
An Integrated Test Generation Tool for Enhanced
Coverage of Simulink/Stateflow Models

P. Peranandam∗, S. Raviram†, M. Satpathy∗, A. Yeolekar∗, A. Gadkari∗,S. Ramesh∗

∗ India Science Lab, General Motors Global R&D, GM Tech Center (India), Bangalore 560066
† General Motors Powertrain – India, GM Tech Center (India), Bangalore 560066

Email: {prakash.peranandam, sachin.raviram, manoranjan.satpathy, ramesh.s}@gm.com
{ambar.gadkari, avyeolekar}@gmail.com

Abstract—Simulink/Stateflow (SL/SF) is the primary modeling
notation for the development of control systems in automotive
and aerospace industries. In model based testing, test cases
derived from a design model are used to show model-code
conformance. Safety standards such as ISO 26262 recommend
model based testing to show the conformance of a software with
the corresponding model. From our experiments with various
test generation techniques, we have observed that their coverage
capabilities are complementary in nature. With this observation
in mind, we have developed a new tool called SmartTestGen
which integrates different test generation techniques. In this pa-
per, we discuss SmartTestGen and the different test generation
techniques utilized – random testing, constraint solving, model
checking and heuristics. We experimented with 20 production-
quality SL/SF models and compared the performance of our tool
with that of two prominent commercial tools.

I. INTRODUCTION

In model based testing, models form the basis for generating
test cases which can be used to show model-code confor-
mance. We have performed experiments with many test case
generation techniques such as, model checking, random test-
ing, local constraint solving (combination of random testing
and constraint solving) – on a number of industrial-strength
SL/SF models. We have also experimented with the heuristics
based guided coverage technique as in [1] which in particular
is effective in covering deep targets and targets involving non-
linear constraints. We observed that the coverages achieved
by the individual techniques in a broader sense complement
each other. Thus there is a case for integrating the differ-
ent techniques. With this aim in mind, we have developed
SmartTestGen (STGen), an integrated test generation tool
which uses various test generation engines, each engine im-
plementing a different technique. The test engines are invoked
in a particular order – a different ordering is possible though
– so that cheap targets are covered early by a cheaper engine.
We have considered 20 production-quality SL/SF models from
industry and observed that STGen outperforms two prominent
commercial tools.
The main contributions of our work are:
• Design and implementation of an integrated test case gen-

eration tool which integrates multiple test case generation

engines, all developed by us.
• Evaluation of our prototype tool over 20 engineering

models from the automotive domain and comparison of
our results with those of two commercial tools.

II. STATE OF THE ART TOOLS

Some of the prominent commercially available tools for
generating test cases from SL/SF models are: Reactis from
Reactive Systems Inc. [2], Embedded Tester from BTC [3]
and Simulink Design Verifier (SDV) from Mathworks [4]. The
Reactis tester uses a combination of random testing and guided
simulation. In Embedded tester, SL/SF models are first fed
to the TargetLink code generator which produces C-code.
Analysis on the generated C-code is used to produce test cases.
The main functions of SDV [4] are test case generation from
and proving model properties of SL/SF models. This tool can
also show un-reachability of certain model elements.

AutoMOTGen [5] is a non-commercial tool based on model
checking. REDIRECT [1] is a test generation tool which uses
a combination of (a) random testing, (b) DART (Directed
Automated Random Testing) [6] and (c) Hybrid concolic
testing [7].

III. SMARTTESTGEN – TEST GENERATION TECHNIQUES

In the following, we will discuss the individual test case
generation techniques, which we have integrated within the
STGen.

A. Model Checking based test generation

Models restricted to a subset of SL/SF are translated into
SAL [8]. Keeping a coverage criterion over the SL/SF model in
mind, the SAL model is instrumented with trap variables such
that, the reachability of a trap variable implies reachability of
a model element; reachable traces then become the test cases
[5]. This technique can also prove un-reachability of certain
model elements.

B. Random Testing

Given the input types and their ranges, random test se-
quences are produced and simulated on the model to check
if they cover model elements. The size of each sequence and
the number of sequences clearly affect the model coverage.978-3-9810801-8-6/DATE12/ c©2012 EDAA

Fig. 1. Example models to illustrate local constraint solving and heuristics.

