
Component-Based and Aspect-Oriented
Methodology and Tool for Real-Time Embedded

Control Systems Design
Rédha Hamouche

Université Paris-Est, ESIEE Paris,
Embedded Systems Department,

2, Bd Blaise Pascal BP 99
93162 Noisy-Le-Grand Cedex France

Email: hamouchr@esiee.fr

Rémy Kocik
Université Paris-Est, ESIEE Paris,
Embedded Systems Department,

2, Bd Blaise Pascal BP 99
93162 Noisy-Le-Grand Cedex France

Email: kocikr@esiee.fr

Abstract—This paper presents component-based and aspect-
oriented methodology and tool for designing and developing Real-
Time Embedded Control Systems (RTECS). This methodology
defines a component model for describing modular and reusable
software to cope with the increasing complexity of embedded
systems. It proposes an aspect-oriented approach to address
explicitly the extra-functional concerns of RTECS, to describe
separately transversal real time and security constraints, and to
support model properties analysis. The benefits of this method-
ology are shown via an example of Legway control software, a
version of the Segway vehicle built with Lego Mindstorms NXT.

Keywords—Model-based design, software component, aspect-
oriented programming, embedded system design, embedded con-
trol software.

I. INTRODUCTION

Designing real-time embedded control systems tends to be
more and more difficult due to the strong constraints and
the growing complexity of the used software and hardware
components. Theses systems are context-dependent: they de-
pend on their environment in which the system is operated,
i.e. they react to the context changes (sensors, operators, . . . ),
and their behaviors are constrained by the context [1]. Real-
time, embedded, security, energy or physical constraints are
an example of context-dependent properties.

A typical V-process for RTECS design can be decomposed
into three major steps [2]: functional control modeling and
analysis, specification of control software and real-time im-
plementation of control software. Along the design process,
we have to overcome the following difficulties: (1) Several
actors belonging to different domains (control theory, signal
processing, real-time software, ...) are involved. They use
domain-oriented method, languages and tools. Therefore, pro-
duced models at the different steps are heterogeneous. This
heterogeneity of models introduces lacks of consistency in
the system design and leads usually to a disconnected design
process where translations between the steps are needed. These
translations are error-prone because they are usually performed

manually by engineers. These errors may appear very early
in the development process and be propagated into further
steps. They can be only detected in the validation steps.
Thus, correcting these errors needs numerous backtracking
(reiterations of V-cycle) in the design process, which lengthens
the design life cycle and time to market. Furthermore, the
inconsistency of models may affect the implementation of
the control system by disturbing its stability and reducing
its performance [3][4]; (2) Major RTECS properties, such as
reliability, security, schedulability and synchronization, are
global and transverse to the system and they cannot be cleanly
encapsulated in a generalized procedure. Therefore, if the
system analysis shows that the design is not schedulable, it
is necessary to re-design and go back to models or codes
to make some changes. Navigating and applying changes to
models/codes are increasingly difficult as the models/codes
grow more complex; (3) As we have to treat various kinds
of contexts, it is difficult to model them from one point of
view; (4) By its nature, the model for internal processing tends
to depend on the model of external context, and changing
the context, causes direct effects on internal model. This
makes reusability, modifiability and extensibility of RTECS not
efficient.

Nowadays, there are research challenges to define method-
ologies and tools which reduce the design time and cost,
ensure the consistency of models from system level to imple-
mentation level, and improve modularity, reusability and main-
tainability of system models and/or codes. In this context, we
have defined in [5][2] a methodology and a tool for designing
RTECS. Section II describes the overview of this methodology.
In the section III, we present the use of component and aspect
paradigms for RTECS design.

II. OVERVIEW

The main goal of the methodology is to evolve the RTECS
development process from a classical code-oriented develop-
ment to a model-driven development (MDD) [6] where the
code is generated automatically. A MDD offers a better level978-3-9810801-8-6/DATE12/ c©EDAA



of abstraction and enables handling the complexity and the
heterogeneity of models. The automatic transformation of
models improves their consistency and traceability throughout
the development cycle. The proposed methodology offers
a multi-facet modeling where the system model is viewed
on different design facets. Each facet is well suited to the
problem of each design step. It provides domain-oriented
toolset for building model, using specific terminology (control,
computer science or real time), by the corresponded actor
(control designer or real time software designer). To strengthen
the construction of reusable modules, the methodology is
based on component design approach [7], and to take into
account the context dependency of RTECS, and offer a better
modularity and ability to model and analysis extra-functional
properties, the methodology is based on the aspect-oriented
approach [8]. In the literature, the aspect paradigm is defined
at the programming language level (AspectJ [9] for example).
We extend the concept of aspects and apply them at the design
level. Our aspects are defined as an extra-functional entities
which can be applied to the facets, not to source code, in a
transversal manner. An example of key aspects for embedded
software systems are: security aspect, energy aspect, plat-
form aspect, scheduling aspect, temporal aspect, cache aspect,
communication, profiling aspect,... By this way, designers are
encouraged to describe system facets in a functional manner
and then to apply extra-functional updates to the design in a
global and consistent manner. In this paper, we focus only on
component and aspect describing the real-time implementation
facet.

