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Abstract—In industrial cyber-physical systems (CPS)1, the ability of
a system to react quicker to its inputs by just a few milliseconds
can be translated to billions of dollars in additional profit over just
a few years of uninterrupted operation. Therefore, it is important to
reduce the cycle time of industrial CPS applications not only for the
economical benefits but also for waste minimization, energy reduction,
and safer working environments. In this paper, we present a novel
method to reduce the execution time of CPS applications through a
holistic software/hardware method that enables automatic parallelization
of standardized industrial automation languages and their execution in
multi-core processors. Through a realistic CPS, we demonstrate that
parallel execution reduces the cycle time of the application and increases
the life-cycle through better utilization of the mechanical, electrical, and
computing resources.

I. INTRODUCTION

Industrial automation refers to the use of embedded software for
the coordination of high-volume and high-precision manufacturing,
food, pharmaceutical, chemical, energy, and mobility industries [1],
[2]. These physical processes are typically controlled by industrial
CPS comprising of various embedded computing devices capable
of sensing, planning complex processes, and actuating thousands of
times per second through high-speed cameras, light sensors, collision
avoidance and detection, robotic devices, motors, etc. These CPS not
only must comply with hard real-time requirements, but also must
be able to survive in extreme environments of temperature, pressure,
vibration, and humidity and remain operable for decades without
interruption or failure [1]. The cost of downtime for the energy,
manufacturing, food processing, and other industries is estimated to
be of over one million dollars per hour [3]. Therefore, the main
objective of industrial CPS is to operate as fast, as accurate, as
reliable, as safe, and as cost effective as possible through the selection
of suitable embedded software and hardware technology [1].

Throughout the years, embedded software for industrial CPS
has been developed by non-computer experts using domain-specific
languages that have been designed and refined by experienced
practitioners, manufacturers of automation hardware and software,
and independent institutions from different industry sectors. The IEC
61131-3 standard [4] has been widely adopted as the programming
standard for industrial CPS [5] since 1993 but its languages have
been used in the industry since the early 1970’s [6]. It provides
a total of 5 different languages: 2 textual (Instruction List or IL,
Structured Text or ST), 2 graphical (Ladder Diagram or LD, Function
Block Diagram or FBD), and 1 with both textual and graphical
representations (Sequence Function Chart or SFC). Different industry
sectors use different languages or the combination of them simply
because each language has special semantics that facilitate certain
automation tasks. These programming languages have been designed
to satisfy the needs and increase the productivity of non-computer
experts such as electrical, mechanical, and chemical engineers [6].
For example, LD programs strongly resemble relay logic diagrams
used by electrical engineers to design circuits. Interestingly, engineers
on the same domain but in different countries seem to prefer different
languages [7].

Finding the appropriate embedded hardware capable of deliv-
ering the required performance for industrial CPS tasks is also

1A CPS is the tight integration and communication between physical
processes and embedded computing elements.

very critical. For some applications, custom architectures in ASIC
and FPGA are developed because general purpose processors or
digital-signal processors are not capable of meeting the performance
requirements [8], [9]. For example, high-performance motion control
for machine tools (CNC) use specialized hardware and software
that is not compatible with the IEC 61131-3 standard. While these
custom systems provide the required performance, they are very
expensive to buy, maintain, and modify. Flexibility is one of the
most important features in industrial CPS because the production
requirements change significantly between different products, or
different generations of the same product. Therefore, there is an
economical and technical motivation to shift from rigid custom
architectures and programming languages into flexible off-the-shelf
architectures and standardized automation languages. The adoption
of multi-core processors appears to be the next evolutionary step
in high-performance control systems [10], [11] because they offer
better energy efficiency, redundancy, consolidation properties, and
scalable performance than existing systems. Unfortunately, as of
today, there is a very limited understanding on how to leverage multi-
core technology in industrial CPS workloads. Specifically, there is no
clear understanding on how to compile IEC 61131-3 languages for
execution in multi-core processors.

