
Automatic Transition Between Structural System
Views in a Safety Relevant Embedded Systems

Development Process
Christian Ellen

OFFIS e.V.
Oldenburg, Germany

ellen@offis.de

Christoph Etzien
OFFIS e.V.

Oldenburg, Germany
etzien@offis.de

Markus Oertel
OFFIS e.V.

Oldenburg, Germany
oertel@offis.de

Abstract—It is mandatory to design safety relevant embedded
systems in multiple structural system views. A typical example
is the usage of a functional and technical system representation.

A transition between these system views not only comprises
the allocation of components but also copes with multiple design
aspects and constraints that need to be transferred to the
target perspective. Optimization goals regarding arbitrary design
artifacts complicate this problem.

In this paper we present a novel comprehensive approach
integrating common allocation techniques together with a partial
design generation in a system wide process to optimize complex
system view transitions. We demonstrate our approach using the
CESAR design methodology. The original system models and
requirements are used as input for our procedure and the results
are directly applied to the same models.

I. INTRODUCTION

Safety standards like the ISO26262 [1] require a strict sepa-
ration between the functional and the technical safety concept
resulting in the necessity for multi-view system design pro-
cesses. Solutions exist to allocate components from one view
to another, suitable for constraints like real-time [2] or resource
consumption [3]. For these approaches the system model has
to be transferred manually in a processable format creating
difficulties to display the results with respect to the design
model. In contrast to this method we propose in this paper an
integrated solution directly using the design models.

In the ARTEMIS project CESAR [4] a domain independent
design approach for embedded systems has been developed.
Different analysis and process guidelines are part of this
approach. Systems developed according to the CESAR design
approach are separated into multiple perspectives, representing
the system at different structural stages.

In this paper we describe an approach how to assist the
engineer in the transition from one perspective to another using
automated techniques. We demonstrate how formal methods
can be applied to the CESAR design approach. The approach
is exemplified on a set of complex transformations of an auto-
motive use case, in which we allocate logical components to

The research leading to these results has received funding from the
ARTEMIS Joint Undertaking under grant agreement n°100016 and from
specific national programs and/or funding authorities.

978-3-9810801-8-6/DATE12/©2012 EDAA

tasks hosted on ECUs (Electronic Control Units). Furthermore,
each task requires special equipment as indicated by the logical
design. This equipment needs to be connected to the ECUs in
a way that the cable length is minimal. System constraints,
expert knowledge, and resource limitations are considered as
well.

The current work is a proof of concept to demonstrate
the feasibility of system wide optimizations on industrial
relevant processes. The formalization for all features is still
in development, but first results are discussed in this paper.

This paper is organized as follows: in section II we give an
introduction to the CESAR design approach, in section III we
describe our approach using a example of an redundant airbag
system, and in section IV the corresponding formal model of
the encoding is defined.

II. CESAR DESIGN APPROACH

The CESAR design approach covers a component-based
and multi-perspective development process. One part of the
CESAR interoperability standard is its homogeneous view
to development items of different tools and formats. The
homogeneous view is based on a meta model which includes
all generic concepts required in different domains (e.g. auto-
motive and avionics) and defines the granularity of this view.

During the development process a system is specified and
modelled at different levels of abstraction. Within these levels
a set of basic viewpoints, called perspectives, have been
identified by the CESAR and SPES2020 [5] projects. Perspec-
tives are disjoint models of development items representing
different structural stages of the system at the same level of
abstraction. The five generic perspectives are:

• Operational Perspective: Customer needs are expressed
in terms of capabilities and activities that should be
provided by the system to the environment.

• Functional Perspective: The system functionality is
modelled using functions and sub-function decomposi-
tion.

• Logical Perspective: In contrast to the functional
perspective components on the logical perspective are

system oriented and represent system elements and their
interaction.

• Technical Perspective: In this perspective the par-
titioning of components in software and hardware is
performed. The system is expressed with all its physical
components like sensors or computing units that host the
software.

• Geometrical Perspective: Geometric components are
closely related to the technical components. They define
the dimensions, positions, and other physical properties
of components are considered.

Part of the transition between two adjacent perspective is an
allocation of elements in the source perspective to elements in
the target perspective. Cross-perspective aspects like safety-
concerns relate to items on different perspectives and abstrac-
tion levels.

In the use case presented in section III we evaluate the
impact of different kinds of design constraints to the transi-
tion between the logical and the technical perspective. These
constraints may originate from a safety assessment and result
also in a redundant implementation of a component.

