
978-3-9810801-8-6/DATE12/©2012 EDAA

A Flexible and Fast Software Implementation

of the FFT on the BPE Platform

Teo Cupaiuolo and Daniele Lo Iacono

Advanced System Technology

STMicroelectronics Italy

{teo.cupaiuolo,daniele.loiacono}@st.com

Abstract—The importance of having an efficient Fast Fourier

Transform (FFT) implementation is universally recognized as

one of the key enablers for the development of new and more

powerful signal processing algorithms. In the field of

telecommunications, one of its most recent applications is the

Orthogonal Frequency Division Multiplexing (OFDM)

modulation technique, whose superiority is recognized and

endorsed by several standards. However, the horizon of

standards is so wide and heterogeneous that a single FFT

implementation hardly satisfies them all. In order to have a re-

usable, easily extensible and reconfigurable solution, most of

the baseband processing is moving towards a software

implementation: to this end several new Digital Signal

Processor (DSP) architectures are emerging, each with its own

set of differentiating properties. Within this context, we

propose a software implementation of the FFT on the Block

Processing Engine (BPE) platform. Several implementations

have been investigated, ranging from a single instruction based

approach, to others employing several instructions either in

parallel or in pipeline. The outcome is a flexible set of solutions

that leaves degrees of freedom in terms of computational load,

achievable throughput and power consumption. The proposed

implementations closely approach the theoretical clock cycles

expected by dedicated hardware counterpart, thus making it a

concrete alternative.

Keywords-component; software Fast Fourier Transform

(FFT); Software Defined Radio (SDR); vector processors, SIMD,

VLIW architectures

I. INTRODUCTION

In the recent years a new approach is taking its way in the
development of radio communication systems, known as
software defined radio (SDR): in its widest meaning most
parts of the modem (if not the entire) should be performed in
software rather than in hardware. Application Specific
Integrated Circuits (ASIC) based solutions face a severe
drawback: with every new standard a design re-spin is
needed, incurring in costly development phases and most
important eventually affecting the time to market. This is
especially true for wireless communication, where several
standards are emerging, each targeting different needs and
often competing in covering a market share. Each standard
brings along different specifications which can be hardly met
by a single implementation. Within this context, several new
Digital Signal Processors (DSP) architectures have appeared,
both from the academic and the industrial world. To be an

effective replacement of their ASIC counterpart, these
processors must retain the flexibility of a programmable
approach and efficiently execute current and future
standards, normally at a cost of a certain increase of area and
power consumption. The Fast Fourier Transform (FFT) is
one of the most common algorithms in a modem and
represents a computationally intensive task. In this work the
mapping of the FFT on the Block Processor Engine
(BPE) [1] has been investigated. Starting from a revised
instruction set architecture (ISA) that includes, among the
others, a dedicated instruction for the radix-2 butterfly
computation, we developed a variety of solutions based on
the classic Cooley-Tukey algorithm: along the flexibility of
supported FFT sizes, each implementation has different
requirements in terms of computational load, achievable
throughput and power consumption, thus enabling to cover
different needs.

The remaining of the paper is organized as follows:
Sec. II reviews the FFT algorithm and introduces the
conventions used in the paper; Sec. III gives a brief overview
of the BPE; Sec. IV details the profiling of the FFT on the
BPE and Sec. V evaluates the results; lastly, Sec. VI
concludes this paper.

II. THE FFT ALGORITHM

The FFT is an efficient algorithm for computing the
Discrete Fourier Transform (DFT) of a complex sequence
x(n). Starting from

∑
−

=

−==
1

0

1,,1,0,)()(
N

n

nk

N
NkWnxkX K , (1)

the N-points data sequence can be split in two N/2 data
sequences corresponding to the even- and odd-numbered
samples of x(n), that is (after some rearrangements):

∑

∑
−

=

−

=

+−=+

++=

12

0

2

2

12

0

2

2

2
)()12(

2
)()2(

N

n

nr

N

n

N

N

n

nr

N

WW
N

nxnxrX

W
N

nxnxrX

, (2)

where r = 0,…,1,N/2–1. The terms Nnjn
N eW π2−= are

called twiddle factors. The decomposition can be applied
recursively until each DFT is reduced to 2-point DFT,

commonly known as radix-2 butterfly. The signal flow graph
(SFG) of the radix-2 FFT transform is shown in Fig. 1 (N =
16). The FFT provides the same result as the DFT, but the

computation complexity is reduced from Ο(N
2
) to Ο(log2N).

