
Real-time Implementation and Performance
Optimization of 3D Sound Localization on GPUs
Yun Liang∗, Zheng Cui∗, Shengkui Zhao∗, Kyle Rupnow∗, Yihao Zhang† Douglas L. Jones‡, Deming Chen‡

∗Advanced Digital Sciences Center, Illinois at Singapore
†Sun Yat-sen University

‡University of Illinois at Urbana-Champaign
∗{eric.liang, cui.zheng, shengkui.zhao, k.rupnow}@adsc.com.sg, †zhyihao@sysu.edu.cn,‡{dl-jones, dchen}@illinois.edu

Abstract—Real-time 3D sound localization is an important
technology for various applications such as camera steering
systems, robotics audition, and gunshot direction. 3D sound
localization adds a new dimension, but also significantly increases
the computational requirements. Real-time 3D sound localization
continuously processes large volumes of data for each possible 3D
direction and acoustic frequency range. Such highly demanding
compute requirements outpace current CPU compute abilities.

This paper develops a real-time implementation of 3D sound
localization on Graphical Processing Units (GPUs). Massively
parallel GPU architectures are shown to be well suited for
3D sound localization. We optimize various aspects of GPU
implementation, such as number of threads per thread block,
register allocation per thread, and memory data layout for
performance improvement. Experiments indicate that our GPU
implementation achieves 501X and 130X speedup compared to
a single-thread and a multi-thread CPU implementation respec-
tively, thus enabling real-time operation of 3D sound localization.

I. INTRODUCTION

Real-time 3D sound localization has become important for
many applications such as direction finding of human voice
sources in 3D video-conferencing systems, or human-robot
interactions, localization of gunshots in military or policing
applications, auditory scene analysis for hearing aids and
many other applications [4]. Direction information of the
acoustic sources provides great utility in situation awareness
and monitoring. However, the conventional real-time passive
acoustic sound localization systems are mainly based on the
time-difference-of-arrival (TDOA) approach and are limited
to 2D. They are usually incapable for reliable sound localiza-
tion in noisy environment and for the applications with 3D
requirements. Hence, for better suiting to the applications it is
necessary to develop robust real-time 3D sound localization
systems with reliable accuracy of direction finding, easier
deployment, fewer microphones and smaller system size.

In this work, we use a collocated microphone array of four
sensors which approximates the acoustic vector sensor (AVS)
array that has been widely used under water [11]. Compared
to the conventional linear microphone array, the AVS array
is significantly more compact and smaller in size. Because
the approximate AVS array exploits the relative amplitude
difference between the sensors, it does not require a large
aperture for high performance and is capable of simultaneous

localization of multiple low frequency and high frequency
wideband sound sources [7].

However, real-time implementation of these algorithms is
very challenging due to their high computational demands.
Existing high-performance 3D sound localization implemen-
tations using CPUs fall far behind the real-time requirement.
The good news is 3D sound localization is highly suitable for
parallel processing, as different frequencies and 3D angles are
independent. Hence, we explore new opportunities of acceler-
ating 3D sound localization using Graphics Processing Units
(GPUs). Recently, GPUs have received increasing attention for
scientific and data-intensive applications because they offer
high parallelism with hundreds of processing cores compared
to CPUs [8], [9]. We will demonstrate that real-time 3D sound
localization can be achieved by our efficient implementation
on GPUs. 3D sound localization also presents an excellent
case study for evaluating the GPU programming techniques
required and their relative importance to achieve very high
efficiency for a novel application.

Although GPU architecture uses massive multithreading,
optimizing GPU applications for high performance is still
complex [8]. The optimal number of threads cannot be triv-
ially determined because the overall performance depends on
both thread level parallelism and single thread performance.
In addition, the number of threads that are simultaneously
executing on GPU is often limited by register allocation per
thread. Small increase in register allocation per thread may
improve the single thread performance but may cause fewer
threads to be simultaneously executed as registers are a fixed
shared resource. Threads may sometimes still perform memory
read/write inefficiently even if multithreading is supported.
Hence, we find that it is also necessary to perform memory
coalescing optimization for better memory bandwidth and thus
better performance. In this work, we evaluate the effect of
these key architectural parameters on the GPU performance.
In summary, we make the following contributions.

