
Model Driven Resource Usage Simulation for
Critical Embedded Systems

Michaël Lafaye, Laurent Pautet, Etienne Borde
LTCI

Telecom ParisTech
Paris, France

{lafaye, pautet, borde}@telecom-paristech.fr

Marc Gatti, David Faura
Centre Competence Calculateur

Thales Avionics
Meudon La Foret, France

{marc-j.gatti, david.faura}@fr.thalesgroup.com

Facing a growing complexity, embedded systems design
relies on model-based approaches to ease the exploration of a
design space. A key aspect of such exploration is performance
evaluation, mainly depending on usage of the hardware
resources. In model-driven engineering, hardware resources
usage is often approximated by static properties. In this paper,
we propose an extensible modeling framework, to describe
with different levels of detail the hardware resource usage. Our
method relies on the AADL to describe the whole system, and
SystemC to refine the execution platform description. In this
paper we expose how we generate and compose SystemC
models from the execution platform model described in AADL.
We also present promising experimental results obtained on an
avionics use-case.

AADL, SystemC, mapping, early modeling, real-time systems

I. INTRODUCTION
In the design process of embedded systems, integration is

a critical phase since it might alleviate performance issues
related to the adequacy between the software application
and its underlying execution platform. In order to reduce
this risk, model driven engineering (MDE) allows exploring
the design space by analyzing models of a system.
Performance evaluation based on MDE methods
approximate hardware components characteristics by sets of
predefined properties corresponding to a general category of
component, thus they lack of precision since their results are
obtained independently of the usage context of these
resources as opposed to the real execution. As a
consequence, MDE methods dedicated to performances
evaluation of embedded systems need improvements to be
able to assess more precisely usage of the execution
platform resources. Besides, to be used in an iterative design
process, these methods must be extensible to provide more
and more precise resources usage estimations.

Our objective is to bring that modeling part and
complement those methods. In this paper, we propose a
flexible code generation approach that produces a
simulation environment from the model of an embedded
system, allowing a detailed description of the execution
platform resources usage. Our method aims at being
complementary to high-level static modeling methods
(giving more approximate results) and virtualization
methods (focusing on functional evaluation).

We present here a prototype that produces SystemC [1]
code from an AADL [2] specification. As a first step, we
limited the scope of our prototype to the mapping of
hardware AADL components into SystemC code. We made
a first case study based on software architecture principles
dedicated to the avionics domain. The results of these
experiments are also presented in this paper.

The remainder of this paper is organized as follows:
Section 2 gives an overview of the approach we propose.
Section 3 describes the flexible modeling and simulation
process that produces the simulation environment
corresponding to the execution platform of an embedded
system. Section 4 presents the simulation results obtained
using this process on an avionic use-case. Finally we
conclude this paper and present our future works.

II. APPROACH
Current MDE approaches are of great interest to anticipate

on system performance. However they often approximate
the hardware components description as black boxes with a
few properties. Our objective is to complement such process
by proposing an extensible modeling and simulation facility
so as to explore the resources usage of an execution
platform. The objective we pursue is represented on figure
1: from specification of the execution platform and a
characterization of the software application, we propose to
model the software application, its underlying execution
platform and the deployment of software components onto
hardware components thanks to the AADL.

Figure 1. Modeling and simulation process

978-3-9810801-8-6/DATE12/©2012 EDAA

A. System Modeling with the AADL
AADL (Architecture and Analysis Description Language)
[2] is an architecture description language developed by the
SEI1 and standardized by the SAE2. AADL was selected for
this study since it allows to model both the software and the
hardware architecture can be modeled, as well as the
mapping of software components onto the execution
platform. The language was used in several projects [4],
taking advantages of the several annexes enriching the
language. Especially, the ARINC653 annex [3] provides
rules and properties to model partitioned systems. Indeed, to
allow the execution of more than one application on the
same execution platform while fulfilling safety
requirements, avionics systems are developed following the
ARINC653 standard. This standard specifies spatial and
time partitioning concepts: each application is enclosed in
one or several partitions (independent software module) and
owns a part of the main memory (spatial partitioning).
Moreover, each partition can access all the hardware
resources during its execution window (time partitioning).

Thanks to the ARINC annex, those partitioning rules can be
easily modeled as AADL processes (ARINC partitions)
bounded to a part of the main memory component and
scheduled by the main processor. As a consequence, AADL
is thus particularly adapted for modeling partitioned real-
time and embedded systems at high-level description.

B. System Description with SystemC

The target of our model-driven simulation framework is
the SystemC, IEEE standard promoted by the OSCI. It is a
hardware description language for system
hardware/software co-design and validation through
simulation thanks to the provided simulation kernel.
SystemC is widely used in industry and supported by many
tools that allow simulation and debug of a SystemC model.
The language is defined as a set of modules that contain
ports, methods and processes describing the component
functionality, and communicate via channels.

