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Abstract—Chip multiprocessing is key to Mobile and high-
end Embedded Computing. It requires sophisticated multilevel
hierarchies where private and shared caches coexist. It relies on
hardware support to implicitly manage relaxed program order
and write atomicity so as to provide well-defined shared-memory
semantics (captured by the axioms of a memory consistency
model) at the hardware-software interface. This paper addresses
the problem of checking if an executable representation of the
memory system complies with a specified consistency model.
Conventional verification techniques encode the axioms as edges
of a single directed graph, infer extra edges from memory traces,
and indicate an error when a cycle is detected. Unlike them,
we propose a novel technique that decomposes the verification
problem into multiple instances of an extended bipartite graph
matching problem. Since the decomposition was judiciously
designed to induce independent instances, the target problem
can be solved by a parallel verification algorithm. Our technique,
which is proven to be complete for several memory consistency
models, outperformed a conventional checker for a suite of 2400
randomly-generated use cases. On average, it found a higher
percentage of faults (90%) as compared to that checker (69%)
and did it, on average, 272 times faster.

I. INTRODUCTION

In Mobile and high-end Embedded Computing, chip multi-
processing (CMP) became the key to energy-efficient systems-
on-chip, such as those supported by ARM Cortex-A and
MIPS 1074K families. CMP requires sophisticated multilevel
memory hierarchies where private and shared caches coexist.
Parallel programs are affected by side effects of the memory
system. For instance, two successive memory accesses from
different threads to the same location will lead to a data race
if at least one of them writes to that location. Since data
races would induce distinct behaviors for the same parallel
program, they must be ruled out by means of a synchro-
nization mechanism (e.g. a lock). If the order of memory
accesses to distinct locations is relaxed, synchronization may
not work as intended [1]. If the program order is enforced,
performance is limited. Therefore, the memory subsystem
must provide proper hardware support for order relaxation.
For enabling parallel programs to exploit relaxation without
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impairing synchronization, it is crucial to define consistent
shared-memory semantics at the hardware-software interface.
This leads to the notion of memory consistency model (MCM),
which defines when the writes of a processor are observed by
other processors. Several MCMs are reported in the literature
[1], such as Sequential Consistency (SC), Release Consistency
(RC), Total Store Order (TSO), Alpha Relaxed Order (ARO),
Relaxed Memory Order (RMO), Weak Ordering (WO), etc.

An MCM is formally defined by means of axioms. The
problem of verifying if the shared-memory hardware complies
with an MCM is crucial to parallel programming. Several
techniques have been proposed to solve that problem [2] [3]
[4]. They are all based on observing local traces and checking
if there is a global trace that satisfies the axioms of a given
MCM. Due to the limited observability of the hardware, such
a black-box verification problem is rather complex [5].

We propose a novel technique operating at the Electronic
System Level (ESL). It exploits the extended observability of
an executable representation of the shared-memory subsystem
to reduce the computational effort of verifying, at early phases
of the design flow, if it actually implements a given MCM. It
decomposes the verification problem into multiple instances
of an extended bipartite graph matching problem. Since the
decomposition was judiciously designed to induce independent
instances, the target problem can be solved by a parallel
verification algorithm. For the MCMs not requiring total store
ordering (ARO, RMO, RC, WO, etc.), the proposed technique
is provenly complete when analyzing the behavior induced by
a given test case: it neither overlooks actual errors nor flags
apparent errors. The technique was experimentally validated
with 2400 use cases and was compared to a conventional
checker. On average, our technique found a higher percentage
of faults (90%) as compared to that checker (69%) and did it,
on average, 272 times faster.

The remaining of this paper is organized as follows. Section
II describes a template that can accommodate a diversity of
CMP architectures. The target verification problem is formal-
ized in Section III. In Section IV, we show how conventional
approaches address that problem. Section V proposes a prob-
lem decomposition that is largely architecture independent. It
also presents formal proofs to support our claim to complete-
ness. Section VI experimentally compares the novel technique
to a conventional checker. In Section VII, we draw our overall
conclusions and sketch future work directions.