In order to illustrate the proposed methodology, we consider
the software design of a Legway control system (see Figure 1).
A Legway is a version of the Segway (TM) 1 built with
Lego Mindstorms NXT. The objective of the RTECS is the
stabilization of the system on the vertical axis. When it detects
a tilt angle, it acts on the wheels (motor voltage) in the
direction of the change. The context of this RTECS is the
user, the platform NXT, the servo-motors for controlling the
wheels, and the sensor for measuring the degree of inclination.
The system requirements impose a real time behavior and two
major constraints: for security reasons, the system does not
diverge and it should behave according to energy resources.

Fig. 1. Example: Legway control system

1Segway (TM) is a trademark of Segway vehicle: with only two wheels as
points of support, he can keep his balance, forward, backward, turn under the
sway of the user

III. METHODOLOGY

A. Component description

As shown in figure 2, a new component model addressing
explicitly the real-time properties of embedded systems is
defined. It interacts with the environment through its interface
and it is characterized by reflective information and internal
operations. The component behavior is reactive to the envi-
ronment with its internal real-time automata (statechart). This
behavior describes only the functional part of the model. For
instance, the functional part of the Legway control system
includes a component which behaves like a periodic task
to control the Legway. This component defines the data
power and angle as reflective informations, the operations
pid() (proportional-integral-derivative algorithm) as the pro-
vided internal operation, the operations getAngle() and
setCmd() as required external operations. The component
statechart (see Figure 3) calls periodically the operations
getAngle() et pid() for computing the servo-control
command, printing some information on the system screen,
and sending via bluetooth to server the power and angle
informations.

Fig. 2. The component model - Legway control component

B. Aspect description

An aspect describes the context-dependent part and the
transverse properties of control systems. It may crosscut
system components or set of the components for affecting
the system behavior or performance. An aspect is viewed as
a super-component which adds an extra-functional treatment
and/or imposes non-functional constraints via interfaces called
aspectual interfaces. We distinguish four ways of crosscutting:
(1) to supervise and control the behavior of components via
trigger interface. An aspect uses this interface for sending
context-sensitive events (urgent event, operator command,
device failure or dysfunction) and making then the statechart of
components context-sensitive without a strong coupling with
the context; (2) to constrain the components behavior by the
context requirements. Via an interface called activation inter-
faces, the designer can introduce constraints in the component
statechart as guards or invariants. Some system functionalities
don’t then work for example even if users try to operate it.
An aspect may also introduce communication constraints on
the interfaces of the component to impose a communication



Fig. 3. The functional part of the RTECS - Legway statechart

mode (synchronous or asynchronous) or a rate of data produc-
tion/consumption; (3) to control data or operation access via an
interface called introspection interface. An aspect can control
operation calls or access to data component for managing con-
current access, verifying the data values for security reasons,
and so on; (4) to define the resource constraints (via resource
interface) associated with the target execution platform of
the system. An aspect can define timing constraints such as
period, deadline and jitter. It can crosscut components for
defining the WCET (worst-case execution time) of component
operations. This resource information is needed at design level
to evaluate the system schedulability for specific execution
platform. Change a target execution platform consists then in
replacing the corresponding aspect by another one specific to
a new execution platform.

An example of an aspect in our case study is the cache
aspect which enables to optimize access to the angle sensor.
It stores the angle value in the cache. The aspect behavior
(see Figure 4) allows to avoid two successive readings of
the sensor in less than the ”freshness timeout” delay. The
aspect imposes this freshness constraint via the activation
interface ICACHED and the introspection interface IANGLE.
The interface ICACHED provides a guard which is true if the
data is cached while the interface IANGLE allows to control
data assignment (angle assignment).

Fig. 4. Example : cache aspect

C. Model weaving

The components are interconnected via their functional
interfaces and they can be weaved with aspects via aspectual
interfaces. The weaving is a semi-automatic graphical step,
and it is user-guided. Depending on the interface type, we
distinguish four weaving forms : (1) introduction of new
transition based on the guard of an activation interface; (2)
introduction of a new super-state and transition based on the
event of the trigger interface; (3) automatic interception of data
access based on the introspection interface; (4) initialization
and configuration of the functional component information via
resource interfaces.