In this paper, we propose the first algorithm to automatically
identify parallelism in the IEC 61131-3 languages and exploit it
in multi-core-based industrial CPS. The key insight is that the
designer’s intentions and knowledge of the physical system under
control are captured explicitly in some IEC 61131-3 languages in the
form of well-defined functional elements that express parallelism.
The contributions of this paper are: (1) computational performance
improvement of the industrial CPS systems through automatic ap-
plication parallelization and multi-core utilization approach, (2) an
algorithm for identifying functional parallelism in IEC 61131-3
applications and a one-to-many allocation algorithm for scheduling
a task into multiple resources, (3) a feasibility study of the proposed
solution on a realistic CPS application that demonstrates the reduction
of the cycle time.

II. COMPUTATION MODEL IN IEC 61131-3

IEC 61131-3 tasks are executed in embedded processing units
called resources. Several tasks can run on one resource. A task is an
instantiation of a program. A program is composed of one or more
POU (Program Organization Unit). POUs can be of type Function
or FUN, Function Block or FB, and Program or PROG. POUs
may be written in any of the five IEC 61131-3 languages. While
a PROG is the top-level entry point of a program, POUs may call
other POUs. An interesting aspect of tasks is that they have explicit
synchronous properties. A task must have a priority level and may
be executed either periodically (cyclically) or driven by interrupts.
The configuration contains the information about the allocation of
programs into tasks with different synchronous properties, and tasks
into resources. Figure 1 shows a user application consisting of three
programs (Program A, Program B, Program C). The top level PROG
in Program A calls a function block “POU 1” written in FBD and
“POU 2” written in LAD language. The configuration defines five
resources of type FAST_CPU, SLOW_CPU, I/O Module, Switch,
and FPGA connected by a communication network consisting of three
buses. The configuration allocates Task 1 and Task 2 to FAST_CPU,978-3-9810801-8-6/DATE12/ c©2012 EDAA



and Task 3 and Task 4 to SLOW_CPU. Every task has an associated
program. Every task includes a tuple that specifies the synchronous
and priority configuration. For example, Task 1 executes periodically
every 50ms and has LOW priority, and Task 2 executes only when
an interrupt triggered by I/O occurs and has HIGH priority. Once
the configuration and the user program are specified, including the
mapping of variables to physical addresses (not shown in the Figure),
the POUs and the configuration are translated into machine code for
the target architectures and transfered to the devices for execution.
The synchronous and priority information are used by the run-time
of the CPS to perform the scheduling and execution. Different CPS
vendors implement proprietary scheduling and execution mechanisms
to improve the performance, reduce jitter, and response time.

Fig. 1: Organization of an IEC 61131-3 user application and
configuration. Programs are instantiated into synchronous and prioritized
Tasks. In the current computation model tasks are allocated to a single
computing resource enforcing a one-to-one mapping.

The existing model acknowledges concurrency at the program level
by allowing different programs to run on different resources through
a one-to-one allocation. However, it does not specify how a single
program can be executed in multiple resources through a one-to-
many allocation. In this paper, we argue that allowing a program
to be allocated to many resources enables parallel computing and
its benefits: reduced execution time [12], faster response time [11],
reduced overall power consumption and therefore, efficient thermal
management [13] (besides performance, lower thermal stress and
longer life-time are strict constraints for CPS applications). This
paper shows that the IEC 61131-3 computation model offers not
only concurrency at the program level (existing model) but also
fine grain parallelism at the POU level (FB, FUN, PROG) in the
form of data and functional parallelism. The challenge is to identify
the fine grain parallelism, partition the program in suitable program
fragments, and map them into different resources for parallel execu-
tion. Existing techniques allow the programmer to do the partitioning
manually [14], but this approach may introduce artificial delays that
do not exist in the original program. In the following section, we
present the algorithm to perform the parallelization automatically.