II. AN ARCHITECTURE TEMPLATE

To pinpoint relevant observation points, Figure 1 shows a
microarchitecture template for a generic processing element of
a CMP architecture (adapted from [6]). Remind that, to support
speculation and to keep precise exceptions, most processors
commit instructions in the same order as they were issued [6].
That is why we assume that, given a representation of a CMP
architecture, events can be monitored in program order at point
i+. When observed at point i−, events are monitored in the
order they were effectively performed on shared memory.
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Fig. 1. Microarchitecture of a processing element

III. THE VERIFICATION PROBLEM

We rely on the following notation. O is the set of memory
operations issued by all processors and S is the set of all stores.
A is the set of all addresses referenced by operations in O.
Oi ⊂ O and Si ⊂ S denote operations issued by processor i.
We let p and n denote, respectively, the number of processors
and the overall number of operations (i.e. n = |O|). To specify
that an arbitrary operation is issued by a processor i and makes
a reference to an address a ∈ A, we write (Opj)

i
a. We replace

Op by L or S to specify that the operation is either a load or
a store. We drop the subscript j in shorthand notation.

Let us first address two orderings of memory events that are
observable and then an ordering that can only be inferred.

Definition 1 - Local order induced by the program: We
say that (Op1)

i precedes (Op2)
i in program order, written

(Op1)
i <+ (Op2)

i, iff (Op1)
i reaches the head of processor

i’s instruction queue before (Op2)
i does.

Definition 2 - Local order induced by the execution:
We say that (Op1)

i precedes (Op2)
i in execution order,

written (Op1)
i <− (Op2)

i, iff the former’s completion is
acknowledged to the private data-cache controller of processor
i before the latter’s.

Definition 3 - Global order: We say that (Op1)i precedes
(Op2)

k in global order, written (Op1)
i ≤ (Op2)

k, iff (Op1)
i

completes its writing or reading on the shared memory sub-
system before (Op2)

k does.
The order <+ (<−) can be monitored at point i+ (i−). The

order ≤ is specified by the axioms of a given MCM.
Several MCMs, such as ARO, RMO, SC, TSO and WO [1]

require the serialization of stores to the same location.
Property 1 - Cache coherence constraint:

∀Si
a, S

k
a ∈ S : (Si

a ≤ Sk
a) ∨ (Sk

a ≤ Si
a).

MCMs are distinguished by their degree of relaxation of
program order and by their write atomicity requirements. For
simplicity, we illustrate the specific requirements of only two
MCMs: TSO [2] and ARO [7]. TSO states that the execution
order in a given processor must be the program order, except
that loads may overtake stores if they make references to
distinct locations. ARO allows the order of all local operations
to be relaxed, except for operations to the same address.

Axiom 1 - Relaxation of program order:
(Li

a <+ Opib ⇒ Li
a ≤ Opib)∨(Si

a <+ Si
b ⇒ Si

a ≤ Si
b). (TSO)

(Op1)
i
a <+ (Op2)

i
a ⇒ (Op1)

i
a ≤ (Op2)

i
a. (ARO)

TSO specifies that all processors must observe the same
linear order of stores. In contrast, ARO only requires the stores
to the same location to be linearly ordered (Property 1).

Axiom 2 - Write atomicity constraint:
∀Si

a, S
k
b ∈ S : (Si

a ≤ Sk
b ) ∨ (Sk

b ≤ Si
a). (TSO)

∀Si
a, S

k
a ∈ S : (Si

a ≤ Sk
a) ∨ (Sk

a ≤ Si
a). (ARO)

Most MCMs (SC, TSO, WO, RC, ARO, RMO, etc.) capture
a processor’s inner property:

