Automated Generation of Directed Tests for
Transition Coverage in Cache Coherence Protocols

Xiaoke Qin and Prabhat Mishra
Computer and Information Science and Engineering, University of Florida, USA
{xgin, prabhat}@cise.ufl.edu

Abstract—Processors with multiple cores and complex cache
coherence protocols are widely employed to improve the overall
performance. It is a major challenge to verify the correctness of
a cache coherence protocol since the number of reachable states
grows exponentially with the number of cores. In this paper,
we propose an efficient test generation technique, which can be
used to achieve full state and transition coverage in simulation
based verification for a wide variety of cache coherence protocols.
Based on effective analysis of the state space structure, our
method can generate more efficient test sequences (50% shorter)
compared with tests generated by breadth first search. Moreover,
our proposed approach can generate tests on-the-fly due to its
space efficient design.

I. INTRODUCTION

Caching has been the most effective approach to reduce the
memory access time for several decades. When the same data
is cached by different processors, cache coherence protocols
are employed to guarantee that a read always returns most
recently written data. Due to the power wall encountered by
single core architectures, more and more cores are integrated
into the same chip to boost the performance. As a result,
the modern cache coherence protocols, like MOESI in AMD
Opteron, are becoming quite complex. Unfortunately, since the
reachable protocol state space grows exponentially with the
number of processing units (cores) and states, the verification
teams are facing significant challenges to achieve the required
coverage within tight time-to-market window.

Since all possible behaviors of the cache blocks in a system
with n cores can be defined by a global finite state machine
(FSM), the entire state space is the product of n cache block
level FSMs. Although the FSM of each cache controller is
easy to understand, the structure of the product FSM for
modern cache coherence protocols usually have quite obscure
structures that are hard to analyze. Clearly, it is inefficient to
use breadth first search (BFS) on this product FSM to achieve
full state or transition coverage, because a large number of
transitions may be unnecessarily repeated, if they are on the
shortest path to many other states.

Simulation using random and constrained-random tests is
widely used in industry because of its good scalability. How-
ever, the random nature of test sequences also introduces
unacceptable time requirement to cover all possible state
transitions in modern cache coherence protocols with many
cores. Directed tests, on the other hand, are promising to
achieve high coverage with a drastically small number of tests
[1][2]. Therefore, they can be applied in addition to random

978-3-9810801-8-6/DATE12/(©2012 EDAA

tests to further improve the chances of capturing potential
bugs. In case of complex protocols, it is also desirable to have
an on-the-fly test generator with a space- and time-efficient
test generation algorithm.

In this paper, we propose an on-the-fly test generation
technique for cache coherence protocols by analyzing the state
space structure of their corresponding global FSMs. Instead of
using structure-independent BES to obtain the directed tests,
we show that the complex state space can be decomposed into
several components with simple structures. Since the activation
of states and transitions can be viewed as a path searching
problem in the state space, these decomposed components with
known structures can be exploited for efficient test generation.
Our contributions in this paper are: i) we develop a graphi-
cal state space description of several commonly used cache
coherence protocols, which can be viewed as a composition
of simple structures; ii) we present an on-the-fly directed test
generation algorithm based on Euler tour [12], which requires
linear space with respect to the number of cores.

The rest of the paper is organized as follows. Section II
introduces relevant existing research works. Section III pro-
vides related background information. Section IV describes
our contributions in details. Experimental results are presented
in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

Existing protocol validation techniques can be broadly clas-
sified into two categories: formal verification and simulation
based validation. Formal methods using model checking can
prove mathematically whether the description of certain proto-
col violates the required property. For example, Mur¢ [3] was
used to verify various cache coherence protocols based on
explicit model checking. Counter-example guided refinement
[4] is employed to verify complex protocols with multilevel
caches. Symbolic model checking tools are also developed
for coherence verification. For example, Emerson et al. [5]
investigated the verification problem with parameterized cache
coherence protocol using Binary Decision Diagrams (BDD).
Fractal coherence [10] enables the scalable verification of a
family of properly designed coherence protocols. Although
formal methods can guarantee the correctness of a design, they
usually require that the design should be described in certain
input languages. As a result, it is usually difficult to apply
model checking on implementations directly.