III. FUNCTIONAL PARALLELIZATION OF IEC 61131-3
In this section, we present a new methodology to automatically

identify, extract, and exploit parallelism in CPS applications. Existing
methods rely only on dataflow analysis to extract parallelism and
preliminary results show that this approach only contributes with
modest performance improvements. In addition, the dissimilarities
between CPS workloads make it difficult to develop general dataflow
parallelization techniques. However, we take advantage of the fact
that IEC 61131-3 high-level languages (i.e. LAD, FBD, and SFC)
have domain-specific semantics that facilitate the exploitation of a
different type of parallelism that is orthogonal to the parallelism found
by dataflow analysis. We call this type of parallelism “functional”
because it uses domain-specific semantics that describe “purpose” or
“intent”2.

2CPS programmers normally express their intentions explicitly, e.g.
concurrency and synchrony in the program through programmatic constructs
such as divergence operators and timers.

The main advantage of parallelizing industrial CPS applications
is the reduction of the cycle time and therefore the improvement of
the response time of the application to the environment. Typically,
the faster an application is able to interact with the environment the
better it is for the control algorithms. Figure 2(a) shows a periodic
task composed by 2 POUs (POU 1, POU 2) executed in a single
resource R1 using the existing one-to-one allocation policy. The cycle
time (100ms) represents the time that is configured by the user for
the task to complete. Execution time is the time it takes to execute
all the POUs in the task and it includes the read of inputs, data
processing, and write to outputs. The time between the completion
of the tasks and the beginning of the next cycle is known as sleep
time, where the resource is idle. Figure 2(b) illustrates the effects of
parallelization of IEC 61131-3 applications and their execution using
a one-to-many allocation policy. In this case, the POU 1 is partitioned
into 3 independent fragments that are allocated to resources R1, R2,
R3. POU 2 may not be partitioned but since it is independent from
POU 1, it can be concurrently executed in R4. Notice that because
the POUs are executed in parallel, the execution time is proportional
to the execution time of the longest sub-program in R3. In this
case, the cycle time can be safely reduced to 50ms to improve the
response time of the application and also to reduce the sleep time.
Alternatively, shorter execution times and longer sleep times may be
used to significantly reduce the energy consumption of the processing
devices by idling [15].

Fig. 2: Program allocation strategies and their impact in cycle execution
time: (a) one-to-one allocation strategy is forced to execute in the same
resource, (b) one-to-many allocation after program parallelization reduces
the execution time and therefore the cycle time can be reduced to improve
the response time of the user application.

A. Identifying Data and Functional Parallelism
Many CPS programmers are non-computer experts, they think in

terms of their physical domains and the IEC 61131-3 languages
reflect this. For example, an electrical engineer that uses LAD
language thinks in terms of coils and energized networks rather
than variables and program dependencies. These domain-specific
constructs help the CPS programmers to express their intentions
explicitly. For example, flip-flop and latches store state informa-
tion over time, asynchronous operators delay signals, simultaneous
convergence operators express concurrency, and timers disable the
execution of parts of the program until the given time passes.
However, the tools that compile these languages are written in
conventional computer languages by computer experts that sometimes
fail to understand the domain-specific semantics.

Figure 3 shows the typical toolchain that translates IEC 61131-
3 languages into executable machine code. First, The compiler
translates the user program written in any of the five IEC 61131-3
languages into a low-level intermediate representation (IR). This gives
the advantage of maintaining simple parsers and a single compiler
rather than one specialized compiler for each of the input languages.
An optimizer takes the low-level IR and attempts to eliminate
redundant and dead code, and it generates the machine code for
specific CPS architectures. Finally, the machine code is assigned to
the resources described in the configuration and the CPS application
is executed. Functional semantics are typically lost in the toolchain
when the low-level IR is produced. Functional semantics mutate
into operational semantics necessary for execution in a computer.
Recovering functional semantics from operational semantics is as



troublesome as recovering the original high-level program from
machine code. Functional parallelism can be identified at the domain-
specific languages and therefore the toolchain to support our method
must be modified to propagate this information to the low-level IR
and the optimizer.