Property 2 - Read own write early: The store queue of
each processor i is allowed to bypass data from an outstanding
store Si

a to a load Li
a, before Si

a becomes globally visible.
Let us formulate the impact of Property 2 on a load Li

a.
Definition 4 - Local producer: the operation Si

a ∈
{Si

a|Si
a <+ Li

a} such that ¬(∃S′ia|Si
a <+ S′

i
a <+ Li

a),
written Max<+ [{Si

a|Si
a <+ Li

a}].
Let us define the impact of global order on a load Li

a:
Definition 5 - Global producer: the operation Sk

a ∈
{Sk

a |Sk
a ≤ Li

a} such that ¬(∃Sj
a|Sk

a ≤ Sj
a ≤ Li

a), written
Max≤[{Sk

a |Sk
a ≤ Li

a}].
Let V al[Li

a] denote the value returned by a load and let
V al[Si

a] be the value written by a store. For every address, an
MCM requires that, among the potential producers for a load,
either in global order or program order, the value returned by
that load is the value written by the latest store [2]:

Axiom 3 - Uniqueness of returned value:

∀a ∈ A : V al[Li
a] =

{
V al[Max<+ [{Si

a|Si
a <+ Li

a}] if Prop. 2
V al[Max≤[{Sk

a |Sk
a ≤ Li

a}] otherwise

Supplementary axioms address atomic swaps (X) and mem-
ory barriers (M ) [8]. We assume (without loss of generality)
that such supplementary axioms are merged, for verification
purposes, into Axioms 1, 2, and 3.

The following necessary condition for memory consistency
(despite being obvious) is a useful property for early fault
detection.



Property 3 - Global visibility: Except for the loads satis-
fying Property 2, which never reach the memory, all other
operations in the program must be observed between their
issuing processor and its interface with the memory system.

Let us formalize the key notion that enables MCM checking:
Definition 6 - Trace: a sequence (τ1, τ2, · · · τj , · · · τm),

where τj = (op, a, v) is a memory event such that op ∈
{L, S,X,M}, a ∈ A and v = V al[opa] when op 6=M .

Since a memory barrier does not produce nor consume a
value, we define V al[M ] = NIL.

Finally, the target problem can be formulated:
Problem 1 - MCM Verification: Given a collection of

traces T1, T2, · · ·Tp, is there a global trace T satisfying all
the MCM’s order and value axioms?

IV. RELATED WORK

Most verification approaches [2] [9] [4] rely on automati-
cally generating multithreaded random instruction tests (RITs).
Such synthetic programs have one thread per processor exe-
cuting a sequence of operations that make references to shared
addresses. Both the sequence and the references are generated
pseudo-randomly as a way to provide proper coverage.

Conventional checkers [2]–[4], [8], [9] solve instances of
Problem 1 by encoding axioms into a constraint graph. They
make successive inferences on the order of operations by
inserting edges in the constraint graph until a cycle is detected
or no more inferences can be made. Since only a directed
acyclic graph (DAG) can represent an order relation, the
detection of a cycle in the constraint graph is a proof of
memory inconsistency. However, an acyclic constraint graph
does not necessarily prove memory consistency, because some
existing order relation between operations might not have
been inferred [8]. Therefore, a checker relying on such an
incomplete graph may raise false negative outcomes. The
reader should bear in mind that, in the context of checkers
stimulated by RITs, completeness is usually defined from the
perspective of a given test-case [4], [8].

TSOTool [2] enforces RIT generation so that unique values
are written to different addresses. The analysis takes O(n5) in
the worst case. A refinement based on more efficient heuristics
[3] reduced that worst-case complexity to O(pn3). However,
the algorithms proposed in [2] and [3] are incomplete, i.e.
they may induce false negatives. That is why a backtracking
algorithm was later proposed [8]. As a price to pay for
completeness, it takes O((n/p)pn3) in the worst case.

A more comprehensive technique [9] generalized the key
ideas from [2] to handle processors implementing several
MCMs. The technique’s execution time was improved by
using incremental graph closure and parallelization. The final
algorithm takes time O(n4) in the worst case.