• We present a real-time implementation of 3D sound
localization onto GPUs.

• We present GPU performance optimization by exploring
the number of threads per block and register allocation
per thread and reordering off-chip memory accesses.

• We build a real-time system with AVS array, CPUs and
GPUs for 3D sound localization.978-3-9810801-8-6/DATE12/ c©2012 EDAA

(a) Collocated four-microphone

XYZO setup.

(b) 3D sound localization

system display.

.
(-45)

.
(-15)

Fig. 1. Microphone setup and system display. In Figure 1 (a), the top
microphone has an omni-directional response and the bottom three
microphones have gradient responses. Each sensor is 6mm (Diameter)
× 2.7mm (Height).

II. 3D SOUND LOCALIZATION

Sound localization has been accelerated using Field Pro-
grammable Gate Array (FPGA) devices to meet its real-time
requirement [4]. However, it is limited to horizontal angle
only and has a front-back ambiguity. The implementation of
sound localization is based on the TDOA approach. Real-time
3D sound localization has been implemented in [10] based
on extended Kaman filter for two microphones. However, the
localization performance tends to degrade significantly when
the reverberation or noise levels increase.

Our 3D sound localization is based on a novel collocated
four-sensor approximate AVS array as shown in Figure 1
(a). This compact AVS microphone sensor array consists of
three orthogonally mounted acoustic particle velocity gradient
microphones X, Y and Z and one omni-directional acoustic
pressure microphone O. We call it the XYZO array for the
rest of the paper. The main advantage of applying the gradient
microphones over traditional pure pressure microphones is
that they can make use of more available acoustic informa-
tion including the amplitude as well as the time difference
compared to only time difference as used in pure pressure
microphone arrays. More importantly, the XYZO array offers
better performance with a much smaller size. To apply the
XYZO array for the sound localization application, an offline
calibration process is performed once to obtain the steering
vector of the array by measuring and interpolating the impulse
response of the array in the 3D space ([0, 180)× [0, 360)).

The online 3D sound localization consists of sound cap-
turing, hamming window and FFT computation, direction
of arrival (DOA) estimation, and peak search as shown in
Figure 2. In the experiment, we use a commercial M-Audio
sound card for sound capturing. The sound inputs received
at the four microphones are first segmented by a rectangular
window which has a size of 15360 signal samples. Each
segment of signal data is termed as a frame. The four parallel
frames from the four microphones in the XYZO array are
used for a single DOA estimation. Next, each of the four
frames is equally split into 30 smaller blocks of 512 samples.
And then a 512-length hamming window and a 512-point fast
Fourier transform (FFT) are performed on all the blocks to
convert the data from time-domain into frequency-domain.

Sound Capturing

3D sound

Direction of Arrival

(DOA)

Host

(CPU)

Device

(GPU)

f1

_syncthreads()

One assigned thread

computes covariance matrix

and other data shared by all

the threads subsequently.

All threads work together to

estimate the 3D spatial

spectrum.

…… ……
f512

Thread block (f1)

Hamming Window

& FFT

thread

GPU Kernel Execution

Host

(CPU)
Peak Search

produce

consume

Shared memory: covariance

matrix and other data.

Horizontal & Vertical angles

idle

…

Fig. 2. GPU implementation framework. One thread block corre-
sponds to one frequency. The threads in a thread block work together
to estimate the 3D spatial spectrum.

This results in 512 frequency bins and 30 complex values
for each frequency bin. For DOA estimation, we use the
frequency-domain minimum variance distortionless response
estimator [6]. For each frequency bin, the covariance matrix
across the four microphones is first built. To estimate the
spatial spectrum in the 3D space for each frequency bin,
the covariance matrix is transformed and multiplied by the
steering vector for each angle in the 3D spatial space. Then,
the obtained narrowband spatial spectrums are summed across
all the frequency bins to give a combined spatial spectrum.
Finally, the output represented by the horizontal and vertical
angles of the sound source is found by searching the peak
in the combined spatial spectrum in the 3D space as shown
in Figure 2. It should be noted that all the computations are
complex value based.