Initially the transition requires a relation between elements
of the two perspectives. This defines which element of the
source perspective can be allocated to which element (so called
type) of the target perspective. Often, only an implicit type-
concept between both perspectives is created. In our approach
this relation is expressed explicitly as allocation constraints
defining possible allocations.

We use the RSL [6] (Requirement Specification Language)
developed in CESAR to define these type of allocation con-
straints:

“Logical element LIO Accel. Front shall be
allocated to Accel. Sensor Front Type.”

This specific constraint defines the allocation of “LIO Accel.
Front” to an instance of “Accel. Sensor Front Type” (see
example in section III).

These constraints emerge for example from expert knowl-
edge or system requirements and are part of the system model.
The entire allocation-relevant information can be encoded and
is visible in the overall development system model.

III. TRANSITION BETWEEN PERSPECTIVES

The transition between the logical and technical perspective
is illustrated by the example of the redundant airbag system.
This simple example rises all challenges considered by our
approach. It is a snapshot of the development process in which
all requirements of the system are captured and the logical
design is already decomposed. During this decomposition new
constraints evolve restricting the allocation. For example if
an early safety assessment identifies the need of a redun-
dant implementation of a logical component, this could be
the case performing a ASIL (Automotive Software Integrity
Level) decomposition w.r.t. the ISO26262 [1]. The allocation
of redundant components to the same ECU is avoided by
the introduction of allocation constraints. For example, those

allocation constraints postulate that redundancy (or diversity)
in one perspective is preserved in another one.

Furthermore, in our example the technical and geometrical
perspective are partially defined in the system model. In detail
we assume that a fixed number of sensors and ECUs (Elec-
tronic Control Unit) with different types are used. The location
of these elements is specified in the geometric perspective.

A. Transition Objectives

We define the following objectives for a transformation be-
tween two adjacent perspectives.

Objective 1. All allocation constraints must be satisfied by
the transition.
The first objective demands that all constraints must hold in
a transition, especially that every logical element is allocated
according to their possible target elements under the given
restrictions.

Objective 2. Existing connections in each perspective must
be preserved.
The perspectives may already contain connected elements (e.g.
due to expert knowledge or previous process steps). The goal
of the second objective is to ensure that a transition maintains
all existing connections.

Objective 3. Allocated elements must fulfill their communica-
tion needs.
If two logical elements are connected, their allocated technical
elements must be directly or indirectly connected, too.

Objective 4. New connections must respect resource capacity
limitations.
A transition creates a number of new connections in the
technical perspective. Each of these connections must have a
source and target element, and occupies some of its available
resources (e.g. interfaces on an ECU). The third objective
avoids dangling connections and connections which cannot
fulfill their resource requirements.

Objective 5. (optional) The transition has to be optimized
w.r.t. the given minimization goal.
Objectives 1–4 ensure that a transition is consistent and are
therefor mandatory. The last objective is considered optional
because non-optimized transitions are still consistent, if they
obey the other constraints.

B. Application of the Approach

In the following we present our approach applied to a redun-
dant airbag system depicted in figure 1 and show how the
objectives are implemented.

a) Logical Perspective: On the left side of the figure
the decomposition of the logical perspective is illustrated. The
redundant airbag system is decomposed into the three sub-
systems “Left Side Impact,” “Right Side Impact,” and “Front
Impact.” These subsystems trigger the individual airbags of
the vehicle depending on the side of impact. Each of the
systems is implemented by two redundant subsystems (e.g. FI1
and FI2), containing several other components. We distinguish

Logical Perspective Technical Perspective Geometrical Perspective

<<allocate>>

Decomposition

Independence constraint

Port

<<is type of>>

Inheritance

Acceleration Sensor

Pressure Sensor

ECU

Connection/Cable

Redundant
Airbag System

Left Side
Impact

Right Side
Impact

LIO
Accel. Front

ECU1

Acceleration
Sensor Type

ECU Type

Pressure
Sensor Type

Sensor
Type

(x,y,z)

(x,y,z)

Front
Impact

RSI 1 RSI 2 FI 1 FI 2

Accel. Sensor
Front Type

Accel. Sensor
Left Type

Accel. Sensor
Right

…

ASF1

ASF2 ASF3 ASF4 …

ECU2 ECU3 ECU4

(x,y,z)

(x,y,z)

LCU
Compute

Logical element LIO Accel. Front shall be
allocated to Accel. Sensor Front Type.

RSI 1 and RSL 2
shall be
independent.