Simulation based approaches, on the other hand, are able
to handle designs at different abstraction levels and therefore

widely used in practice. For example, Wood et al. [6] used
random tests to verify the memory subsystem of SPUR ma-
chine. Genesys Pro test generator [7] from IBM extended this
direction with complex and sophisticated test templates. To
reduce the search space, Abts et al. [8] introduced space prun-
ing technique during their verification of the Cray processor.
Wagner et al. [9] designed the MCjammer tool which can get
higher state coverage than normal constrained random tests.
Since an uncovered transition can only be visited by taking a
unique action at a particular state, it may not be feasible for
a random test generator to eventually cover all possible states
and transitions. To address this problem, some random testers
are equipped with small amount of memory, so that the future
search can be guided to the uncovered regions. Unfortunately,
unless the memory is large enough to hold the entire state
space, it is still hard to achieve full coverage by such guided
random testing.

III. BACKGROUND AND MOTIVATION

In modern computer systems, since the latency to transfer
data from the main memory to processing units is much
larger than the computation time, each processing unit usually
maintains its local copy of the main memory, or cache for
fast access. One major problem of caching is that when the
same data, memory block, is cached in two or more different
places, any modification should be propagated to all the cached
copies. Cache coherence protocols are used to define the
correct behavior of each cache controller.

Eviction
Other ST

Self LD
Other LD

Eviction

Other ST Self ST

:) Self LD

State transitions for a cache block in MSI protocol.

LD=Load
ST=Store

Fig. 1.

One of the simplest cache coherence protocol is the MSI
snoopy protocol [11]. The behavior of the cache controller in a
processing unit is modeled as an FSM (Figure 1). The state of
a cache block (line) can be either “Invalid”(I), “Modified”(M),
or “Shared”(S). At the beginning, all cache blocks are in the
invalid state. When a load request arrives from the core side
(Self LD), the cache controller requests the data from the main
memory and switch to shared state. When the core issues a
store request (Self ST), the cache controller first broadcasts
an invalidate request on the bus and then changes to modified
state. Such an invalidate request will inform all other cache
controllers that are in shared or modified states to change to
invalid state. A cache block may also change to invalid state,
when it is evicted by another cache block which is mapped
to the same location in the cache, or when other cores issue
store requests (Other ST).

Although MSI protocol can guarantee the coherence of the
cache system, it causes some unnecessary delay and traffic

on the communication channels. Many variants of the MSI
protocols are invented to further improve its performance.
For example, “Exclusive” (E) state is introduced in MESI
protocol to avoid the traffic when a cache block is only used
by one core. “Owned” (O) state is used in MOSI and MOESI
protocol to reduce the delay when a modified block is loaded
by other cores. As cache coherence protocols are becoming
more and more complex, it is getting harder to verify their
implementations. From the validation perspective, it is always
desirable to activate all possible state transitions of the entire
multicore cache system.

IV. TEST GENERATION FOR TRANSITION COVERAGE

Our approach is motivated by Breadth First Search (BFS) in
the state space of a global FSM. Given the FSM description of
any cache coherence protocol, it is possible to compose a test
suite which can activate all states and transitions using two
steps: 1) for each state, we determine the instruction sequence
to reach it by performing a BFS on the global FSM; 2) for
each transition, we create the test by appending the required
instructions after the instruction sequence to reach the initial
state of this transition. However, such a naive approach has two
problems. Transitions close to the initial state are visited many
times. Thus, a large portion of the overall test time is wasted.
Besides, since we have to remember all visited states in BFS,
its runtime memory requirement also grows exponentially.

To address these challenges, our approach needs to satisfy
two requirements: 1) we should reduce the number of tran-
sitions as much as possible without sacrificing the coverage
goal; and 2) the space requirement for the test generation
algorithm should be small. Fortunately, we can exploit the
highly symmetric and regular structure of the state space and
design a deterministic test generation algorithm, which can
efficiently activate all states and transitions of popular cache
coherence protocols. The basic idea is to divide the complex
state space into several components with regular structure.
Structures like hypercubes and cliques can be traversed by
visiting each transitions exactly once.