C. Local Constraint Solving

In order to cover a target – a decision or branching point – in
a model, we can take a backward slice of the variables used
at the target to determine the relevant internal and external
input variables and to obtain a constraint which can be solved
to find a test sequence. Constraint solving can also be mixed
with random testing.

Figure 1(a) shows a small Simulink model with a discrete
integrator. Let xi denotes the value of variable x at time point
i with i ≥ 1. Assume the initial value of the integrator, i.e.,
x0 be zero, and inputs are from the range 0..2. Then we have
the following equations: for i ≥ 1, xi = xi−1 + ai; yi = true
when xi ≥ 100, otherwise it is false. Assume, we simulate the
model with the random input sequence [a1, . . . , a100], and, as
a result, we have: x100 = 90 and y100 = false. let us apply
the symbolic input sequence [a′1, . . . a

′
10] immediately after the

earlier random sequence. Then we have the constraint:

x′1 = x100 + a′1∧ x′2 = x′1 + a′2∧ . . .
x′10 = x′9 + a′10∧ (x′1 ≥ 100 ∨ . . . ∨ x′10 ≥ 100)

Let the above constraint be satisfiable, and we get the
values for [a′1, . . . a

′
10]. Suppose we replace symbolic vari-

ables by their concrete values, the new test sequence
[a1, . . . , a100]#[a′1, . . . a

′
10] – # being the concatenation oper-

ator – naturally makes the output y true. Here, we have used
a combination of random and constraint solving to cover the
target. Since we use constraint solving not from the initial
state but with respect to some point of an existing trace, we
call it local constraint solving. Random testing and constraint
solving can also be interleaved as in hybrid concolic
testing [7] to cover deep targets within SL/SF models.

D. Heuristics based Guided Coverage

Figure 1(b) represents a Simulink model, in which S1

and S2 are Simulink subsystems. Assume a random input
sequence – or such a sequence obtained by constraint solv-
ing – [(a1, b1), . . . (a10, b10)] makes x = true. Similarly,
assume there exists a test sequence [(a1, b1), . . . (a10, b10)]
which made y = true. Observe that the input sets which
compute x and y respectively are disjoint. With this knowl-
edge, we apply our heuristics and derive the input sequence
[(a1, b1), . . . (a10, b10)] which makes the output of the AND
block true.

Our heuristics library is equipped with a set of heuristics
which analyses the patterns of the targets and invoke appro-

Fig. 2. SmartTestGen Tool Architecture

TABLE I
CENTRALIZED INFORMATION TABLE

Block D C MC/DC Block Block Test
Handle. Cov. Cov. Cov. Path Category Vector
BH 1 0/0 2/4 0/2 Path H {{..},..}

...
BH n

priate heuristics to find test sequences to cover the respective
targets. Further details on heuristics can be found in [1].

IV. SMARTTESTGEN IMPLEMENTATION

Figure 2 outlines the architecture of STGen which takes a
SL/SF model and a test specification as inputs and produces
a test suite as the output. We use the four test generation
engines discussed in the previous section. STGen has three
major components a) Centralized Information table b) a set of
test generation engines, and (c) the Supervisor module. The
Supervisor module invokes the appropriate test case generation
engines, receives the test cases obtained by various engines,
and updates the Centralized information table.

A. Centralized Information Table

The Centralized information table (CI Tab) is designed to
contain all the data required to invoke the test generation
engines for effective test generation. This table is maintained
by the Supervisor module. Table I outlines its structure.

The first column of the table is populated with the block
handles – unique identification number – for all the applicable
blocks in the model; essentially these blocks contain candi-
dates for coverages. The following three columns respectively
contain the decision (D), condition (C) and MC/DC coverage
metrics. Each block in the table may contain many number
of coverage points, referred to as targets. For example, Logic
and Relational blocks are measured only for decision coverage
and have two targets each. Column 5 contains the path of the
particular block; a path is a string which identifies the position
of a particular block in the hierarchy. A path signifies the