LCHECK [4] relies on execution intervals of instructions to
add timing constraints to the analysis. The technique requires
store atomicity and extra observability for verification and
testing. Since the extra observability and additional constraints
allow for local checking, the complexity can be reduced to
O(Cpp2n2) for complete verification, where C is a constant.

Extended bipartite graph matching (E-matching) [10] ad-
dresses the functional verification of IPs in ESL design. It
relies on a bipartite graph whose partitions represent events
monitored at equivalent points of distinct executable represen-
tations and whose edges represent the compatibility of the
observed values. As a consequence, the nonexistence of a
matching indicates a fault in the device under verification.
However, as opposed to conventional matching, the vertices
within an E-matching must also satisfy a vertex-ordering
constraint specified by a relation R.

Despite being originally targeted to IP verification, we
envisioned E-matching [10] as a promising mechanism for
MCM checking for the following reasons. Unlike conventional
techniques, E-matching does not depend on inferences (which
are not always successful [8]). Instead of relying on pair-
wise analysis of value production and consumption as a way
to detect an ordered pair, E-matching analyzes the overall
consequences of out-of-order execution on all-pairs of values.
Those facts motivated us to design a decomposition of Problem
1 leading to p independent E-matching instances.

V. THE PROPOSED DECOMPOSITION AND CASTING

Figure 2 illustrates our technique as compared to a conven-
tional checker. Suppose that we want to verify if a system with
two processors (P1 and P2) complies with the ARO model, by
analyzing their traces. Assume that traces capture execution
sequences that were affected by a fault in the coherence
engine (a value written to a local cache was not propagated to
another). The arrows labeled as <t indicate the order in which
the events were monitored. For each processor, our technique
builds a bipartite verification graph (BVG), whose vertices
represent monitored events and whose edges represent event
equivalence. The dotted arrows (which are not BVG edges
but elements of an order relation R) represent the ordering
constraints specified by Axioms 1 and 2. Note that edge
crossings in a BVG indicate that operations observed at the
interface with the memory system (i−) are out of program
order (i+). In Step 1, each BVG is submitted to the E-
matching algorithm, which tries to find a complete matching
that does not induce edge crossings if the involved operations
are ordered by the MCM specification. If such a proper
matching [10] is not found, this indicates that either the order
relation is not satisfied or that operations are missing at the
memory interface. Note that, for P1, there is a single matching
(which turns out to be proper). For P2, however, there are two
possible matchings. Notice that the order inversion depicted by
the dashed edges violates ARO’s order constraints and induces
an improper matching. That is why the E-matching algorithm
prunes those edges. It turns out that the remaining edges lead
to a proper matching. As a result, no errors were found from
the perspective of intra-processor behavior (since the fault is
exposed through inter-processor behavior). In Step 2, a global
trace (TG) is built according to the order of timestamps (<t).
While scanning the global trace, the current status of each
memory location is kept in a table (V ), which is updated on
every store event and checked on every load event. Note that,



Fig. 2. Illustrative example for the proposed technique as compared to a conventional checker

for the first three loads, the value read by the load matches the
value written by the last store to the same address. However,
a mismatch occurs for the last load, exposing the wrong inter-
processor behavior induced by the coherence fault.

From the initial set of program-order constraints, the con-
ventional checker tries to infer new order relations. One of
the mechanisms that enables inference is value consumption.
Note that the last load issued by P2 should consume the
value produced by the last store issued by P1. However,
since the coherence fault prevented value propagation between
processors, the inference mechanism fails to detect their rela-
tion. To overcome such limitation, some conventional checkers
may rely on backtracking [8]. However, even at the price of
higher computational effort, a conventional checker is unable
to find the fault. It eventually finds an order that validates
the execution: for instance, if the order indicated by the thick
arrows in Figure 2 is adopted as tie breaker, the order shown
by the thin arrows will be inferred. As the resulting graph is
a DAG, the conventional checker asserts the correctness of an
execution that is indeed incorrect.
A. Step 1: Verifying local behavior

