
1

Enhancing Non-Linear Kernels by an Optimized

Memory Hierarchy in a High Level Synthesis Flow
St�ephane Mancini, Fr�ed�eric Rousseau TIMA laboratory - CNRS, Grenoble INP, UJF

46, Av F�elix Viallet, 38031 Grenoble Cedex, France

Abstract|Modern High Level Synthesis (HLS) tools
are now e�cient at generating RTL models from algo-
rithmic descriptions of the target hardware accelerators
but they still do not manage memory hierarchies. Mem-
ory hierarchies are e�ciently optimized by performing
code transformations prior to HLS in frameworks which
exploit the linearity of the mapping functions between
loop indexes and memory references (called linear ker-
nels). Unfortunately, non-linear kernels are algorithms
which do not bene�t of such classical frameworks,
because of the disparity of the non-linear functions to
compute their memory references.
In this paper we propose a method to design non-

linear kernels in a HLS ow, which can be seen as a code
pre-processing. The method starts from an algorithmic
description and generates an enhanced algorithmic de-
scription containing both the non-linear kernel and an
optimized memory hierarchy. The transformation and
the associated optimization process provides a signi�-
cant gain when compared to a standard optimization.
Experiments on benchmarks show an average reduction
of 28% of the external memory tra�c and about 32
times of the embedded memory size.

I. Introduction

Memory management in embedded systems is an ever
increasing challenge as the \memory wall" is becoming
a bottleneck. Indeed the latter corresponds to the gap
between the low performances of external memories and
the increasing computing power available thanks to the
integration density of chip technology. Generally speaking
a memory hierarchy enables to overcome the \memory
wall" and allows trade-o�s along performance metrics
such as chip area, power consumption, latency, real time
constraints and so on.
A design ow should provide an e�cient solution to

cope with the \memory wall" at the highest abstrac-
tion level. Unfortunately, industrial High Level Synthesis
(HLS) design frameworks do not allow to optimize mem-
ory hierarchies [1]. These frameworks e�ciently manage
embedded SRAMs but fail to deal with external low cost
memories such as xDDR-SDRAMs. However there are
several research frameworks dealing with the optimization
of the implementation of linear kernels which are algo-
rithms made of loop nests where data references are linear
functions of the loop indexes [2], [3], [4], [5], [6].
Non-linear kernels are algorithms made of references

which are non-linear functions of the loop indexes. This
speci�city prevents the use of research and industrial
above-mentioned frameworks. However these non-linear

Input Output

Needed data Produced data

Fig. 1. The disparity of non-linear kernels, namely a polar transform
in this picture, makes standard optimizations ine�cient.

kernels are important stages in many signal and image
processing algorithms such as optical distortion [7], large
angle acquisition (�sheye camera) [8]. Some works [9] have
tried to approximate such non-linear kernels with linear
kernels but the used methods have led to overestimations.
In this paper we propose a method and a tool to

optimize the memory management at system level of non-
linear kernels in the context of a HLS ow. The main idea
is to start from a behavioral description of the non-linear
kernel and to produce an optimized behavioral description
of both a kernel implementation and an optimized memory
hierarchy suitable for a C-to-RTL HLS tool. The proposed
method can be seen as a source-to-source transformation
for C-to-RTL pre-processing.
This optimization process at the system level helps the

designer to �nd the best trade-o� between the embedded
memory area, the computing time, the tra�c to the main
external memory and the power consumption. Low level
optimizations such as pipelining are left to the HLS tool.
The second section provides an insight into the prob-

lematic of optimizing the memory hierarchy of non-linear
kernels. A general description of the proposed method is
made in the third section. The fourth section presents
the obtained results on a set of benchmarks followed by
conclusions and perspectives.

II. Problematic

A non-linear kernel is an algorithm for which data refer-
ences are computed thanks to non-linear functions of the
loop indexes. Figure 1 provides an example of a non-linear
kernel, namely the polar transform. To compute a pixel
O(x; y) of the output image, the kernel needs the pixel
I(x0; y0) of the input image, with the non-linear mapping
function (x; y) 7! (x0; y0) = (x cos(�y�); x sin(�y�)). The
pixels of the output image are computed by iterating over