We build a real-time system with AVS array, CPUs and
GPUs for 3D sound localization. The microphone array shown
in Figure 1 (a) continuously captures sounds from all direc-
tions. Then, they are processed following the steps shown in
Figure 2. Finally, the estimated angle is displayed using a GUI
as shown in Figure 1 (b). The left sub-figure in Figure 1 (b)
displays the horizontal angle highlighted by the red dot while
the right sub-figure displays the vertical angle with the head
photo standing for the position of the XYZO array.

III. GPU IMPLEMENTATION

We use CUDA programming model for our GPU imple-
mentation [2]. In CUDA, threads are organized in groups
called thread blocks. Each thread-block is executed on a
GPU streaming multiprocessor (SM) which consists of some
streaming processors (SP) that execute individual threads.
Threads in a thread block share resource (e.g. registers, shared
memory) together and can perform a synchronization by
explicitly calling the syncthreads primitive. Within a thread
block, threads are organized into warps which consist of 32
threads. Warps are the units of thread scheduling. A more
detailed description of CUDA can be found in [2]. The GPU
is often used as a coprocessor for accelerating kernel codes
which normally contain rich data-level parallelism. During the
program run, the computation load is dominated by the DOA
estimation step. Thus, we only map the DOA component onto
GPUs for acceleration as shown in Figure 2.

In the following, we illustrate our implementation of 3D
sound localization on GPUs and the corresponding architecture
related design space exploration and optimization.

Shared memory & thread blocks. DOA is highly suitable
for parallel processing as the processing of different frequency
bins is independent. For each frequency bin, its covariance
matrix and other intermediate data need to be computed first
and these data are shared by all the 3D angles for the subse-
quent 3D spatial spectrum estimation. Hence, we parallelize
different frequency bins as different thread blocks. There are
512 thread blocks in total. Then, we store the covariance
matrix and intermediate data into low-latency shared memory,
which can be reused by different threads in the same thread
block. More clearly, for each frequency we assign one thread
to compute the covariance matrix and other intermediate data.
This involves a series of matrix operations. Once the thread
finishes the computation, it carries out synchronization so that
other threads in the same block can share the data as shown
in Figure 2. Then, the threads in the same thread block work
together to estimate the 3D spatial spectrum. The required
shared memory size per frequency is a constant and does not
change with the number of threads per thread block.

Threads. We consider the number of threads per thread
block as a parameter. Let us define it as N . For each frequency,
we have to perform the 3D spatial spectrum estimation for all
the angles in the 3D space ([0, 180)× [0, 360)). The spectrum
estimation for different angles is independent. Thus, we can
parallelize different angles using different threads. For each
angle, the assigned thread loads the corresponding calibration
data and performs a series of matrix operations. Within a
thread block, each thread is responsible for estimating the
spatial spectrum for d 360×180

N e angles in the 3D search space.
The general philosophy of using a GPU for acceleration is
to run as many threads as possible to hide the long memory
latency. However, choosing the optimal number of threads per
block (N) is not a trivial task — larger number of threads
per thread block does not ensure good results as not all the
threads can be active at the same time [3]. In addition, N is
often limited by the architectural limits (e.g. resource, total
threads) of the GPU platforms [3]. We explore every possible
choice for N . The scheduling unit for threads are warps (32
threads). We always set N to be multiples of 32 to efficiently
utilize the computing power.