From the traces T+
i and T−i monitored at points i+ and i−,

Algorithm 1 builds a bipartite verification graph BVG(V,E)
and tries to match its partitions V + and V −. It first verifies if
Axiom 3 holds for local producers (line 2). When it does,
the loads consuming values from local outstanding stores
are excluded from V + (line 4), since they do not reach the
memory system. This guarantees that every event in V + has
at least one corresponding event in V −. Then it does the E-
matching’s casting (lines 4–9). The algorithm proposed by
[10] was employed (at line 10) to locally check memory
consistency. E-matching takes time O(|E|3) [10], where |E|
is the number of edges in the BVG. When using an RIT
generator that enforces a uniform distribution of operations
between processors, we have |E| = O(n2/p2). Therefore, E-
matching takes time O(n6/p6) in the worst case to verify the
local behavior of a single processor. However, the average
complexity tends to be much smaller (see Section VI).

Lemma 1 - Algorithm 1 returns true iff Axioms 1, 2, and
3, as well as Property 3, hold for Oi.

Proof: Since read-own-write-ok holds when Algorithm
1 returns true, we conclude that Axiom 3 certainly holds for lo-
cal producers. Given two operations x and y, let ax1(x, y) and

ax2(x, y) be the predicates specified by Axioms 1 and 2 for a
generic MCM. Let Ri

1 = {(x, y) ∈ Oi × Oi|ax1(x, y)} and
Ri

2 = {(x, y) ∈ Si × Si|ax2(x, y)}, i.e. the sets of ordered pairs
satisfying Axioms 1 and 2, respectively. Algorithm 1 (at line 9)
assigns to Ri all the elements in Ri

1∪Ri
2. Besides, all the equivalent

events in traces T+
i and T−

i are assigned to the relation E (at line
5). Two theorems in [10] guarantee that, when E is an equivalence
relation, proper-matching returns true iff two conditions hold
simultaneously: 1) Ri is satisfied for all events monitored at i−;
2) a one-to-one mapping M ⊆ E is found. Since E is indeed an
equivalence relation, the first condition proves that Axioms 1 and 2
hold for the operations issued by processor i. The second condition
proves that Property 3 holds for processor i.

Algorithm 1: local-behavior-OK(MCM, T+
i , T−

i )

let ≤ be the order specified by the MCM;1
if ¬ read-own-write-ok(T+

i ) then2
return false;3

V + = T+
i − local-consumers(T+

i );4
V − = T−

i ;5
V = V + ∪ V −;6
E = {(v+, v−) ∈ V + × V −| v+ = v−};7
Oi = {op | (op, a, v) ∈ V +};8
Ri = {(op1, op2) ∈ Oi ×Oi | op1 ≤ op2};9
return proper-matching(Ri, V, E);10

B. Step 2: Verifying global behavior

We assume that a timestamp t(τj) is assigned to every event
τj when it is monitored. As a result, when the simulation
completes, all the events have a timestamp. An operation x
captured by an event τj has timestamp t(x) = t(τj).

Definition 7 - Linear order induced by timestamping:
Let � be an arbitrary linear ordering on the set O. The order
<t is defined as follows:
∀x, y ∈ O : x <t y ⇔ (t(x) < t(y)) ∨ (t(x) = t(y) ∧ x� y).
A global trace is built by sorting events in the order <t. It

takes time O(n log p) in the worst case, by using a heap and
limiting to p the number of simultaneously enqueued events.

Algorithm 2 checks for consistent value consumption from
a global trace. It keeps a hash table (lines 1–2) that records
the observed values. After building a global trace (line 3), it
evaluates the set of addresses referenced by the events in that
trace (line 4). Then it visits events in the order <t (lines 7–
13). When a store is visited (line 9), its value is recorded in
the hash table (line 10). When a load is visited (line 11), the
algorithm checks if the value it consumes matches the last
value produced by a store to the same address (Axiom 3). It



returns false as soon as a value mismatch is detected. As it
does O(n) accesses to the hash table and each access takes
O(1), Algorithm 2 is dominated by the building of a global
trace, i.e. it takes time O(n log p) in the worst case.

