use in 
simulation are shown in Tables I & II.  Each VM has a single 
job in it that is either service or MapReduce and is allocated 
8GB, which is reasonable for current systems [26]. Predictor 
accuracy is 83% for wind and 90% for solar within the 30min 
rebalancing interval used by the overall system controller. 
Network is assumed to have 10% BW reserved for background 
data transfers in all our simulations, to account for the transfers 
other than data center load balancing. In all cases, except where 
otherwise noted, we assume 100Gbps backbone network links. 
The power profiles for various energy proportional router 
designs are given in Figure 1. We simulate four days. For our 
analysis we define multiple metrics as shown in Table IV.  In 
addition to traditional metrics, such as average bandwidth used 
and router power consumption, we also define two energy 
efficiency metrics. The first quantifies the increase in the 
number of batch jobs finished as a function of brown energy 
used, and the second evaluates how well bandwidth is utilized 
per brown watt consumed.  

We first evaluate the job performance without distributed 
load balancing. In this case the batch job completion time is 
22.8 min while service response time constraints are met. Next 
we analyze the benefits of leveraging the various types of 
network configurations for transferring jobs, ranging from 
baseline design that replicates the state of the art, to having a 
network populated with energy proportional routers that have 
green energy supply sources as well. The cases where there is 
no green energy use shortest path routing (SPR), while when 

Algorithm I. GEAR 
Inputs:  Source, s; Destination, d; Paths, P; Required bandwidth, rb 

Output: Path with lowest brown energy consumption                            

1. n ← Number of paths between s and d 

2. be[1:n] ← Inf 

3. For i: 1 to n 

4.   b ← bandwidth of P[i] 

5.  If b >= rb 

6.            be[i] ← 0 

7.      For each router on P[i] 

8.            be[i] += energy need of P[i] – green energy estimate P[i] 

9.  index ← argmin be 

10. Return P[index]  



green energy is available we compare SPR with our GEAR 
algorithm. We next provide the analysis of all these results. 

Non-Proportional Routers: Data centers transfer batch job 
VMs to a remote center in order to reduce the computational 
burden and obtain higher performance for the waiting jobs. 
When transferring data, we use two different bandwidth 
allocation policies. The first one, all-bandwidth policy, 
allocates all the available bandwidth of the links whenever a 
path is constructed. The second one, necessary-bandwidth 
policy, allocates just enough bandwidth to the path, so that the 
transfer time for data takes at most 100 sec through a 100Gbps 
path. The first policy yields faster data transfer, however it also 
saturates links. The second results in more network availability. 
Table V summarizes results for both policies.  Using network 
to adaptively distribute batch jobs improves the job completion 
times by 30% while not changing the service’s response times. 
Both AB and NB policies have comparable performance and 
power consumption as the dynamic power range of baseline 
network is very small. Bandwidth utilization is 1.5x lower for 
NB, which may enable additional data to be transferred as 
needed. As a result, our simulations show that with NB policy 
34% of the tasks are executed in a remote center with 5% more 
tasks transferred than with AB. 

TABLE V: Baseline results: all bandwidth (AB), necessary bandwidth (NB)  

Metric AB NB Metric AB NB 

Ave. MR job completion (min) 17.5  16.8  TotPave  85% 83% 

Ave. MR task completion (min) 4.22  4.25  BWave 66  48 

In Figure 3 we explore the performance of the batch jobs 
and the average power consumption of a router with different 
bandwidth values available per link when utilizing the 
necessary bandwidth policy. Performance and power 
consumption do not change significantly between 50-100Gbps 
of the available network bandwidth. MapReduce job 
completion times approach the case where no load balancing is 
used as network bandwidth drops down to 10Gbps. This 
explains why today load balancing is not done very often as 
most links are at 10Gbps.  By increasing the number of servers 
by 2x and keeping the server load constant, we get better job 
performance. However, further increases of number of servers 
do not result in better performance as there is no need for extra 
resources with the fixed load rate. Increasing the server load 2x 
while keeping the server number fixed decreases performance 
by 7%. Further server load increase creates significant 
performance drop, 15%, with 10-20 Gbps bandwidth. 