This section is organized as follows. We first describe how
to generate tests to activate all transitions of a simplified
protocol: SI protocol. Next, we discuss our test generation
techniques for a wide variety of popular protocols. In this
work, we focus on the transition between two stable states.
We assume that the transition between stable states to transient
states are correct.

A. SI Protocol

SI protocol is a trimmed version of MSI protocol, in which
we do not allow cores to issue store operation. For a system
with n cores, a valid global state of the system allows the
cache blocks in any m cores in I state and cache blocks in the
other n —m cores in S state. Thus, there are 2" valid global
states. Since any core in I (or S) state can be converted to S
(or I) state within one transition, there are n outgoing and n
incoming edges. It is easy to see that the entire state space

of SI protocol with n cores is a n dimensional hypercube!.
Figure 2a shows such a state space with three cores. Figure 2b
shows the representation of Figure 2a as a composition of
three isomorphic trees (71, T>, and T3). Since all edges are
bidirectional for state transitions, we do not show transition
directions explicitly. For example, state III can be transformed
to IIS when the first core loads the cache block. Similarly,
state IIS can also be transformed to III, when the first core

evicts this cache block.
ISS ISS

T s
ns 1sl
IST
il Ty

SSS

SIS SIS

SSI 7
SII SII

(@) (b)
Fig. 2.(a) State space of SI protocol with 3 cores. Each global state is presented
with 3 letters, e.g., IIS means core 2, core 1, and core 0 are in states I, I, and
S, respectively. (b) Viewed as a composition of 3 isomorphic trees.

To achieve full state and transition coverage of the state
space, we need to traverse each edge of the hypercube at least
once in both directions. Since each global state has the same
number of incoming and outgoing edges, it is possible to form
an Euler tour [12] of the state space, which visits each edge

exactly once in both directions.

Algorithm 1 Test generation for SI protocol with n cores
CreateTestsSI(n)

I: fori=0ton—1do

2: Output “load(i)”

3. VisitHypercube(1,n—1,i)

4: Output “evict(i)”
VisitHypercube(id,m,shift)

5: for i=1 to m do

6. newid =id+2'

7. p=(i+shift) modn

8: Output “load(p)”

9: if i > 1 then

10: VisitHypercube(newid i — 1,shifr)
11: Output “evict(p)”
12: return

Algorithm 1 outlines our test generation procedure for SI
protocol, which performs an Euler tour on a n dimensional
hypercube. Here, load(p)/evict(p) means the p'" core performs
a load/evict operation in a particular cycle, while all other
cores remain idle. We use the state space in Figure 2 to show
the execution of Algorithm 1. The algorithm starts by calling
CreateTestsSI(n). All cores are in I state at the beginning. In
the first round of the for loop in line 2, the system performs
transition III-IIS by executing load(0). During VisitHypercube,

IThere are many transitions that start and end in the same state. For
example, the global state will not change if a core in S state issues a load
operation. These transitions are easier to cover, because they can be activated
by appending one more operation at the end of existing tests, which are used
to activate corresponding initial states. As a result, we omit them in the state
space structure description in this section. However, all possible transitions
are considered in our implementation to produce experimental results.

we visit transition IIS-ISS and ISS-IIS for i = 1 and IIS-SIS
for i = 2. Since i > 1, we invoke VisitHypercube at line 10,
which activates two transitions: SIS-SSS and SSS-SIS. Next,
transition SIS-IIS is covered by executing evict(2) in line 11.
Finally, the global state goes back to III via transition IIS-III
after evict(2) in line 4. In the next two rounds of the for loop in
CreateTestsSI, we essentially perform a “rotated” version of
the previous traversal, which covers all transitions in paths III-
ISI-SSI-ISI-ISS-SSS-ISS-ISI-IIT and III-SII-SIS-SII-SSI-SSS-
SSI-SII-IIT (7> and 73 in Figure 2b). Once the algorithm
terminates, all transitions in the hypercube are covered by the
generated test sequences.