Inputs: MD // Given SL/SF model
Tspec // Test specification given by user

Outputs: TS // Test suite
UnTar // Unreachable targets
CI Tab ← initializeCovTable(MD,Tspec);
MD1 ← instrumentModel(MD);
TS1 ← useRandomTestingEngine(MD1);
CI Tab ← updateCovTable(MD1,CI Tab, TS1);
CI Tab ← classifyBlocks(MD1,CI Tab, user spec);
Let TE be set of test gen. engines excluding random;
while TE 6= ∅ {

E ← selectEngine(MD1,CI Tab,TE);
TS2 ← useEngine(MD1,E, TS1, CI Tab);
CI Tab ← updateCoveTable(MD1,CI Tab, TS2);
CI Tab ← reClassifyBlocks(MD1,CI Tab);
TS1 ← updateTestSuite(TS1, TS2);
TE ← TE − {E}; } // end while

unTar ← MCforUnreachability(MD, CI Tab);

Fig. 3. Functionality of the Supervisor Module

nesting level of a block which is also used to identify which
technique would be used to cover this block. Column 7 lists
the set of test cases that covers the associated block.

Given a set of SL/SF blocks and their context in the
model, a classification algorithm statically estimates which
test generation engine(s) is (are) likely to cover which targets;
this is determined by using a rule set obtained from empirical
knowledge. The user has also the option of overriding this rule
set. Column 6 of the table stores this information.

B. Test generation engines

In STGen, we have used three test generation engines
which essentially implement the four techniques discussed
in the previous section. A random test generation
engine generates random input sequences based on the input
types and their ranges. A SAL based model checking
engine is used to cover given targets by using model
checking. A constraint solving and heuristics
engine extends a set of given test cases by using local
constraint solving and heuristics to cover a set of given targets.

C. Supervisor Module

This module controls the test generation process by invoking
the different test generation engines. Figure 3 outlines the main
activity of the Supervisor Module.

Routine initializeCovTable() takes the given
SL/SF model, finds the targets in the model as per the test
specification, and initializes the entries in CI_Tab. Next,
routine instrumentModel() instruments the model; in-
strumentation is required to capture all information associated
with a simulation run. Depending on the external inputs and
their ranges, next a set of random input sequences are obtained
(Test suite TS1). The instrumented model is then simulated
with these test cases which results in some coverage. Rou-
tine updateCovTable() updates the CI_Tab accordingly.

Routine classifyBlocks() fills up the Column 6 of the
CI_tab as discussed earlier in this Section.

Depending on the nature of the uncovered targets in
CI_Tab, routine selctEngine() selects the appropriate
test generation engine from the set of the unused engines.
The information in Column 6 of the CI_Tab is used for
this selection in the sense that the engine which could cover
maximum targets is selected. The selected engine is then used
to cover targets. The current test generation engine produces
some new test cases (TS2); the coverage table and the current
test suite are updated accordingly. Since some of the block
targets are covered, Column 6 of the CI_Tab is updated to
reflect this fact (routine reClassifyBlocks()). Then the
next appropriate test generation engine is selected, and this
step is repeated till all engines are used. Finally the model
checking engine is invoked again to find if the uncovered
targets can be proven to be unreachable. At the end of the
procedure, we have the test cases for all the covered targets
and the set of unreachable targets.

Currently, we use three test generation engines: (a) the
random testing engine, (b) the constraint solving and heuristics
based engine, and (c) the model checking engine. Constraint
solving and Heuristics techniques are integrated because the
former is required to be invoked from within the latter to carry
out heuristic steps. At present these engines are invoked in a
static order – (i) random, (ii) heuristics based engine and (iii)
model checking.

V. EXPERIMENTAL RESULTS

STGen has been implemented using the Matlab scripting
language m-script. Twenty SL/SF design models from various
domains of automotive engineering such as Active safety (AS),
Performance traction control (PTC), Powertrain (PT), Heating
ventilation and cooling (HVAC) and Electronic stability con-
trol (ESC) were used to evaluate the performance of STGen.
The model sizes vary from 37 blocks to 901 SL/SF blocks.
These models contain Stateflow blocks, multi-dimensional
inputs, legacy code, non-linear blocks like multiplication and
division, dynamic lookup tables and hierarchical triggering
of blocks. The most widely used structural coverage criteria
like Condition, Decision and MC/DC were given as the test
specification for this experimentation. We have used Simulink
Verification & Validation (V & V) tool box [9] as our common
measuring platform. All the experiments are carried out on a
machine with Intel Xeon 3 GHz and 3.5 GB RAM running
Windows XP professional. The tool versions used are: BTC
Embedded Tester 2.7, Reactis 2009.2 and Matlab R2010a.