Textual Constraints

Refers to

Fig. 1. The Redundant Airbag System example illustrates an allocation of two connected components within a homogeneous view of the three perspectives.
All information required for the transformation are contained in the view.

these components in processing units (allocated to tasks) and
input/output-components (allocated to sensors/actuators). The
former we call LCUs (Logical Computation Units) and the
latter LIOs (Logical Input Output components). Therefore a
subsystem must be allocated to several different components
in the technical perspective.

The independence constraints –a special kind of allocation
constraint– are presented as green arrows between the redun-
dant subsystems. These constraints restrict the allocation of
tasks to the same ECU (objective 1). They are derived form
constraints of the logical perspective by translating them to
the technical perspective. Allocated tasks require connections
to sensors/actuators according to connections in the logical
perspective. Consequently the ECU hosting the task must be
connected to suitable equipment (objective 3).

b) Technical Perspective: In the center of figure 1 the
technical perspective is shown which focuses on technical
components, interfaces, and connections. As mentioned before
the sensors and actuators must be connected to the ECUs
with respect to the allocation of the logical components. In
addition to the technical components (ASF1, ASF2, etc.), their
types (Accel. Sensor Front Type, Accel. Sensor Type, etc.) are
modelled.

A possible allocation between a logical and technical com-
ponent can be specified using these component types (see
figure 1).

Two technical components are connectable if their interfaces
are of the same type. Interface types are for example analog,
digital and others.The types and capacities of the interfaces on
ECUs and sensors create further restrictions on the allocation
(objective 4).

According to objective 2 sensors which are already con-
nected to an ECU cannot be reconnected to another ECU.

c) Geometric Perspective: The focus of the geometric
perspective is on the position and dimension of the physical

elements (ECUs and sensors/actuators). The length of the
cables connecting the equipment with the ECUs is expressed
here. The minimization of the overall cable length is used as
cost function for this allocation problem (objective 5).

IV. FORMALIZATION

In order to automatically find a valid and optimized solution to
the allocation problem we defined a formal specification of the
transition. To evaluate the validity of such a transition we use
the Satisfiability Modulo Theories (SMT) [7] solver HySAT
[8]. The formalization itself is implementation-independent
and not bound to a specific kind of solver. This kind of
encoding is not entirely new (see [2], [3]), but we applied
it in the context of our integrated approach. In this section we
present only the basic ideas of the formalization.

A. Allocation Function

In our formal allocation model we abstract from the perspec-
tives, LIOs, ECUs, etc. and define their relations based on
more abstract sets. LCUs are a special kind of functions f ∈ F
which must be allocated as tasks running on ECUs. Since the
real-time aspects of tasks are not part of our scope, we simplify
this allocation to the function alloc : F → B, which assigns
every function f to an abstract box b ∈ B representing an
ECU. The solver has to find a valid solution of this function
according to the transition objectives (section III).

Individual images of the function alloc are restricted by
the given constraints and resource limitations of the model
(objective 1 & 4). This is encoded by embedding alloc into
first-order logic formulae and limiting its the image using
allocation equations.

The semantics of an allocation equation over alloc for a
given f ∈ F and b ∈ B is defined as:

Jalloc(f) = bK =
{

true if f is allocated on b
false otherwise

This allows an intuitive way to formalize both, allocation
and independence constraints. A typical example encoding of
an allocation constraint is alloc(f) 6= b avoiding f to be hosted
on b. In case of independence constraints the images of two
functions f1 and f2 can be compared directly: alloc(f1) 6=
alloc(f2)

B. Resource Occupation and Connection
According to objective 4 two kinds of resource limitations are
considered in our transition. The number of interfaces provided
by an ECU is the first limitation, while the available equipment
(sensors/actuators) itself is the second one.

Every task allocated on an ECU must be able to commu-
nicate with its equipment. Therefore, it has to occupy some
of the available interfaces. The exact numbers and types of
interfaces depend on the type of the connected equipment.

In a nutshell, the idea is to define the function occ : F×B×
T 7→ N which represents the number of occupied interfaces
for each function f , box b and interface type t ∈ T . The image
of this function is restricted by a set of linear inequalities
ensuring that every function allocated on an ECU occupies
the correct amount of interfaces and that the total number of
interfaces is not exceeded by the overall allocation.

The second kind of limited resource in our transition is
the available equipment. Every equipment e ∈ E has a given
geometric position and can only be used by a single function.
Therefore, we define the function use : F×E 7→ {0, 1} which
is only true iff the a given function f is using the specific
equipment e. Again, linear inequalities are used to ensure that
every function is attached to the correct amount of equipment
(objective 3) and no two function share the same equipment.