Although the execution of Algorithm 1 seems to be compli-
cated for larger n, the basic idea of this algorithm is quite easy:
the hypercube is partitioned into n isomorphic trees with no
overlapping edges. Once the hypercube is correctly partitioned,
an Euler tour is performed on trees, because all edges are
bidirectional. The space complexity of Algorithm 1 is linear
with the number of cores n. The reason is that the function
VisitHypercube(id,m,shift) can be recursively called for at
most n— 1 times. The algorithm therefore requires a stack with
at most n— 1 levels. As a result, the space complexity is O(n).
The time complexity is linear to the number of transitions.

B. MSI Protocol

The difference between MSI protocol and SI protocol is that
a cache block can be changed to the modified (M) state, when
it receives a store request. For the ease of discussion, we define
the following terms. A global shared state is a global state
within which cores are in either shared or invalid states (e.g.,
IIS, ISI, ISS, SII, SIS, SSI, and SSS in Figure 3). A global
invalid state is a global state within which all cores are in the
invalid state (e.g., III in Figure 3). A global modified state is
a global state within which exactly one core is in the modified
state (e.g., [IM, IMI, and MII in Figure 3).

Fig. 3. State space of MSI protocol with 3 cores. For the clarity of
presentation, the transitions to global modified states (IIM, IMI, MII) are
omitted, if the transition in the opposite direction does not exist. The
hypercube (at the center) and clique are highlighted.

Figure 3 shows the state space of MSI protocol with three
cores. Since only one core can be in the modified state for
MSI protocol, there are n global modified states in the state
space of a system with n cores. Global modified states are
reachable from any other global states by store requests from

corresponding cores. Besides, a global modified state can also
be converted to the global invalid state or global shared states.
For example, global modified state IMI can be converted to
global invalid state III by evict(1), or global shared states ISS
and SSI by load(0) or load(2), respectively.

Clearly, all n global modified states form a clique, because
there are two transitions (both directions) between each pair
of global states. As a result, these transitions can be covered
with an Euler tour. Unfortunately, it is not possible to cover
all transitions in the state space of MSI by a single Euler
tour. The reason is that for some global shared state like
IIS, there are only outgoing transitions to global modified
states, but no incoming transitions from them. Therefore,
outgoing transitions are twice of incoming transitions. The
similar scenario can also be observed for global modified
states, which have more incoming transitions than outgoing
transitions. To cover all transitions, some of them must be
reused. In fact, the problem to minimize the number of reused
transitions is similar to Chinese Postman Problem (CPP) [12],
which can be solved by calculating the min-cost max-flow.
Since we need to perform the test generation on-the-fly, finding
the optimal solution by solving CPP is not an option, because
the state space can be too large to fit into memory when there
are many cores. Instead, we visit the uncovered transition to
global modified state one by one and use the shortest path to
link the end state of the previous transition and start state of
the next transition.

Algorithm 2 Test generation for MSI protocol with n cores
CreateTestsMSI(n)
: CreateTestsSI(n) /* Invoke Algorithm 1 */
. VisitClique(0)
: for each global shared state s do
fori=0ton—1do
Output “store(i)”
6: Output the shortest path from current state to s
VisitClique(p)
7: Output “store(p)”
8: Output operations to visit all bidirectionally reachable
global shared states
9: fori=p+1ton—1do
10: Output “store(i)”
11: ifi=p+1 then

S

12: VisitClique(i)
13: Output “store(p)”
14: return

Algorithm 2 presents our test generation procedure for
MSI protocol. We first invoke CreateTestsSI(n) (Algorithm 1)
to cover all transitions that also exist in SI protocol. Next,
VisitClique will recursively perform an Euler tour in the clique
of all global modified states. For example, when we execute
VisitClique in the state space shown in Figure 3, we are first
going to cover transition IIM-IMI. In the recursive call of
VisitClique in line 12, transition IMI-MII and MII-IMI are
visited. Next, transition IMI-IIM is covered by execution of
line 13. In the next iteration, IIM-MII and MII-IIM are visited.