Algorithm 2: global-behavior-ok(T−
1 , T−

2 , · · ·, T−
p )

let V be a hash table;1
let h : A→ {1, 2, · · · , |A|} be a hash function;2
TG = (τ1, τ2, · · · τj , · · · τn) = build-global-trace(T−

1 , T−
2 , · · · , T−

p );3
A = {a | τj = (op, a, v) ∧ 1 ≤ j ≤ n};4
for i = 1 to |A| do5

V[i] = NIL;6
for j = 1 to n do7

let τj be (op, a, v);8
if op = S then9

V[h(a)] = v;10
if op = L ∧ v 6= V[h(a)] then11

return false;12
return true;13

Lemma 2 - Axiom 3 holds for global producers iff Property
1 holds.

Proof: Let σi
a be a shorthand notation for {Sk

a |Sk
a ≤ Li

a} and let
σi
a(j) ⊂ σi

a denote stores issued by processor j. Necessity: Property
1 ensures that ∀Si

a, S
k
a ∈ S : (Si

a ≤ Sk
a)∨(Sk

a ≤ Si
a). Since σi

a ⊂ S,
we have: ∀Si

a, S
k
a ∈ σi

a : (Si
a ≤ Sk

a) ∨ (Sk
a ≤ Si

a). As ≤ is a linear
order on σi

a, the statement ∃s ∈ σi
a : s = Max≤[σ

i
a] holds for

every Li
a. When Li

a executes, it must consume the last value stored
at address a; therefore, V al[Li

a] = V al[σi
a] holds for every a ∈ A.

Sufficiency: Given a pair of stores (x, y), let p1(x, y)
be the predicate specified by Property 1. Axiom 3 en-
sures that, for every Li

a, we have ∃s ∈ σi
a : s =

Max≤[σ
i
a] = Max≤[σ

i
a(1) ∪ · · · ∪ σi

a(j) ∪ · · · ∪ σi
a(p)] =

Max≤[{Max≤[σ
i
a(1)], · · · ,Max≤[σ

i
a(j)], · · · ,Max≤[σ

i
a(p)]}].

The existence of local maxima proves that all stores in σi
a(j)

are linearly ordered by ≤, i.e. that ∀(x, y) ∈ σi
a(j) × σi

a(j) :
p1(x, y) holds for every Li

a or, equivalently, that the state-
ment ∀(x, y) ∈ Sj × Sj : p1(x, y) holds, as the value
produced by each store is consumed by at least one load.
For simplicity, let M i

a be a shorthand notation for the set
{Max≤[σ

i
a(1)], · · · ,Max≤[σ

i
a(j)], · · · ,Max≤[σ

i
a(p)]}. The exis-

tence of a global maximum proves that all store operations in
the set M i

a are linearly ordered by ≤. Therefore the statement
∀(x, y) ∈M i

a ×M i
a| : p1(x, y) holds for each Li

a.
Since the value produced by every store is consumed by at least

one load Li
a, we conclude that the set ∪i,aM

i
a is the set of all value

producers, i.e. ∪i,aM
i
a = S. As S = {S1 ∪ · · · ∪Sj ∪ · · · ∪Sk · · · ∪

Sp} is a partition and each store in M i
a was issued by a distinct

processor, then every store in M i
a belongs to exactly one component

of the partition. Since, for each pair (x, y) ∈M i
a, the store operations

x =Max≤[σ
i
a(j)] and y =Max≤[σ

i
a(k)]) were issued by distinct

processors j and k, we conclude that the statement ∀(x, y) ∈ Sj ×
Sk| : p1(x, y) holds for j 6= k. As a similar statement was proved
for j = k, we conclude that Property 1 holds.

Lemma 3 - For any cache-coherent memory system, the
order ≤ is indistinguishable from the order <t.