978-3-9810801-8-6/DATE12/ c2012 EDAA



2

the coordinates (x; y). For each loop iteration the kernel
makes a reference to the input data I(x0; y0).
The main di�culty to optimize the memory manage-

ment of non-linear kernels relies in the disparity of the
function to compute the indexes of the input data. This
is very di�erent from the uniformity of kernels with linear
indexing. A common strategy to increase the data reuse
and to optimize a memory hierarchy is to tile the iteration
space [3], [4] (which is also called loop blocking). Then the
output data is produced tile by tile, one after the other.
When the input data is tiled, it is possible to determine
which input tiles are needed to compute an output tile. In
Figure 1 we can see that the set of input tiles (left image)
required to compute an output tile (right image) varies
both in shape and in area.
The disparity of memory references prevents the use

of standard memory optimization frameworks which as-
sume that the memory references are linear with the
loop indexes [3], [4]. As an example, in such a classi-
cal framework, the polyhedral model represents the loop
nests and memory references by algebraic expressions.
The memory resources are then optimized by performing
algebraic transformations on these expressions. Performing
loop blocking with linear laws leads to tiles that are equal
by translation and the set of input tiles to compute an
output tile is constant in shape and area.
In order to deal with non-linear kernels, one could set

up an approximate model to �t with the linear constraints
of such frameworks [9]. Doing so results in a dramatic
overestimation of the memory requirements because these
tools conform with the very worst case.
Unfortunately, the standard C-to-RTL HLS ows do not

deal with the optimization of the memory management at
a system level [1]. However, when dealing with large multi-
dimensional arrays, data are stored in a large low cost
external memory such as a xDDR-SDRAM. A memory
hierarchy is then introduced to copy parts of the data in
more expensive but faster embedded memories. Many if
not all C-to-RTL tools do not allow to manage such a
memory hierarchy and they make the assumptions that
the needed input data are present in embedded SRAMs at
the beginning of a computation .
The main idea to deal with the disparity of non-linear

references is to set up an optimization ow to parametrize
a template architecture. The architecture template pro-
vides a generic memory hierarchy connected to processing
units. The optimization ow produces a schedule of the
computations in order to optimize the performance cri-
teria. The generated hardware accelerator is su�ciently
regular to �t with HLS tools constraints and and copes
with the irregularity of non-linear kernels.

III. General view

The general view of the proposed method is illustrated
in Figure 2. The method starts from a high level code of the
kernel, such as a C/C++ code. A �rst transformation ap-
plied on the entry code produces an instrumented code in
order to pro�le the memory references. This instrumented

Parameters

HLS C−to−RTL synthesis

RTL model

Generation

MMopt

Analysis

Instrumented
code

Constraints

Code analysis

transformation

+
Memory hierarchy

Input
C/C++ Code

Output
Non−linear Kernel 

Non−linear Kernel

Optimization

Process
Optimization

Fig. 2. General view of the joint HLS and memory optimization
method.

code is the entry point of the optimization process. The
optimization starts by pro�ling the kernel references and
catch them in an internal representation. On the one hand,
the system level optimizations take into account some
system parameters such as the bandwidth and latency of
the external memory and on the other hand they depend
on some user constraints such as the maximum computing
time when real time constraints are mandatory. At last a
parametrized code is generated as the entry point of the
C-to-RTL HLS tool.
The basis of the optimization is to tile both the iteration

space of the kernel and the input and output data struc-
tures1. This tiling allows to store the whole input data in
a low cost huge external memory whereas the generated
kernel engine architecture stores only the small set of input
data tiles needed to compute an output tile. Pre-fetching
the input tiles �ts with the constraints of HLS tools
requiring that the input data is present at the beginning of
a computation. Due to the disparity of non-linear kernels,
the amount of embedded memory needed to store the input
tiles as well as the tra�c to the external memory highly
depends on the schedule of the computations.
The architecture template is made of a Process-

ing Engine� (PE) connected to a Memory Hierarchy
Controller� (MHC) to form a Tile Processing Unit (TPU)
as shown in Figure 3. The PE implements the kernel and
requests the data to the MHC which manages a set of
Input Tile Bu�ers� (ITB). The bu�ers are addressable
through a level of indirection, called the Indirection Table�

(IT), in order to cope with the varying sharing of the
bu�ers between used (by the PE) and pre-fetched (by the
MHC). Along with the computations, the bu�er indirec-
tion is stored in the IT and updated by the MHC from a
set of Compressed Con�gurations� (CC) memories. These

1In many kernels the iteration space �ts the indexes of the output
data.



3

Compressed

Configurations

Prefetch MappingSchedule

��
��
��

��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

Data

Output

Data

Input

Fetch

Decompressor

MHC Central

Control

Prefetch

index

data

control

TPU

Memory controller
System bus

SoC

External

Memory

Prefetched FreeUsedBuffers

PE

MHC
α

β

χ

δ

ε

φ

Indirection Table

Output tile buffer

Input tile buffers

Fig. 3. Architecture template. The �xed number of input tile bu�ers
is dynamically split over Used, Pre-fetched and Free tiles.

later are compressed o�-line and are decompressed on the
y thanks to a low cost hardware Run Length Encoding
(RLE) Decompressor�.