To improve the efficiency, we also traverse all global shared
states that are bidirectionally reachable from current global
modified state. Finally, in line 3-6 we visit all uncovered
transitions from global shared states to global modified states.
Notice that we do not need to run Dijkstra’s algorithm to find
shortest path in line 6, because we must be in a global modified
state after executing the store operation in line 5. The target
global shared state can be reached by issuing load and evict
requests based on the position of “S” in its state vector.

C. MESI Protocol

In MESI protocol, a cache block goes to exclusive (E) state
when it is the first one, which loads a memory address. In
a system with n cores, there are n global exclusive states’.
Figure 4 shows the state space with three cores. Unlike global
modified states, global exclusive states cannot be converted to
each other directly. Therefore, the test generation algorithm
CreateTestsMSI for MSI protocol needs to be modified to
create tests for MESI protocol. We need to add n groups of
operations to cover transitions from the global invalid state
to global exclusive states as well as transitions from global
exclusive states to global modified states. Notice that the
CreateTestsSI routine, which is used to visit all transitions
between global shared states, also needs to be modified
slightly. The reason is that in MESI protocol, the global invalid
state will be converted to global exclusive states after any load
request (IIT goes to IIE instead of IIS when the first core issues
a load request).

MII

Fig. 4. State space of MESI protocol with 3 cores. The hypercube and clique
are highlighted.

D. MOSI and MOESI Protocols

Algorithm 2 can be modifed to generate tests for MOSI
and MOESI protocols. The details are omitted due to page-
limit, and available in the technical report [14]. We have

implemented all these algorithms and present the results in
Table I.

E. Multi-level Cache Coherence Protocols

Due to the broadcast nature of snoopy protocol, modern
processors with multiple cores usually employ multiple levels
of cache to improve the utilization of the communication
media. For example, in Intel Nehalem microarchitecture, while

2A global exclusive state is a global state with a cache block in exclusive
state (e.g., IIE, IEI, and EII in Figure 4).

cores on the same die share a common on chip cache, the
coherence among different processors are maintained using
another level of cache coherence protocol. Figure 5 shows a
simplified illustration of such a system with two cache levels.
While the level 1 cache is private to each core, the level
2 cache is shared by two cores. The coherence should be
maintained on both levels.

[Core4] [Core3] [CoreZl [Core]]
Level 1
(0] [®] [©] o]k
Level 2
= ©] &

Fig. 5. System with two cache levels.

Clearly, our test generation approach can be applied directly,
if each cache level is tested independently. However, this may
not be adequate, because designers are more interested in the
test cases, where the state transitions in different cache levels
are involved. Therefore, we have to explore the state space of
the global FSM, which captures the states of the same cache
line in all levels of cache. We denote the global state of the
system shown in Figure 5 as (IS)S(SI)S, which means the first
level caches are in state I, S, S, and I, respectively, while the
second level caches are both in shared state.

We start our discussion using the SI protocol, i.e., both
levels are using SI protocol. When the inclusive property is
not enforced, a memory block that is cached in upper level
caches does not need to be cached in lower level. In this case,
the state space of the global FSM is still structured. For the
system in Figure 5, if the implementation does not enforce the
inclusive property, the state space is a cross product of the state
space of an SI protocol with four cores (represented by vertical
transitions) and the state space for two cores (represented by
horizontal transitions), as shown in Figure 6a.

ISSS 1SSS
ISIS ISIS
Levell
States 1ISS 1SS
ms —
1 m 4<—»
Level2 it N SI ss i IS SI ss
States (b)

(a)
Fig. 6. (a) State space of a system with two cache levels. (b) State space
when the inclusive property is enforced

Lo
Lo
Lo
L

a) Stepl b) Step2
Fig. 7. Euler tour in Figure 6 by two steps.

e > > >

As discussed in Section IV-A, all horizontal and vertical
subspaces are hypercubes. Therefore, we can perform Euler
tours on each of them. A global Euler tour or CreateTestsSI

can be constructed by two steps as shown in Figure 7. In step
1, we start from initial state (I[)III)I and perform an Euler
tour within its corresponding vertical subspace, i.e., all vertical
transitions in Figure 7a. We also visit the corresponding
horizontal subspace, i.e., all horizontal transitions in Figure 7a,
when we visit a state in the vertical subspace by a load
operation. In step 2, we start from initial state and perform
an Euler tour within its corresponding horizontal subspace,
i.e., all horizontal transitions in Figure 7b, and visit the
corresponding vertical subspace. Clearly, all vertical lines and
horizontal transitions are covered exactly once. As a result, we
obtain an Euler tour of the product space. When the inclusive
property is enforced, the state space (Figure 6b) becomes
smaller. The reason is that some states, like (IDI(IS)I, is not
allowed. In this case, we can still start from the initial state
DI(IDI and perform an Euler tour within its corresponding
vertical subspace.