Fig. 3: A typical IEC 61131-3 toolchain consists of a retargetable
compiler supporting the five automation languages and producing a low-
level intermediate representation that is optimized and translated into
machine code. Existing methods only exploit the operational semantics
of the application (low-level IR or machine code). Our method exploits
the functional semantics that capture the programmer’s intentions in the
high-level languages.

The “SR” blocks in Figure 4 are flip-flops whose function is to
store state information. The operational behavior is to delay the
outputs (state) one execution cycle. Therefore, the flip-flop inputs are
decoupled from the outputs and this information can be used to break
the computation flow of a Network as indicated by the diamonds
in Figure 4. While dataflow analysis identifies two parallel regions
(Network 1-2 and Network 3-4), functional parallelization identifies
an additional opportunity in the flip-flops and creates four parallel
regions (Network 1, 2, 3, 4). In combination, the two parallelization
techniques partition the program into four concurrent regions in the
current execution cycle that can be executed in parallel in different
resources.

Fig. 4: The programmer’s intention in this program is to store the value
in the SR flip-flops over time. Functionally, the flip-flops decouple inputs
from outputs and therefore create an opportunity to further partition the
program into 4 fragments that are data independent and therefore can be
executed in multiple processing units.

B. One-to-many Allocation
Multi-core processors and faster interconnection networks open

new possibilities for low latency and high-throughput processing that
had not been available in previous-generation distributed and parallel
computing systems. However, migrating to multi-core processing
requires a few changes in the toolchain. Specifically in the IEC
61131-3 context, the new concept of one-to-many allocation of
a program into multiple resources must be implemented in the
toolchain. Algorithm 1 proposes a method to accomplish one-to-
many allocations. The first step is to find the functional parallelism
in the program (Line 1) and characterize the performance of the
resources in the configuration in a latency model (Line 3). This
model takes into account the topology of the CPS network to
calculate communication latencies and computational capacities of its
execution nodes. Different heuristics for parallel scheduling can be
used in Line 4 to allocate the functional fragments (FR) into multiple
resources (R) taking into account the latency model such that the
critical path of the application is reduced. To guarantee the hard
real-time requirements of CPS systems, this transformation should
be only considered when the timing analysis of the parallel schedule
is better than the original schedule.

IV. CASE STUDY OF A BAGGAGE HANDLING SYSTEM

Figure 5 shows the top-level control program of a baggage handling
system of an airport. The system includes four independent conveyor
belts to transport the luggage, a radio-frequency identification (RFID)
sensor detects whether the luggage is carry-on (square boxes) or
check-in (rectangular boxes), an X-ray machine, and two special

Algorithm 1 One-to-Many Allocation
In: Configuration C
In: Program, PROG
Out: One-to-Many Allocation, P

1: FR = FindFunctionalParallism (PROG) {Leverage the engineering
intentions explicit in IEC 61131-3 programs}

2: R = GetResources (C) {Create a latency model based on the topology
and type of resources available in the automation network.}

3: LatencyModel = CharacterizeTopology (R) {Use parallel scheduling
heuristics to allocate the data and functional parallelism to multiple
resources for concurrent execution.}

4: P = ParallelSchedule (FR, R, LatencyModel) {The transformation
succeeds if and only if the new schedule is guaranteed to provide a shorter
execution time than the original uniprocessor schedule.}

5: if Timing (P ) >= Timing (C) then
6: AbortParallelCompilation ()
7: end if

conveyor belts that can be configured to move in different directions
(sorting system). The goal of the system is to sort the luggage
according to type and send it to the corresponding conveyor belt
for X-ray scanning.

Execution begins at the InitialStep at the top of the SFC
program. The transitions PowerOn and Shutdown are conditional
statements that must be satisfied to initiate the system and to shut
it down. In this case, computation is waiting at the initial step until
the signal PowerOn is received. The parallel bar after PowerOn
represent simultaneous divergence and allow the CPS designer to
express explicitly the intention of having four concurrent tasks: (1)
turn on the conveyor belt and set the speed to 1 m/s, (2) turn on
and do the sorting of luggage, (3) initiate the RFID sensors and
classification, and (4) turn on and do the X-ray processing. The
four concurrent actions converge when a stop signal is received and
program terminates. Notice that this SFC program is one POU and
the one-to-one mapping prohibits the four parallel branches to be
distributed to different resources. Instead, the compiler serializes the
concurrency in the chart for execution in a single resource.