SystemC can be used for system modeling at different levels
of abstraction, and aims at simplifying systems conception
by being a common language used from functional system
description to detailed design conception. Among this
abstraction levels, TLM [5] is becoming a de facto standard
in industry for early exploration and verification processes
[6]. It offers a good compromise between time development,
description accuracy and simulation speed, 100 to 1000
times faster than CABA and RTL model simulation
depending on the timing precision. Consequently, SystemC
and its TLM library are particularly adapted for execution
platform description and exploration through simulation
thanks to its simulation kernel.

1 Software Engineering Institute
2 Society for Automotive Engineers

III. AADL TO SYSTEMC SIMULATION
We present in this section a method to produce the SystemC-
TLM model corresponding to an AADL hardware model. We
propose both a mapping for set of predefined AADL
hardware components, and a method to integrate user-defined
hardware components. Since our goal is to generate an
execution platform, we focus on the following hardware
components: memory, processor, bus and device. Generally,
the mapping we propose relies on a database of SystemC
configurable components. Each SystemC component defines
a set of TLM sockets dedicated to the reception (respectively
emission) of transactions from (resp. to) other components,
and a priced state machine that describes the component’s
behavior upon reception of a transaction. In the remainder of
this section, we present in more details the semantics of
sockets and automata defining SystemC components.

A. Mapping Connections

In order to manage the communications between SystemC
components, we generate for each component a set of TLM
socket(s): from a hardware component instance in AADL
system model, we retrieve the bus it is connected to and
define an input/output TLM socket for the component and
its bus, and connect them. Figure 2 illustrates this approach,
including properties retrieving from the AADL model to
configure the generated SystemC bus.

Figure 2. Connection Mapping from AADL to SystemC model

Each socket is bound to a generic SystemC method,
b_transport(), which works on the initiator/target model.
Initially written to simplify the communications by frame
between initiator components such as processors and target
components such as memory, we use this communication
model and apply it on all the execution platform components
we consider. The b_transport() method contains two
parameters, generic_payload specifying the transactions
arguments (command read/write/ignore, data address, data
length and transaction status as “ok”, “error”…) and delay ,
parameter we use as a simulation counter. We also add our
own parameters to the communication model. As we said,
components communicate by frames through the
b_transport() method. When a component receives such
frame, it decodes the address and if it matches its address,
stimulates the state machine describing its behavior. For
example, a memory component will decode the command
parameter and executes a read or write operation before
returning response status.

B. Mapping Hardwware Component into Automata

1) Automata Description

To describe the internal behavior of components, we use
dedicated priced state machines. In these automata, each
state represents an abstract action and the resources (time,
power consumption…) consumed to realize it, and each
transition defines the conditions that have to be verified to go
from a source state to a target state. These conditions are
specified over the content of a received transaction (in
comparison to predefined constants retrieved from AADL
properties). Finally, each automaton has at least two states:
an idle state (corresponding to the situation when the
component is not working) and one or some action states.
The transitions represent conditions that have to be fulfilled
to pass from one state to the next. Condition can be “when
action is complete, i.e. when action time is totally consumed,
go to the next state”, or “when the signal S is set to 1, go to
the next state”.

The implementation of a SystemC automaton is defined
in a generic SystemC-TLM method, b_transport, which
simplifies the connections between components. Each time
an instruction is received by the component, the b_transport
method is called, decodes the frame properties and executes
its behavior code. The goal of those state machines is to
describe more precisely the component behavior and then
introduce variability. For example, in a processor model, the
execution time will be different for L1 cache hit or miss.

Figure 3. Generated SystemC simple memory automata from AADL model

2) Automata Database

The database can be used in several ways, and is not limited
to one. We present here two ways to configure the SystemC
models: using simplified predefined automata, and using
refined automata depending on the accuracy of the
information contained in the AADL model. For instance, to
describe a memory component, we can use the memory
simple automata configured only with AADL properties
read_time, write_time, memory_protocol and word_size, or
using a refined component DRAM. In such component, the
variability comes for example from the refresh operation,
which does not occur at each reading or writing execution
but comes periodically.

The goal of refined automata is to be more accurate in the
component description, and then more accurate during the
simulation and the performance analysis, and introduce
variability, where other static based approach work with
constant worst-case execution time value. To add a new
component, we define a method allowing the user to define
his component and adding it to the database. This method is
composed of 3 steps:

• Adding the new automata in the SystemC database

• Adding the component kind in the corresponding
supported_<component_type>_kind

• Adding the properties. In the AADL, components
properties are defined in a specific file. To be
consistent with the AADL, we propose, to add the
corresponding property_set defining its properties.