Our approach is also applicable to directory-based cache
coherence protocols. Since the state of the directory node
is uniquely determined by the states of all cache node, the
structure of the global FSM remains the same as the snoopy
protocol. Therefore, our test generation approach for snoopy
protocols can also be used to reach transition coverage goals
for the corresponding directory-based cache coherence proto-
cols. When more complex protocols are used in different cache
levels, we can extend the algorithms proposed in previous sec-
tions. Due to the limit of space, we discuss these modifications
in the technical report [14].

V. EXPERIMENTS
A. Experimental Setup

To analyze the effectiveness of our proposed test generation
framework, we conducted a number of experiments using
M5 simulator [13]. M5 is a full system simulator, which
implements a MOESI cache coherence protocol. The load
and store operations in the generated tests are translated into
corresponding ALPHA instructions, while evict operation is
achieved by loading a different memory address which is
also mapped to the same location in the cache as the cache
block under test. We use the load-linked and store-conditional
instruction pairs to ensure the execution order of instructions
in different cores. Since M5 only supports MOESI cache
coherence protocol, we also developed a protocol simulator,
which can be configured to simulate the state transition of a
multicore system using MSI, MESI and MOSI protocols.

B. Experimental Results

In the first experiment, we compared the efficiency of our
test generation method with the tests generated by performing
breadth first search (BFS) directly on the global FSM for
different cache coherence protocols with various number of
cores. Since tests generated by BFS are the shortest tests to
drive the system from the global invalid state to the required
transition, we use additional operations to reset the global
state after execution of each test. Table I shows the results.
The second and third columns indicate the number of states
and transitions in the respective protocol. Column “Total cost”

TABLE I
STATISTICS OF OUR TEST GENERATION ALGORITHM FOR DIFFERENT CACHE COHERENCE PROTOCOLS

BFS Our approach
States | # Transitions Total cost Average cost Total cost Average cost | Improv. | Test generation
(transition) | per transition | (transition) | per transition factor time (sec)
MSI 8 cores 264 5256 36896 7.0 14664 2.8 60.3% <1
MESI 8 cores 272 5392 37712 7.0 15312 2.8 59.4% <1
MOSI 8 cores 1288 26248 196400 7.5 100807 3.8 48.7% 6.2
MOESI 8 cores 1296 26384 197216 7.5 101455 3.8 48.6% 6.2
MESI 16 cores 65568 2622496 29103264 11.1 11570464 44 60.2% 54.5
MOSI 16 cores | 589840 23855632 275254368 11.5 131122063 55 52.4% 586

presents the total number of transitions traversed to activate
all transitions. Column “Average cost per transition” provides
the average number of transitions we need to traverse in order
to activate an uncovered transition. It can be observed that the
total size of the tests generated by our approach is 50%-60%
smaller than the ones generated directly by BFS. This result
can be explained by the fact that the Euler tour exploited in
our algorithm typically covers load and evict transitions on
global shared state. The store transitions on the other hand,
are covered in a similar way as the BFS approach. Since the
numbers of allowed load and evict transitions for any global
state are equal, we can save almost around half of the tests by
exploiting the space structure.

100%

T T
o 80% L A
2 . A =T
g Py i
g '
2 40% [F Our approach b
g i BFS -——mm-
& 20% 7/ MCjammer ------------ 1
':/ Random —-——-
0% Il Il T T
0 20000 40000 60000 80000
Cost (Total transitions)
Fig. 8. Transition coverage vs. cost for MESI protocol with 8 cores.
100% —
o 80% E
=
g [
g 60% P g
g -
2 40% Our approach b
E 3 S ——
& 20% MCjammer ------------ 7
2 Random -—---—-
0% Il Il T T
0 150000 300000 450000 600000
Cost (Total transitions)
Fig. 9. Transition coverage vs. cost for MOSI protocol with 8 cores.