Register. The GPU compiler (nvcc) may perform some
optimizations to improve the single thread performance at the
expense of extra registers. Furthermore, the nvcc compiler
may perform aggressive register allocation to remove the
dependencies among instructions. However, an incremental
increase in the register allocation per thread may cause fewer
thread blocks and thus fewer threads to be simultaneously
executed on one SM as the registers are a fixed resource shared
by all the threads on the same SM. Thus, the programmer has
to choose a good register value, which allows the compiler to
improve the single thread performance and maintain a large
number of parallel threads in the same time. The nvcc compiler
provides an interface to specify the maximum number of

th1

(a) Uncoalesced memory accesses

th1 th1 th2 th2 th2 th3 th3 th3

th1

(b) Coalesced memory accesses

th2 th3 th1 th2 th3 th1 th2 th3

Load 1 Load 2 Load 3

Load 1 Load 2 Load 3

Fig. 3. Memory coalescing optimization. Note that this example
shows three threads for demonstration purpose.

registers per thread used for the kernel at compile-time. We
explore this number together with the number of threads per
thread block (N) in our implementation.

Memory Coalescing. Each angle’s corresponding calibra-
tion data (8 data words) must initially be loaded before
computation. Different angles use different calibration data.
Thus, the calibration data are stored in off-chip global memory
as there is no reuse among different threads. In our CPU
implementation, the calibration data are organized thread by
thread continuously as shown in Figure 3(a). This layout is
good for the CPU memory hierarchy due to the temporal and
spatial locality [5]. However, this layout turns out to be a
bad layout for the GPU architecture. Recall that threads are
grouped into warps (32 threads) and all the threads in a warp
are scheduled together. If we continue with the layout shown in
Figure 3 (a), threads in a warp (thread 1, 2, and 3 in Figure 3)
will not access adjacent data points, generating uncoalesced
memory accesses. As a result, the memory accesses of the
threads in a warp have to be separated into multiple memory
transactions. Uncoalesced memory accesses will seriously
degrade the performance [2]. Therefore, we reorganize the data
as shown in Figure 3 (b). Now, the threads in a warp access
adjacent data points in the memory, and can be accomplished
by a single memory transaction.

IV. EXPERIMENTAL RESULTS

We evaluate two implementations: CPU and GPU. We
implement both a single-thread and a multi-thread CPU ver-
sion (e.g. parallelizing DOA estimation on 4 cores) using
OpenMP [1]. The execution is measured on an Intel quad-
core i5-750 2.67 GHz CPU with 3GB of RAM. The GPU
experiments are done using the GTX480. For both the CPU
and GPU implementations, we access the clock counter to
obtain the precise execution time. The window size per frame
is 15360 and the sampling rate is 44100/sec. Thus, one frame
has to be processed within 348 ms (15360/44100) under the
real-time constraint. The input audio file contains 132 frames.
We observe that there is little variation in processing time
across frames for both the CPU and GPU implementations.
In the following, the time we report is the average processing
time of one frame across a total of 132 frames.

In the following, we will first describe the performance
improvement achieved by our design space exploration. We
then present the CPU vs. GPU performance comparison data.

0 64 128 192 256 320 384 448 512 576

6

11

16

21

26

31

36

N (# of threads per thread block)

G
P

U
 K

er
n

el
 T

im
e

(m
s)

 reg=32

reg=36

reg=40

reg=44

reg=48

reg=52

default

Fig. 4. GPU kernel time variation across the design space.

Threads & Register We consider threads per thread block
(N) and register allocation per thread (reg) as input variables.
The default register use (without register limit) of our 3D
sound localization kernel is 53. There should be at least
one thread block per SM during the kernel execution. Thus,
the maximum value for N is 576 due to the constraint of
register use [3]. Recall that N is a multiple of warp size
(32). Thus, N = 32k, 1 ≤ k ≤ 18. The way that the
nvcc compiler performs register allocation is unknown to the
programmer, but the nvcc compiler provides a compilation
option -maxrregcount to specify the maximum number of
registers used per thread. In theory, the actual register use
might be less than the limit. For all the experiments, we use
nvcc compilation interface to verify the actual register use.

To further improve performance, we explore various values
of N and reg. The results are shown in Figure 4. Only a
subset of results is displayed. As shown, the design space
exhibits high variation in terms of GPU kernel time. The
overall performance critically depends on both N and reg.
Moreover, the optimal setting (N = 160, reg = 48) is about
3X faster than the worst setting (N = 32, reg = 32). The
designers have to perform a detailed design space exploration
to find the optimal setting.