In our case study, the designer binds the IANGLE interface
with the angle data of the functional component. So, after
the angle assignment, the aspect capture and store the sensor
value. The designer also introduces graphically in the task
behavior a new transition based on the ICACHED guard (see
dash-dot-dot transition in Figure 5). The angle is read from the
cache until the freshness constraint is expired. This behavior
optimization leads then to reduce the execution time of the
task. Note that if the cache aspect is removed, the introduced
transitions and the associated interfaces are automatically
removed from the model.

The Legway system is extended or crosscutted by three
other non-functional aspects: energy, security and platform
aspects. The security aspect, shown in Figure 6, supervises as
a watchdog the control task for adjusting its behaviour to the
physical constraints. It introspects, via the interface IPower
the data power for checking the command thresholds and
supervising the system stability. If the security aspect is in
an unstable state, it broadcasts via the interface IRESET
the event evReset to stop the system. Thus, in the model
weaving, we have introduced a super-state and a transition
sensitive to the event evReset (see Dashed super-state and
transition in Figure 5).



Fig. 5. Example : Model weaving (cache, security and energy aspects)

Fig. 6. Example : Legway security aspect

The energy aspect manages the battery status for constrain-
ing the control task and making it sensitive to the energy
resource. As shown in figure 7, this aspect defines an activation
interface IENERGY which sets its guard to true if the battery
level is below 20 %. At the model weaving, we introduce
two new transitions with higher priority (Dash-dot transition
in Figure 5). This aspect enables then to bypass displaying
operations and Bluetooth communication in order to conserve
battery power.

The platform aspect specifies the NXT runtime context (the
target processor, OS and implementation language). It specifies
the time constraints (period, deadline) and the WCET of the
task operations. The platform aspect defines timing properties
of the operations (getAngle, PID and setCmd) within

Fig. 7. Example : Legway energy aspect

the platform Lego NXT.

IV. CONCLUSION AND FUTURE WORKS

The component approach should add significant value to
the design process, helping designers to produce modular
and reusable system model. The aspect approach represents
a significant paradigm shift from the traditional monolithic
view. It makes the system model easy to extend/contract
system capabilities with global wide changes being performed
automatically, avoiding errors of forgetting to change one or
more locations. This leads to make design easier, improves
accuracy and reduces design time.

This research work is in progress to be fully implemented
in a computer-aided design tool. The tool will provide a
way to speed up design-code-test-debug cycle through anal-
ysis/simulation of the system model, and automated transfor-
mations and code generation. This work is also in progress
to take into account the interaction of aspects with similar
functional targets. This interaction can be handled with a
priority mechanism between aspects and between transitions.

REFERENCES

[1] T. Kishi and N. Noda, “Aspect-oriented context modeling for embedded
systems,” presented at Workshop on Early Aspects: Aspect-Oriented
Requirements Engineering and Architecture Design, held in conjunction
with AOSD Conference, 2004.

[2] R. Hamouche and R. Kocik, “Metamodel-based methodology for real-
time embedded control system design,” in Forum on specification and
Design Languages FDL’6, Darmstadt, Germany, September 2006.

[3] R. Kocik, M. Ben Gaid, and R. Hamouche, “Software implementation
simulation to improve control laws design,” in Proceedings of the Euro-
pean Congress SENSACT 2005, Paris, France, 2005.

[4] M. Ben Gaid, R. Kocik, Y. Sorel, and R. Hamouche, “A methodology
for improving software design lifecycle in embedded control systems,”
in IEEE Design, Automation and Test in Europe, DATE’08, Munich,
Germany, 10-14 March 2008.

[5] R. Hamouche, R. Kocik, and M. E. Ben Gaid, “Multi-facet design
methodology for real-time embedded control systems,” in IFAC Workshop
on Programmable Devices and Embedded Systems, Feb 2006, pp. 14–20.

[6] J. Bézivin and O. Gerbé, “Towards a precise definition of the OMG/MDA
framework,” in Proceedings of the Conference on Autonomous Software
Engineering (ASE01), San Diego, CA, USA, 2001.

[7] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley, 1999.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J. M. Loingtier, and J. Irwin, “Aspect-oriented programming,” in Pro-
ceedings of the European Conference on Object-Oriented Programming
(ECOOP’97), 1997.

[9] Xerox, “AspectJ site : http://www.aspectj.org,” 2003.