For example, to describe a DRAM, we first add to the
memory_supported_kind AADL property the “DRAM” type.
Then we create a new property_set, dram_properties, in
which we define the additional properties, for instance:
refresh_period and refresh_time. These properties can be
used together with the memory properties still defined (word
size, read/write_time…). At least, we create and add in the
database the corresponding DRAM SystemC automaton.
Thus it is possible to elaborate an execution platform
containing a DRAM component by declaring in the AADL
model a memory with the memory_kind property set to
DRAM. Figure 4 sums up how we generate the refined
memory component thanks to the AADL adding properties:

Figure 4. SystemC DRAM component generation

IV. CASE STUDY
Our main objective is to evaluate the usage of a proposed

avionic execution platform according to a given set of
applications stimuli. Then, to test our mapping and
exploration process, we first model the avionic system with
AADL using the ARINC653 annex, and generate with our
mapping process the SystemC corresponding execution
platform description. Then we stimulate it with a given test
application. Both architecture and application are described
in the next sub-sections.

A. Test Application
The application we use to test our process is an avionic

communication application, which reads and sends data on
input/output ports. It contains four partitions following the

temporal partitioning rule (each partition can access al the
resources during its execution). Each partition mainly
reads/writes data into memory (caches, dram) and targets an
I/O, i.e sends read/write SystemC instruction to some
hardware components.

B. Execution Platform
The execution platform is composed of two parts: the

ARINC services connected to the hardware architecture.
ARINC services are modeled as state machines targeting
some hardware components. For example,
"get_partition_status" service mainly reads data from the
memory (operating mode, identifier, period, etc.) through the
CPU. Hardware components are also modeled as
interconnected state machines. In our example, the hardware
architecture is composed of one CPU, one I/O controller, one
main DRAM, four I/O interfaces and some buses (PCI, PCIe
etc.).

C. Simulation and results
To explore the execution platform resources usage, we

run the SystemC frames we extracted from the test
application (ARINC653 services and calculation part,
addition, affectation…). This extraction is currently
"handmade", but automatic extraction is on development.
Thanks to the SystemC simulation kernel, we run the stimuli
and extract the execution platform response in term of
resources consumed. In that example, we focus on the CPU
usage during the first 200ms (figure 5). Values are computed
each 50us. We also test our analyze process by setting a test
requirement: CPU usage has to be under 80%. We can see in
the figure 5 that the processor usage rate stays under this
value, then the proposed architecture matches that
requirement.

Figure 5. CPU usage of in each partition over the time

V. CONCLUSION AND FUTURE WORKS
In this paper, we have presented an approach to model an

execution platform into a simulation environment that
enables to evaluate its resources usage. This approach is
extensible, allowing to model execution platforms with
different levels of detail. The process takes advantage of two
standardized languages, AADL for high-level system
modeling, and SystemC-TLM for refined execution platform
description and simulation thanks to its simulation kernel.

Our modular approach, based on a database of SystemC
behavioral components, allows adding easily some new
components to this database in order to refine SystemC
execution platform description, and explore the hardware
resources usage under different angles thanks to the
viewpoints (timing, power consumption etc.). We saw our
analyze process allow us to check the compliancy between a
proposed execution platform architecture and given
requirements.

We are currently improving our method by comparing
our simulation results with real avionic applications
performance. Another work in progress is to automate the
extraction of software stimuli and their translation into

SystemC frames. We are also integrating the modeling of the
network connecting the processing modules in order to
describe a whole avionic execution platform At least, we
plan to target larger systems as systems of connected
systems.

VI. REFERENCES
[1] Open SystemC Initiative. IEEE 1666: SystemC Language

Reference Manual, 2005. www.systemc.org.
[2] S. A. E. (Society of Automotive Engineers) Architecture

analysis and design language. SAE AS5506, SAE, 2009
[3] J. Delange, L. Pautet, A. Plantec, M. Kerboeuf, F. Singhoff, F.

Kordon, "Validate, Simulate and Implement ARINC653
systems using the AADL", CM SIGAda Ada Letters, 2009.

[4] P. Dissaux, F. Signhoff, "the AADL as a Pivot Language for
Analyzing Performances of Real Time Architectures", 4th
European Congress ERTS Embedded Real Time Software,
2008.

 [5] L. Cai and D. Gajski, “Transaction Level Modeling: An
Overview”, Center for Embedded Computer Systems,
University of California, 2003

[6] S. Swan, "SystemC TLM models and RTL verification",
DAC, 2006