We have compared the results of STGen with those of
Reactis and Embedded Tester (ET). The comparison results are
shown as graphs in Figure 4. The graphs (a), (b) and (c) respec-
tively show the decision, condition and MC/DC coverages of
each model. For each model, the first bar shows the coverage
of STGen, the second bar shows the cumulative coverage
of the random testing and the constraint solving
and heuristics engines. Let us refer to the combination
of both the above engines as EngA. The third bar shows the

Fig. 4. Comparison of STGen results with those of Reactis and ET for (a)
Decision coverage, (b) Condition coverage and (c) MC/DC Coverage

coverage obtained by the model checking engine, referred
to as EngB. The Reactis coverage has been shown by a
horizontal line, and the the ET coverage by a star symbol.
Naturally Cov(STGen) = Cov(EngA) ∪ Cov(EngB).

Upon analysis of the results for the three coverage metrics,
in 43% of the cases, EngA and EngB complement each
other in the sense that |cov(STGen)| > |cov(EngA)| and

|cov(STGen)| > |cov(EngB)|, where | | denotes the set
cardinality operator. For 21% of the cases cov(EngA) =
cov(EngB) = cov(STGen), and for the remaining cases,
the coverage by one engine subsumes the other.

As regards to the decision coverage, for 11 models STGen
achieves higher coverage than Reactis, while in the remain-
ing cases the coverages obtained are equal. Almost similar
phenomena is observed in case of condition coverage. As far
as MC/DC is concerned, STGen is superior to Reactis in 10
cases, coverages are equal in 6 cases, and in 2 cases Reactis
is marginally superior.

Only for a single model, ET outperformed STGen for
decision coverage. In all other cases, STGen results were
either superior or equal to ET results.

We have verified that the decision coverage of three mod-
els PT1, HVAC2 and PTC3 shown in Figure 4 are already
saturated. Using the model checking technique of STGen, we
have derived that the remaining targets are un-reachable. This
advantage is also observed in case of models PT1, HVAC2 and
PTC3 for condition coverage, and in case of models PT1 and
HVAC2 for MC/DC coverage.

In our experimentation we observed that STGen consumes
more time than both Reactis and ET. In particular, for twelve
models STGen consumes relatively more time, however, higher
coverage was achieved for eight of those models.

VI. CONCLUSION

The main observations of our experiments are: (a) coverage
results of individual test generation techniques, in a broader
sense, complement each other and provides better results if
regulated effectively, (b) un-reachability results enhances the
quality of test adequacy, and (c) when models are safety-
or business-critical, we believe, additional coverage at the
expense of time is worthwhile.

REFERENCES

[1] Satpathy M, Yeolekar A, Ramesh S. 2008. Randomized Directed Testing
(REDIRECT) for Simulink/Stateflow Models, ACM/IEEE International
Conference on Embedded Software (EMSOFT’08), Atlanta.

[2] Reactis. Available at: http://www.reactive-systems.com.
[3] Embedded Tester. BTC Embedded Systems AG. Available at:

http://www.btc-es.de/.
[4] The Mathworks, Simulink Design Verifier 1: User’s Guide, 2007-08.
[5] Gadkari A, Yeolekar A, Suresh J, Ramesh S, Mohalik S, Shashidhar KC.

AutoMOTGen: Automatic Model Oriented Test Generator for Embedded
Control Systems. Proceedings of the CAV08, 2008; 204-208.

[6] Godefroid P, Klarlund N, Sen K. 2005.DART: Directed Automated
Random Testing, In Proc. of the PLDI’05, Chicago, pp. 213-223.

[7] Majumdar, R and Sen, K. Hybrid Concolic Testing, In Proceedings of
the 29th ICSE, Washington, DC, USA, pp. 416-426.

[8] SRI International. SAL home page http://sal.csl.sri.com
[9] The Mathworks, Verification and Validation Tool Box. Available at:

http://www.mathworks.com/verification-validation/.