Higher radix decompositions can be applied, e.g. radix-4,
with the only limitation that the FFT size N in this case must
be a power of the radix. In the remaining of the paper the
term butterfly will be more generally referred to as a generic
radix-r based computation, unless otherwise specified.

III. THE BLOCK PROCESSING ENGINE

The BPE is a mixed-grain vector processor: the template
architecture is shown in Fig. 2. Its architectural
characteristics have been discussed recently in [1]; here we
will recall only the main concepts.

A. The instruction set architecture

The BPE ISA has two types of instructions: 1) the basic
instructions (b-instruction) are devoted to flow control and
are locally executed; 2) the dedicated instructions
(d-instruction) are devoted to vector processing and are
executed on the customizable dedicated unit bank (d-unit).
When executing d-instructions, data vectors are allocated on
the dedicated memory (d-memory) bank. The single
instruction multiple data (SIMD) parallelism level can be
tuned instruction-by-instruction: it is a degree of freedom left
to the programmer to choose the number of units to
eventually execute in parallel on a set of data. Such approach
solves the resources underutilization faced by conventional
SIMD architectures, with the further notable advantage of
simplifying intra-vector manipulation and avoiding costly
shuffling network. The BPE can be statically configured with
a variable number of d-instructions, according to the need of
a target application. The d-instructions belong to four
families (in bold the related assembly instruction), each
corresponding to one or more dedicated hardware units in the
unit bank: 1) arithmetic instructions (arith), such as mac,
add/sub, radix-2 butterfly and similar; 2) vector manipulation
instructions, intra-vector operations, logic and bit operations
(vect); 3) communication instructions (comm), to perform
typical coarse-grain telecom operations (code generation,
filtering and convolution); and 4) math instructions (math,
based on the CORDIC operator) to compute 1/x, square root,

hyperbolic and trigonometric functions. The controller
fetches and schedules instructions one after another until one
of them requires resources that have been already allocated,
as can be the case for a d-memory or another d-unit; it then
waits until the execution of the instructions using those
resources has been completed. This significantly reduces the
control overhead of typical very long instruction word
(VLIW) architectures while still allowing a similar
parallelism degree. Such mechanism has the major benefit of
being agnostic with respect to the latency of each d-unit,
requiring the controller to be notified only when a resource
has been released. A side benefit of such policy is that
b-instructions executed right after the scheduling of
d-instructions do not cause additional delay. The latter
consideration inherently suggests that maximum efficiency
can be reached only using vectors long enough to absorb
b-instructions execution. The d-instructions can be
concatenated through a run-time mesh as to build a block-
diagram of pipelined instructions (i.e. the output of one
instruction is the input of the subsequent one) that can bypass
the d-memory bank, with consistent benefits in terms of
throughput and power.

IV. FFT IMPLEMENTATION

A common approach to implement the FFT, is to have a
single butterfly (or several butterflies in parallel) time-shared
at each FFT stage, wherein a stage identifies a column of
butterflies: for example, the radix-2 FFT of Fig. 1 has
log2N = 4 stages. Referring to the same figure, at odd stages
the input memory (color blue) provides samples to be
transformed and written to the output memory (color red); at
even samples, the input and output memory swaps
(ping-pong memory configuration). The BPE has native
support for ping-pong buffering (see [1] for more details);
further, the butterfly is simply an addition/subtraction and
scaling operation that can easily mapped on the ISA. Thus, a
radix-2 memory based FFT has been chosen as solution.
Fixed-point simulations confirm that a 16-bit width
resolution (for the real and imaginary part of the complex
sample, respectively) combined with proper dynamic scaling
at every stage, guarantees good system performance.

2× add/sub 2× add/sub 4× bfly 4× bfly
m

e
m

#
1

m
e

m
#

2
m

e
m

#
3

m
e

m
#

4

Fig. 1. Radix-2 FFT SFG (N = 16 samples)