Memory Coalescing. The comparison between coalesced
and uncoalesced memory accesses is shown in Figure 5.
Overall, the coalesced version achieves about 10X speedup
over the uncoalesced version. As shown, threads may still per-
form global memory operations inefficiently when the global
memory latency cannot be perfectly hidden by multithreading.
For our 3D sound localization, we find that it is crucial to
transform the data layout for better memory bandwidth.

0 64 128 192 256 320 384 448 512 576

1

10

100

1000

N (# of threads per thread block)

G
P

U
 K

er
n

el
 T

im
e

(m
s)

Coalesced Uncoalesced

Fig. 5. Memory coalescing vs uncoalescing.
Speedup. The runtime comparison between CPU and GPU

for both kernel and entire application is shown in Table I. For
the GPU implementation, we choose N = 160, reg = 48, and
perform the memory coalescing transformation. As shown, the
single-thread CPU implementation is very slow, which falls far
below the real-time requirement (21.2X slower). The multi-
thread CPU implementation using OpenMP is 5.5X slower

CPU (ms) GPU (ms) Speedup
Single Multi Single Multi

Kernel 7366 1918 13.56 543 141
Application 7367 1919 14.71 501 130

TABLE I
RUNTIME COMPARISON. REAL-TIME REQUIREMENT IS 348 MS.

than real-time requirement. More importantly, further data
processing workload (e.g. sound enhancement, 3D sound con-
struction, and multi-source sound localization) are promising
research directions currently. With such workload, the CPU
implementation will be even slower.

Overall, our GPU implementation achieves significant
speedup for both the kernel and the entire application. Ap-
plication wise, the GPU version achieves a 501X and 130X
speedup compared to the single-thread and multi-thread CPU
implementation, respectively, and successfully meets the real-
time processing requirement. Compared to the CPU implemen-
tation, the GPU implementation incurs 4% additional overhead
for transferring data between the host and the device. Such
overhead is included in the GPU runtime.

V. CONCLUSION

3D sound localization is an important technique, which finds
applications in various areas. However, its highly demanding
computational requirement outpaces current CPU compute
abilities. In this paper, we proposed a real-time implemen-
tation of 3D sound localization using GPUs. Through our
experiments, we demonstrated that GPU platforms were well
suited for 3D sound localization due to their massively parallel
architectures. We also performed a GPU performance opti-
mization by exploring the number of threads per thread block
and register allocation per thread, and reordering data layout.
Experiments indicated that significant speedup compared to
CPU implementation was achieved.

VI. ACKNOWLEDGMENTS

The Advanced Digital Sciences Center is funded by
A*STAR under the Human Sixth Sense Project.

REFERENCES

[1] http://openmp.org/wp/.
[2] NVIDIA. NVIDIA CUDA Programming Guide, Version 3.2.
[3] NVIDIA. Occupancy Calculator. http://developer.nvidia.com/object/

cuda 3 2 toolkit rc.html.
[4] P. Aarabi D. Nguyen and A. Sheikholeslami. Real-time sound localiza-

tion using field-programmable gate arrays. In ICASSP, 2003.
[5] Y. Liang and T. Mitra. Improved procedure placement for set associative

caches. In CASES, 2010.
[6] M. Lockwood and D.L. Jones. Beamformer performance with acoustic

vector sensors in air. In Journal of Acoustic Society of Americ, 2006.
[7] S. Mohan et al. Localization of multiple acoustic sources with small

array using a coherence test. In Journal of Acoustic Society of Americ,
2008.

[8] S. Ryoo et al. Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA. In PPoPP, 2008.

[9] S. Ryoo et al. Program optimization space pruning for a multithreaded
GPU. In CGO, 2008.

[10] M. Usman. Real time 3D humanoid sound source localization and
tracking in actual environments. In IEEE Canadian Conference on
Electrical and Computer Engineering, 2008.

[11] K. T. Wong and M. D. Zoltowski. Self-initiating music-based direction
finding in underwater acoustic particle velocity-field beam-space. In
IEEE Journal of Oceanic Engineering, 2000.