Energy Proportional Routers: We use three different 
proportionality schemes as shown in Figure 1: ideal, smooth 
and step proportionality. Job completion time service times do 
not change significantly as compared to the non-proportional 
network case.  Table VI summarizes all results for the next 
subsections.   All power numbers are reported as a percent of 
router peak power listed in Table II. Bandwidth, BWave, is in 

Gbps. Looking at the columns corresponding to situations 
where no green energy is used, it is clear that NB allocation 
yields better power consumption for all proportionality 
schemes. Average power savings are around 70% if there is 
ideal, 50% for smooth and 35% for step function 
proportionality compared to non-proportional case. Network 
energy efficiency, NetEeff, improves dramatically - by 3x, while 
bandwidth energy efficiency, BWave/BE, increases by at most 
4x. 

We also use the energy aware routing algorithm for step 
proportionality (described in Section III.B) with NB policy in 
our simulation and obtain 48% of peak power per router on 
average. The dynamic policy results in 6% better power 
consumption compared to the state-of-the-art shortest path 
policy, but leads to 3% more transfer delay. 

Green Energy & Non-Proportional Routers:   For the 
next two scenarios we supplement the traditional grid (brown) 
power with green energy and evaluate the benefits of green 
energy along with green-energy aware routing, and new router 
designs. Our goal is to reduce the brown energy consumption 
as much as possible by effectively leveraging renewable energy 
availability. Here we use our green energy aware routing 
(GEAR) algorithm. When there is a data transfer initiated 
between two data centers, GEAR chooses the path with the 
least brown energy needed, which may not be the shortest one. 
Thus, in Table VI we compare GEAR to the shortest path 
routing (SPR) for all tests with green energy.  The difference 
between SPR and GEAR routing algorithms when using green 
energy with non-proportional routers is minimal as non-energy 
proportional routers have very high idle power.  

Green Supply & Energy Proportional Routers: We next 
combine GEAR with energy proportional router design. We do 
not implement any changes to GEAR specific to energy 
proportionality assumption as it chooses the path with smallest 
brown energy need regardless of the power curve used. The 
total (green + brown) power consumed by all networking 
elements with GEAR increases between 0.5- 5% compared to 
SPR depending on router design. However, GEAR 

TABLE VI: Summary of key results 
 w/o Green Energy w/ Green Energy 

 Non-Prop. Ideal Prop. Smooth Prop. Step Prop. Non-Prop Ideal Prop. Smooth Prop. Step Prop. 

Policies AB NB AB NB AB NB AB NB SPR GEAR SPR GEAR SPR GEAR SPR GEAR 

TotPave% 
85% 83% 33% 24% 51% 44% 61% 54% 

83% 86% 24% 28% 45% 48% 53% 57% 

BrownPave% 62% 59% 8% 3% 15% 9% 20% 12% 

BrownE% 100% 75% 68% 33% 10% 33% 18% 38% 21% 

NetEeff 58 59 153 210 97 112 83 95 84 85 628 1675 358 559 251 419 

BWave/BE 0.77 0.57 2 2 1.29 1.11 1.08 1.12 0.77 0.93 6 18 3.2 6.1 2.4 4.58 

BWave 66 48 66 48 66 48 66 48 48 55 48 55 48 55 48 55 
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compensates this increase by using more green energy, which 
results in lower brown energy usage. As a result, GEAR uses 
7% less brown energy for non-energy proportional routers and 
15% less for smooth proportional routers. The percentage of 
brown energy consumed when using GEAR, BrownE%, drops 
dramatically with energy proportional HW, dropping down to 
as low as 3% when ideal proportionality is assumed and as high 
as 12% with step proportionality.   

Furthermore, GEAR has 2x better network energy 
efficiency, NetEeff, and 2.3x better BWave/BE compared to 
SPR. Compared to non-proportional router design with no 
green energy usage, the improvement is 7x for NetEeff and 8x 
for BWave/BE with step proportionality, 10x for NetEeff and 11x 
for BWave/BE with smooth and 27x for NetEeff and 31x for 
BWave/BE with ideal proportionality. These dramatic 
improvements indicate that even relatively simple redesign of 
routers along with green energy availability and novel green-
energy aware routing algorithm design can results in dramatic 
reductions in the operating expenses for backbone network 
operators. 

V. CONCLUSIONS 

High bandwidth and energy efficient backbone network 
design is critical for supporting large scale distributed data 
centers.  In this paper, we propose novel energy aware routing 
policies along with different energy proportionality schemes 
for network hardware. We use a simulation platform to 
compare our energy aware policies to state-of-the art routing 
policy with different power curves. Our results show that the 
network brown energy efficiency improves 10x with smooth 
proportionality and can be as high as 27x with ideal energy 
proportionality using energy aware policies. 
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