Based on use and alloc we define the function con :
E × B 7→ {0, 1} in order to formalize the direct connection
between an equipment and a box. The semantics of con is
defined as:

con(e, b) =

 1 if ∀f ∈ F :
use(f, e) = 1 =⇒ alloc(f) = b

0 otherwise

Existing connections between equipment and ECUs in the
technical perspective can be preserved (objective 2) by setting
con(e, b) = 1 and thus assuring that any function using the
equipment e is allocated on the connected box b.

C. Optimization Goal
The optimization goal in the example use case (objective 5) is
the minimization of the overall cable length. We use a function
dist : E ×B 7→ N to model the individual distances between
equipment and ECUs. Its values are statically calculated based
on the positions of the elements in the geometric perspective.
The minimization of the resulting cable length is computed
based on the con and dist functions:

min
con

∑
e∈E

∑
b∈B

con(e, b) ∗ dist(e, b)

Using this formalization we are able to implement an auto-
mated procedure to solve and optimize perspective transition.

V. CONCLUSION AND FUTURE WORK

In this paper we discussed the different aspects of the transition
between design perspectives. We have shown that this problem
covers more than just the allocation of components. As a result
of our procedure missing connections are added to the target
perspective.

The use case demonstrated how safety constraints and
functional aspects, like the need for specific equipment, can
be used to generate a complex transition between the logical
and technical perspective. The solution is optimized using the
overall cable length between ECUs and equipment.

In the CESAR project we applied our approach on an
industrial scale example consisting of approximately 30 ECUs,
100 equipment units, and, 50 logical components using the
same optimization criterion. The scalability has to be evaluated
in more detail but some realistic examples are already feasible.

In our airbag example implicit knowledge is used to identify
LIOs, ECUs, and equipment limiting the flexibility of the
approach. In our ongoing research we will generalize the
approach with more flexible and more expressive features.
Such generalizations are not limited to direct connections but
can connect components transitive through multiple elements.
Furthermore, the independence between elements, currently
expressed only as allocation constraints, will be refined with
a concept of diverse implementations. The impact of inde-
pendence and diversity constraints can be limited by the
introduction of a scope concept. In addition, we plan to extend
the optimization goal with arbitrary metrics.

These extensions in turn yield a more comprehensive solu-
tion for automatic perspective transitions.

REFERENCES

[1] Technical Committee ISO/TC 22 Subcommittee SC 3, Ed.,
ISO/WD26262: Road Vehicles - Functional Safety. Automotive
Standards Committee of the German Institute for Standardization, 2009.

[2] M. Glaß, M. Lukasiewycz, J. Teich, U. D. Bordoloi, and S. Chakraborty,
“Designing heterogeneous ECU networks via compact architecture en-
coding and hybrid timing analysis,” in DAC. ACM, 2009, pp. 43–46.

[3] F. Reimann, M. Glaß, C. Haubelt, M. Eberl, and J. Teich, “Improv-
ing platform-based system synthesis by satisfiability modulo theories
solving,” in Proceedings of the 8th International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), Scotts-
dale, USA, Oct. 2010, pp. 135–144.

[4] The CESAR Consortium, “CESAR Project,” 2009. [Online]. Available:
http://www.cesarproject.eu/

[5] W. Damm, H. Hungar, S. Henkler, I. Stierand, B. Josko, P. Reinkemeier,
A. Baumgart, M. Büker, T. Gezgin, G. Ehmen, and R. Weber, “SPES2020
Architecture Modeling,” SPES2020, Tech. Rep., to be published 2011.

[6] A. Mitschke, N. Loughran, B. Josko, M. Oertel, P. Rehkop, S. Häusler,
and A. Benveniste, “RE Language Definitions to formalize multi-criteria
requirements V2,” The CESAR Consortium, Tech. Rep., 2010. [Online].
Available: http://cesarproject.eu/fileadmin/user upload/CESAR D SP2
R2.2 M2 v1.000.pdf

[7] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, Satisfiability Modulo
Theories, ser. Frontiers in Artificial Intelligence and Applications. IOS
Press, February 2009, vol. 185, ch. 26, pp. 825–885.

[8] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, “Efficient
solving of large non-linear arithmetic constraint systems with complex
boolean structure,” Journal on Satisfiability, Boolean Modeling and
Computation, vol. 1, pp. 209–236, 2007.