Proof: We want to prove that ∀Si
a, S

k
a ∈ S : (Si

a ≤ Sk
a) ⇔

(Si
a <t S

k
a). Necessity. For a correct execution of the the memory

system’s representation, two operations specified as ordered must be
observed in successive times, i.e. x ≤ y ⇒ t(x) < t(y). Thus, for
x = Si

a and y = Sk
a , we have ∀a ∈ A : Si

a ≤ Sk
a ⇒ t(Si

a) < t(Sk
a).

Sufficiency. Since ≤ is a partial order, one of the following scenar-
ios must be observed: x ≤ y ⇒ t(x) < t(y), y ≤ x⇒ t(x) > t(y),
or ¬(x ≤ y) ∧ ¬(y ≤ x) ⇒ t(x) and t(y) are arbitrary. Therefore,
t(x) < t(y)⇒ (x ≤ y)∨¬((x ≤ y)∨ (y ≤ x)). Assuming x = Si

a

and y = Sk
a , we have: t(Si

a) < t(Sk
a) ⇒ (Si

a ≤ Sk
a) ∨ ¬((Si

a ≤

Sk
a) ∨ (Sk

a ≤ Si
a)) for every a ∈ A. Since Property 1 must hold

for any cache-coherent memory system, the second clause of the
disjunction is false. Thus, t(Si

a) < t(Sk
a)⇒ (Si

a ≤ Sk
a) holds.

Hence, (Si
a ≤ Sk

a) ⇔ t(Si
a) < t(Sk

a), i.e. (Si
a ≤ Sk

a) ⇔ (Si
a <t

Sk
a) for every a ∈ A (Definition 7).
Lemma 4 - Algorithm 2 returns true iff Axiom 3 holds.
Proof: As events are visited in order of increasing times-

tamps, the last value assigned by Algorithm 2 to V [h(a)] (at
lines 9–10) is Max<t [σ

i
a]. As it only returns false if V al[Li

a] 6=
V al[Max<t [σ

i
a]] for some a ∈ A (lines 11–12), it returns true

iff V al[Li
a] = V al[Max<t [σ

i
a]] for all a ∈ A. To assert that

this last statement is equivalent to Axiom 3, we have to prove that
Max<t [σ

i
a] = Max≤[σ

i
a], i.e. we need to show that the statement

(Si
a ≤ Sk

a)⇔ (Si
a <t S

k
a) holds for all Si

a, S
k
a ∈ σi

a. Indeed, this is
guaranteed by Lemma 3, since ∀a ∈ A : σi

a ⊆ S

C. Overall complexity and combined theoretical guarantees

Algorithm 3 simply invokes Algorithm 1 for each processor
before invoking Algorithm 2. As the E-matching algorithm
is invoked p times, Step 1 takes O(n6/p5) in the worst
case. Since Algorithm 2 is invoked only once, Step 2 takes
O(n log p). As a result, the overall verification effort takes
O(n6/p5) in the worst case. However, since the p invocations
of the E-matching algorithm are fully independent, when the
sequential loop (lines 1–3) is converted into a parallel one, the
overall complexity is reduced to O(n6/p6).

Algorithm 3: behavior-ok(MCM, T+
1 ,· · ·,T+

p , T−
1 ,· · ·,T−

p )

for i = 1 to p do1
if ¬local-behavior-ok(MCM, T+

i , T−
i ) then2

return false;3
return global-behavior-ok(T−

1 , T−
2 , · · · , T−

p );4

Theorem 1 - For any cache-coherent memory system and
for any MCM not requiring total store ordering, Algorithm 3
returns true iff all the MCM’s axioms hold for the observed
behavior induced by a given test case.