The computations of the PE overlap the pre-fetches
performed by the MHC. The output tiles are computed one
after the other by the PE. Within a computation step, af-
ter a short setup phase, the PE requests data in the ITBs.
Meanwhile the MHC pre-fetches the input data tiles for
the next computations. To reduce the memory resources,
the optimization process breaks this scheme by inserting
fake computations sometimes. Fake computations may
be replaced by wait states or pipeline freeze when the
target HLS tool provides a �ne control of the generated
hardware. With fake computations, new trade-o�s between
the embedded memory area and the computing time are
enabled. The result section will show that a sparse use of
fake computations saves consequent area.

The optimization process generates a static
parametrization of the MHC and a set of compressed
con�gurations stored in the MHC. The CC memories
store (i) the output tiles schedule, (ii) the pre-fetched
tiles at each step and (iii) the mapping of tiles to bu�ers.
To save embedded memory, these tables are compressed
thanks to a RLE encoder.

Actually the resulting TPU model is a transformation
of the input kernel. The original iteration loop is replaced
by a two fold loop nest: the PE implements an inner
loop nest inside a tile and an outer loop corresponding
to the generated schedule is managed by the MHC. The
HLS tool synthesizes the whole TPU and optimizes the
resulting pipeline from the computation of the requested
data indexes, the IT access, up to the processing of the
data coming from the ITB. The small static range of the
most inner loop makes the optimization process at the C-

to-RTL level easier. The �nal RTL architecture is much
more e�cient than a basic connection of modules designed
aside.

IV. Experiments and results

The MMopt tool implements the optimization process
and have been stressed on a set of 10 benchmarks from
real-life non-linear image processing kernels [8], [10]. As
summarized in Table I, the benchmarks are variations of
three kernels for which the input data structure is modi�ed
in order to improve the resulting image quality. Indeed,
non-linear kernels need to be preceded by a space variant
�lter of the input data to cope with the varying sampling
rate. This �lter can be advantageously replaced by a
multi-resolution (an)isotropic mipmap input data and a
suitable modi�cation of the kernel to select the appropriate
resolution depending on the sampling rate [11].
The gains and penalty of the MMopt optimization given

in Table I are computed relatively to a standard opti-
mization made of a linear scheduling and a direct modulo
mapping of bu�ers. The trade-o�s are tuned to minimize
the area, which maximizes the inserted fake computations.
The \Processed tile increase" is the relative amount of
inserted fake computations to reduce the memory re-
sources. The \Tra�c saving" corresponds to reduction of
the loaded input tiles achieved by the scheduling. The
\Memory reduction" is relative (in times) to the memory
necessary for a standard linear schedule. For each kernel
the measures are averaged on a set of tilings. The last line
of the table provides the average gains for all the kernels.
As illustrated in Table I, comparing the results of

MMopt with a standard HLS tool such as CatapultC is not
relevant. Indeed, when considering HLS tools the kernel is
then synthesized without a memory hierarchy and the best
timings are obtained by embedding all the data memory
in the hardware accelerator, which is not conceivable.
In Table I the embedded memory is reduced by 32

times in average. This average gain does not take into
account the kernel for which the gain reaches 1264 times.
This kernel presents a huge amount of disparity due to
references in very di�erent levels of resolution in the
input mipmap data. The tra�c to the external memory
is reduced up to 38%, with an average of 28%. Minimizing
the embedded memories leads to a 14% increase of the
computing time. These measures validate the optimization
process and the post-optimization stages.
As a proof of concept, the polar transform TPU has been

generated and synthesized with the CatapultC HLS C-to-
RTL tool from Mentor Graphics. In a Virtex 4 technology,
the MHC occupies around 300 FG and the PE occupies
around 1800 FG. The PE unit grabs one input data each
clock cycle, which corresponds to the maximum available
throughput when the bu�ers are made of single port
memories. The HLS tool allows to optimize the TPU at
the RTL level and pipelines the local memory references.
There is little to no similar works on the optimiza-

tion of non-linear kernels. To our knowledge, the closest
work [9] implements a �sheye correction unit within the



4

MMopt versus
CatapultC Linear scheduling

Kernel Input data Input data Memory Memory Processed tile Tra�c
type dimension reduction reduction (times) increase saving

�sheye image 2D 94 16 19 % 29%
�sheye mipmap anisotropic 4D 28 19 % 34%
polar image 2D 34 26 % 27%
polar mipmap anisotropic 4D 41 15 % 18%
polar mipmap anisotropic 2D (at) >> 100 568 08% 21%
polar mipmap isotropic 3D 21 02 % 38%
polar mipmap isotropic 2D (at) 1264 02 % 37%
pseudolog image 2D 24 20 % 19%
pseudolog mipmap anisotropic 4D 63 20 % 20%
pseudolog mipmap anisotropic 2D (at) 344 09 % 37%

Average 32 14 % 28%

TABLE I
Comparison between the MMopt optimization and a standard linear scheduling.