Serializing a CPS application typically oversubscribes the only
available processor (one-to-one mapping) with all the independent
real-time tasks and this degrades their overall performance. Fig-
ure 6(a) shows a simulation trace of the baggage handler signals
executed in a single resource. The shaded areas highlight the tasks
that are competing during the cycle time (100ms) for the same
resource. This situation slows down all the algorithms and creates
undesired bottlenecks. For example, when the rate of arrival of new
luggage is higher than the processing rate of the X-ray machine, the
conveyor belt system must be stopped or slowed down. This wears the
mechanical components faster and therefore it significantly reduces
the lifetime of components such as motors, drives, and actuators.

Figure 6(b) shows the trace of the same program partitioned by
our method and executed concurrently in two resources (off-the-
shelf embedded processor with 2 cores). While this trace still shows
oversubscription (shaded areas for resource-1, and resource-2), the
real-time tasks compete less and their execution time is significantly
reduced. For example, the X-Ray processing algorithm is reduced
from 500ms to 350ms. This speedup is beneficial for the system
because the speed of the conveyor belts can be modified to increase
the rate of arrival of luggage and thus increase the throughput of
the system. Increasing the speed of the conveyor belts and therefore
the rate of arrival of new luggage, forces the system to respond
quicker to events. Fortunately, the functional parallelization reduces
the execution time of the program and its cycle time can be reduced
to 50ms. The smaller cycle time allows the system to keep up with a
faster rate of arrival of new luggage, without interrupting its normal
operation.

We conducted a different experiment to measure the cycle time
of the baggage handling application. Figure 7 shows that our
parallelization method reduces the execution time of the program
when executed in two resources (an embedded processor with 2
cores). Although the jitter (variance in the execution time) increases
due to the inter-core communication and thread synchronization, a



Fig. 5: SFC sample program to control the baggage handling system. The language provides the semantics that allow the programmer to express
the concurrent process through a simultaneous divergence operator. Existing approaches serialize these parallel constructs and try to recover them at
run-time through preemptive multi-tasking.

Fig. 6: Conventional IEC 61131-3 execution (a) forces several real-time
tasks to compete for a single resource. Functional parallelization (b)
spreads the load among two resources and thus improves the cycle time.

better load balancing is achieved in 2 resources and the difference
between the MAX and MIN execution times is significantly less than
in one resource. This allows tighter real-time schedules, shorter sleep
times, and better utilization of the computing resources that may lead
to better energy efficiency. Reducing cycle time is also beneficial for
industries where waste minimization of expensive substances (e.g.
coatings) is a priority and dependent on the ability of the control
system to react quick enough to the environment. It also allows
safer working environments for people who work in proximity to fast
moving robots (e.g. assembly and manufacturing) where a response
that is faster by just a fraction of a second may make the difference
between life and dead.

Fig. 7: Simulated execution of a realistic IEC 61131-3 program shows that
cycle time can be significantly reduced when executed in two resources.

V. CONCLUSION

In a necessary effort to increase the computing performance of
the industrial CPS [1], [16], we propose a novel holistic soft-
ware/hardware approach that embraces the functional parallelism
in control applications to transform IEC 61131-3 programs into
real-time tasks that can be executed in truly parallel manner in
embedded multi-core processors. This paper presents an algorithm
to identify functional parallelism in IEC 61131-3 languages by
exploiting concurrent operators and delays introduced by synchronous
operators. In addition, we introduce the concept of one-to-many
mapping of IEC 61131-3 tasks into resources. Through the case
study of a realistic baggage handling CPS application, we have
demonstrated the feasibility of our solution by spreading the load
among several resources, increasing the throughput of the application,
and ultimately reducing the cycle time.
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