We also compared the state and transition coverage of
our test generation approach with a directed random test
generator, MCjammer [9]. Figure 8 and Figure 9 show the
relation between transition coverage and testing cost on the
same system. It can be seen that MCjammer is very efficient
at the beginning. Actually, it is more efficient than BFS to
achieve 70% coverage. However, it becomes much slower to
cover all transitions. The reason is that it is very unlikely for
the algorithm with randomness to cover remaining uncovered
transitions among all allowed transitions. On the other hand,
our proposed test generation approach can always achieve
100% state and transition coverage with stable higher coverage

speed than the BFS based tests.

Although we described our algorithms in recursive forms
to simplify the presentation, they can also be implemented as
iterative routines. As discussed in Section I'V-A, our algorithms
have linear space complexity with the number of cores. Since
our tests can be generated on-the-fly, its overall space require-
ment is very small. The test generation time in Table I suggests
that the runtime of our algorithms is reasonable. For MOSI
protocol with 23 million transitions, we can create all the tests
within 10 minutes, which indicates that our algorithm is quite
light-weight for entire simulation based validation phase.

VI. CONCLUSION

In this paper, we proposed an efficient test generation
approach for a wide variety of cache coherence protocols.
Based on detailed analysis of the space structure, our approach
creates efficient test sequences for different parts of the global
FSM state space to achieve 100% state and transition coverage
for each cache coherence protocol. Compared with existing
approaches based on constrained-random tests, our approach
significantly improves the transition coverage with negligible
memory requirement. Our experimental results demonstrated
the effectiveness of our approach on systems with many cores
and complex cache coherence protocols, making it suitable for
future multicore architectures.

(1]
[2]
[3]
[4]
[5]
[6]

[7

—

[8

—

[9]
[10]
(1]
[12]
[13]

[14]

REFERENCES

P. Mishra and N. Dutt, “Specification-driven Directed Test Generation
for Validation of Pipelined Processors,” ACM TODAES, 13(2), 2008.
X. Qin and P. Mishra, “Directed Test Generation for Validation of
Multicore Architectures,” in ACM TODAES, 2012.

D. Dill, A. Drexler, A. Hu, and C. Yang, “Protocol verification as a
hardware design aid,” in Proc of ICCD, 1992, pp. 522 -525.

X. Chen et al. “Hierarchical cache coherence protocol verification one
level at a time through assume guarantee,” HLVDT, 2007, pp. 107 —114.
E. Emerson and V. Kahlon, “Exact and efficient verification of param-
eterized cache coherence protocols,” in CHARME, 2003, pp. 247-262.
D. Wood et al. “Verifying a multiprocessor cache controller using
random test generation,” IEEE Design&Test, 7(9), pp. 13 =25, 1990.
A. Adir et al. “Genesys-pro: innovations in test program generation for
functional processor verification,” IEEE Design&Test , 21(2), 2004.

D. Abts, S. Scott, and D. Lilja, “So many states, so little time: verifying
memory coherence in the Cray X1,” in Proc of ISPDP, 2003.

I. Wagner and V. Bertacco, “Mcjammer: adaptive verification for multi-
core designs,” in Proc of DATE, 2008, pp. 670-675.

M. Zhange, A.Lebeck and D. Sorin, “Fractal Coherence: Scalably
Verifiable Cache Coherence,” in Proc of MICRO, 2010, pp. 471-482.
J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, 2003.

J. Edmonds and E. L. Johnson, “Matching, euler tours, and the chinese
postman,” Mathematical Programming, vol. 5, pp. 88—124, 1973.

N. Binkert et al. “The M5 Simulator: Modeling Networked Systems,”
IEEE Micro, vol. 26, no. 4, pp. 52 —60, 2006.

X. Qin and P. Mishra, “Directed Test Generation for Cache Coherence
Protocols,” Technical Report, University of Florida, 2011.