Proteus framework. Their method is to tile the output
and approximate this non-linear �sheye kernel by a set of
linear constraints. Pre-fetching is enabled by doubling the
number of input bu�ers and there is no sharing of input
data between successive computations, which increases the
bus tra�c. [9] reports 4*2 bu�ers2 of 6864 pixels, which
totals 429 Kbit to compute output tiles of 1536 pixels.
Applying the MMopt tool to the same �sheye kernel

results in 14 Kbit of total memory (ITB+IT+CC) to
process 32 � 32 output tiles with 32 � 32 input tiles. When
the input tiles size 8 � 8, the total memory is 18 Kbit.
When scaling everything, the optimization allows to save
memory between 20 to 15 times, which corresponds to the
results of the Table I.
The large design space due to the target application con-

straints prevents a much more detailed comparison. The
point is that our method saves memory by dynamically
sharing bu�ers between processing and pre-fetching and
saves the tra�c to the background memory.

V. Conclusion

This paper presents an original method to design em-
bedded non-linear kernels and an associated optimization
tool. This method focuses on the optimization of the
memory hierarchy in a HLS C-to-RTL ow. We have
demonstrated the feasibility of enhancing an input high
level code by a memory hierarchy to allow a high level
synthesis of the generated code. The presented method
comes within the �eld of code transformation as a pre-
processing for HLS.
The optimization tool enables several trade-o�s at sys-

tem level between memory area, computing time and
external memory tra�c by exploiting the disparity of
non-linear kernel references and take into account system
parameters. When compared to a standard optimization,
it allows to save an average 28% of external memory tra�c,
which comes to save as much power consumption due to
external memory transfers. The embedded memory area is
also signi�cantly reduced.

2scaled to consider monochrome images instead of YUV images.

These results make us con�dent to continue on this way.
Minor improvements are allowable such as increasing the
bandwidth to bu�ers and much is expected by parallelizing
the units and design communicating multi-kernel engines.
More generally speaking, providing methods aiming at
enhancing high level IP models by optimized memory
hierarchies is a �eld of high added value.

References

[1] P. Coussy and A. Morawiec, Eds., From Algorithm to Digital
Circuit. Springer, 2008.

[2] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brock-
meyer, C. Kulkarni, A. Vandercappelle, and P. G. Kjeldsberg,
\Data and memory optimization techniques for embedded sys-
tems," ACM Trans. Des. Autom. Electron. Syst., vol. 6, no. 2,
pp. 149{206, 2001.

[3] F. Catthoor, K. Danckart, C. Kulkarn, and al, Data Access and
Storage Management for Embedded Programmable Processors.
Kluwer Academic Publishers, 2002.

[4] J. Keinert and J. Teich, Design of Image Processing Embedded
Systems Using Multidimensional Data Flow. Springer, 2011.

[5] H. Zhu, H. Luican, and F. Balasa, \Mapping multi-dimensional
signals into hierarchical memory organizations," in Design, Au-
tomation Test in Europe Conference Exhibition, 2007. DATE
'07, 2007.

[6] F. Balasa, P. Kjeldsberg, A. Vandecappelle, M. Palkovic, Q. Hu,
H. Zhu, and F. Catthoor, \Storage estimation and design space
exploration methodologies for the memory management of sig-
nal processing applications," Journal of Signal Processing Sys-
tems, vol. 53, 2008.

[7] W. Yu,\An embedded camera lens distortion correction method
for mobile computing applications," Consumer Electronics,
IEEE Transactions on, vol. 49, no. 4, 2003.

[8] J. Jiang, G. Zhang, F. Zhou, D. Yu, H. Xie, and H. Liu,
\Distortion correction for a wide-angle lens based on real-time
digital image processing," Optical Engineering, vol. 42, no. 7,
2003.

[9] N. Bellas, S. Chai, M. Dwyer, and D. Linzmeier, \Real-time
�sheye lens distortion correction using automatically generated
streaming accelerators," in Field Programmable Custom Com-
puting Machines,. 17th IEEE Symposium on, 2009.

[10] S. Zokai and G. Wolberg, \Image registration using log-polar
mappings for recovery of large-scale similarity and projective
transformations," Image Processing, IEEE Transactions on,
vol. 14, no. 10, 2005.

[11] J. P. Ewins, M. D. Waller, M. White, and P. F. Lister, \Mip-
map level selection for texture mapping," IEEE Transactions on
Visualization and Computer Graphics, vol. 4, 1998.