d-unit

bank

ro
u

ti
n

g
 m

e
sh

d-memory

bank

d-instruction

scheduler

memory

management

fetch

&

decoding

i-memory

b-instruction

execution

system bus interface

data-port

registers space

controller

Fig. 2. The BPE template architecture

A. The butterfly dedicated instruction

Apparently, the most obvious choice for the dedicated
butterfly instruction is a parallel architecture i.e. that
processes two samples per clock cycle. Such architecture
implies some critical drawbacks: 1) radix higher than two
would not be supported, because the ISA format has a fixed
number of inputs, specifically equal to three; 2) the
d-memory bank requires being equipped with dual-port
memories, which are both larger in terms of power and area.
Overall, implementations based on several butterflies in
parallel (as to increase the throughput), would exacerbate the
memory requirements, making it rapidly unfeasible. Indeed,
it is well know that when the number of butterflies increases,
the FFT exhibits a memory conflict access [2]: to solve it,
each in/output of the butterfly is (de)multiplexed. As
discussed in Sec. III.A, the controller schedules one
instruction per clock cycle and especially for small FFT
sizes, the instruction scheduling and data propagation latency
(between d-instructions) may become comparable to the
vector length, thus heavily reducing the maximum
achievable throughput. Therefore, a serial architecture for the
butterfly d-instruction (bfly) has been selected: it elaborates
one input per cycle and after an initial latency, every cycle
one of the r outputs transform is computed. By this way, the
butterfly computation (including the multiplication by the
twiddle factor) can be described in assembler by cascading
two dedicated instructions, the bfly and the mul.

B. The FFT Signal Flow Graph

The FFT SFG can be described by three nested loops: 1)
one over the stages; 2) one over the butterflies sub-set; 3) and
one that computes the butterflies belonging to the sub-set
under evaluation. Here, by stage we identify a column of
butterflies; the butterfly sub-set identifies the set of M-points
FFT, where the last stage is made out of 2-points FFTs. At
each stage the same computation needs to be performed
(namely the butterfly): what changes is the way the samples
are re-ordered and combined. The SFG is replicated by
properly combining the set of b-instructions dedicated to
memory pattern access management.

C. Twiddle factors management

The twiddle factors can be either computed on the fly
(using math) or pre-stored in a memory and then later
retrieved. Clearly, the second approach reduces the
instruction load and computation overhead and is thus
preferred. Similarly to the butterfly samples, twiddle can be
accessed setting the proper memory access pattern with
related b-instructions.

D. Bit-reverse ordering the output

The FFT generates scrambled outputs at every stage: for
the radix-2 case, these are bit-reverse. For example, given
N = 4, the input sequence xi = {0,1,2,3}10 = {00,01,10,11}2 is
transformed, after the first stage, in the output sequence Xi =
{0,2,1,3}10 = {00,10,01,11}2. Bit-reverse addressing is
handled by the BPE through a specific b-instruction, which is
applied directly to the output memory: properly ordering the
output does not require a dedicated phase as commonly

happens, but can be done on the fly during the computation
of the last stage.

E. Adding parallelism in the FFT computation

The FFT implementation discussed so far is based on a
single butterfly instruction. In order to increase the
achievable throughput, two more approaches have been
investigated.

1) Scheduling more butterfly d-instructions in parallel
As described in Sec. IV.A, more butterflies computed in

parallel can cause a data memory conflict. However, the
serial architecture of the butterfly simplifies the memory
requirements and management. Due to the FFT recursive
decomposition, at every stage the number of butterflies that
can be computed in parallel (p) without conflict equals p = r

i
,

i = 0,1,…,logrN−1: in other words, the first stage can be
processed by one butterfly, the second by two butterflies and
so on. Accordingly, samples need to be stored in p memories
in N/p consecutive locations. Such observation is highlighted
in Fig. 1 for the case of four butterflies; note that in order to
retain the same parallelism degree (four) for the stages
preceding the 3-rd stage, two parallel butterflies are
computed (rather than four serial ones) based on the
combination of add/sub d-instructions. A further advantage
of such approach is that a single twiddle memory can be
shared along and within the stages by p butterflies and the
code scales with the FFT size.

2) Scheduling more butterfly d-instructions in pipeline
The previous approach requires several basic instructions

(both for the memory pattern management and the FFT
SFG), which for small FFTs (less than 32 points) become
comparable with the vector length, thus making it inefficient
in terms of instructions scheduling and execution. Another
way of parallelizing is along the horizontal axis by
combining several d-instructions in pipeline: this is
equivalent to a higher (serial) radix butterfly. Such approach
is shown in Fig. 3, for two pipelined d-instructions: in this
case a constant geometry SFG has been chosen (as opposite
to the variable geometry discussed so far), which is
equivalent to the previous with the advantage that it repeats

1× cas 1× bfly

m
e

m
#

1
m

e
m

#
2

Fig. 3. Constant geometry FFT SFG: pipelined d-instructions

itself at every stage (with the positive side effect of reducing
the number of b-instructions). When considering a generic
stage, the inputs of a radix-r butterfly are the outputs of r
butterflies branches whose computation is equivalent to an
add/sub operation conditioned by a signal selector. The
approach can be extended to more stages in pipeline. It has to
be noted that, compared to the parallel version, this has the
disadvantage of requiring a different twiddle memory for
each stage; further, the number of required d-instructions
doubles with the number of stages in pipeline and it does not
scale with the FFT size (meaning that different FFT sizes
require different programs). However, for small FFTs, the
data vector becomes long enough to entirely absorb
instructions control overhead (b-instructions), recovering the
clock cycles loss of the parallel implementation.