Proof: Let li = local-behavior-OK(MCM, T+
i , T−

i ) and
let g = global-behavior-ok(T−

1 , T−
2 , · · · , T−

p ).
From Lemma 1, we have l1 ∧ l2 ∧ · · · ∧ li ∧ · · · ∧ lp ⇔ (Axiom

1 holds) ∧ (Axiom 2 holds for every (u, v) ∈ Si ×Si) ∧ (Axiom 3
holds for local producers) ∧ (Property 3 holds). From Lemma 4, we
have g ⇔ (Axiom 3 holds for global producers). Since from Lemma
2 we know that, for MCMs not requiring total store ordering, Axioms
2 and 3 are equivalent and Axiom 3⇒ Property 3, we conclude that
l1 ∧ l2 ∧ · · · ∧ li ∧ · · · ∧ lp ∧ g ⇔ Axioms 1, 2, and 3 hold.

VI. EXPERIMENTAL RESULTS

We employed an RIT generator [11] that accepts four
parameters: the number of processors (p), the overall number
of operations (n), the number of shared addresses (s), and
the instruction mix π = (πL, πS , πX , πM ), where πt is
the probability of occurrence of a memory operation of type
t ∈ {L, S,X,M}. We generated 240 distinct RITs. We
relied on executable representations built upon the GEM5’s
infrastructure [12]. We customized one of GEM5’s templates
(private L1 instruction/data caches, shared L2 cache, snooping
for coherence, and ARO for consistency). We compared our
technique with a conventional checker that implements a
version of the algorithm described in [2], which was tailored
to handle ARO. First, we ran all 240 test cases on a platform
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Fig. 5. Overall behavior when varying p

without faults and let it be verified by our checker. From a
given reference platform instance, we derived ten faulty plat-
forms, each with a distinct fault type (stuck-at-bit, overlooked
memory barrier, lack of coherence, etc.) and location (store
queue bypass, reorder buffer, cache and protocol controllers,
etc.). Every generated RIT was run on each faulty platform,
giving rise to 2400 use cases.

Figure 3 compares the coverage of individual faults. Notice
that our checker led to higher or equal coverage for all faults
as compared to the conventional one. On average, our checker
covers 90% of the faults, while the conventional one covers
69% of them. Notice that Fault 5 was almost never found by
the conventional checker. Its extremely low coverage (0.42%)
can be explained as follows. The MCM under verification is
rather relaxed. Therefore, the number of constraints induced
by the order axiom is small. Since fault 5 does not induce
a violation of the value axiom as a side effect, the number
of constraints is insufficient to induce a cycle. Note that, the
conventional checker reaches less than half the coverage of
our checker for fault 8. Since – for more than 60% of the test
cases – it cannot infer that a consumed value is obsolete, a
missing relation precludes the closing of a cycle.

Figure 4 compares the overall behavior when the size of the

test cases is increased. Notice that our checker reaches higher
coverage with smaller tests due to the extended observability
and its coverage remains 20% higher than the conventional
one. Despite its higher coverage, our checker is two orders of
magnitude faster.

Figure 5 shows the behavior of both checkers when the
number of processors is scaled up. Note that the coverage
obtained with our checker is largely independent from scaling,
as opposed to the conventional one, whose coverage actually
decreases. Since the complexity of E-matching decreases with
increasing p, our checker’s verification time decreases. This
is an evidence that our checker is suitable for the verification
challenges raised by architectural scaling.

VII. CONCLUSION AND FUTURE WORK

We showed that our complete technique is faster than an in-
complete conventional checker. Although the latter is suitable
for both design-time verification and post-silicon testing, the
use of an ESL memory verification technique pays off. The
augmented observability leads to a speed up of two orders of
magnitude and allows the detection of 20% more faults in spite
of the fact that only two points must be monitored in each pro-
cessor’s executable representation. Besides, since the selected
points are quite generic, the technique is largely independent
from microarchitecture choice. It is likely that multiprocessor
systems-on-chip will require largely-relaxed MCMs for higher
performance. Since the efficiency of conventional checkers is
reduced for such MCMs (due to the smaller probability of
cycle detection) and since our technique benefits from im-
proved verification guarantees when addressing relaxed MCMs
(Theorem 1), our contribution seems to open a promising path.
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