V. RESULTS

Fig. 4a details the required clock cycles for various FFT
sizes (N = 16,…,512) for the parallel (p = 1,2,4) and pipeline
(radix-4/8) version: it highlights that different
implementations perform better depending on the FFT size,
thus leaving freedom to choose the most appropriate solution
for a given target application. As a performance metric, the
overhead of the software implementation compared to the
theoretical lower bound has been evaluated: the latter is
given by the number of clock cycles required to compute an
N-size FFT with p (serial) radix-r butterflies in parallel, that
is (N/p)logrN (a similar relation holds for the pipeline
version). The outcome is shown in Fig. 4b: as expected the
longer the vector length, the smaller the gap; further, for

small sizes, the pipeline version effectively performs better,
while for larger FFTs the overhead of the various
implementations reduces to about a few percentage points.

VI. CONCLUSIONS

Similar to this work, several software implementations
have been presented in the literature, either based on a
baseband vector processor, or on an Application Specific
Integrated Processor (ASIP). Among them, TABLE I shows
the FFT implementation results on the vector DSPs
Sandblaster [3] and Tensilica [4] (both 65 nm technology)
and on the recent ASIP by Guan et.al. [5] (130 nm
technology). The BPE has been synthesized with 65 nm
STMicroelectronics CMOS technology and the power
consumption has been estimated through post-synthesis
netlist simulation.

It is difficult to make a straight and fair comparison
simply based on clock cycles, especially among DPSs: each
has its own set of properties that might stand out with certain
algorithms rather than other. The described implementations
have both from the throughput and power consumption point
of view performances comparable with that of the literature.
Indeed the BPE offers several degrees of flexibility in the
FFT computation and the required clock cycles approaches
in several cases the theoretical lower bound of a hardware
counterpart, thus making it an appealing alternative.

REFERENCES

[1] T. Cupaiuolo and D. Lo Iacono, “Software Implementation of Near-
ML Soft-Output MIMO Detection,” Washington, DC, USA, 30
November - 3 December, 2010, Software Defined Radio Forum 2010
(SDR'10)

[2] J. Baek and K. Choi, "New address generation scheme for memory-
based FFT processor using multiple radix-2 butterflies," SoC Design
Conference, 2008. ISOCC '08. International, vol.01, no., pp.I-273-I-
276, 24-25 Nov. 2008

[3] B. Beheshti, "On Performance of LTE UE DFT and FFT
Implementations in Flexible Software Based Baseband Processors",
Proceedings of 2009 IEEE Long Island Systems, Applications and
Technology Conference (LISAT2009), May 1, 2009, Farmingdale,
New York.

[4] C. Rowen,. P. Nuth and S. Fiske, "A DSP architecture optimized for
wireless baseband," System-on-Chip, 2009. SOC 2009. International
Symposium on , vol., no., pp.151-156, 5-7 Oct. 2009

[5] X. Guan, Y.Fei and H. Lin, "Hierarchical Design of an Application-
Specific Instruction Set Processor for High-Throughput and Scalable
FFT Processing," Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on , vol.PP, no.99, pp.1-13, 2011

TABLE I

COMPARISON WITH OTHER SIMILAR WORKS

ref. architecture FFT size
cycles

(N = 1024)

power

[µµµµW/MHz]

[3] Sandblaster 64 − 2048 2198 n.a.

[4] Tensilica 512 − 8192 1812 n.a.

[5] ASIP 128 − 1024 4526 190

this work BPE (a) 16 − 1024 10305/3421/5180 108/129/272

(a) Implementation results for 1-bfly, 4-bfly and pipeline rx-4, respectively

150

300

450

600

750

900

1050

32 64 128

cl
o

c
k

 c
y

cl
e

s

FFT size

1-bfly

4-bfly

pipeline rx-4

pipeline rx-8

250

1700

3150

4600

6050

7500

8950

10400

256 512 1024

cl
o

ck
 c

y
cl

e
s

FFT size

(a) FFT size vs clock cycles

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

32 64 128

sw
o

v
e

rh
e

a
d

FFT size

1-bfly

4-bfly

pipeline rx-4

pipeline rx-8

256 512 1024

0%

2%

4%

6%

8%

10%

12%

FFT size

sw
o

v
e

rh
e

a
d

(b) FFT size vs sw overhead

Fig. 4. Implementation results for various FFT sizes

