
Automatic Generation of Functional Models for
Embedded Processor Extensions

Fei Sun
Tensilica Inc. 3255-6 Scott Boulevard, Santa Clara, CA, 95054

Abstract—Early architectural exploration and design valida-
tion are becoming increasingly important for multi-processor
systems-on-chip (MPSoC) designs. Native functional simulations
can provide orders of magnitude in speedup over cycle or instruc-
tion level simulations but often require dedicated maintenance.

In this work, we present a tool called NATIVESIM to auto-
matically generate the functional models for embedded processor
extensions. We provide a mechanism to address the challenge
of modeling a subset of the processor architecture, with no
visibility to the rest of the processor. We illustrate the problem
of modeling the processor extensions when the endianness of the
target processor is different from the host system and provide
a solution to it. Experiments on several benchmark programs
indicate that native execution of the target application with the
functional models of the processor extensions can achieve large
simulation run-time speedup over simulations based on either
cycle accurate models (up to 14102× with an average of 3924×)
or compiled functional models of an entire processor (up to 103×
with an average of 31.6×).

I. INTRODUCTION

Native simulation of the functional models of the MPSoC
system and native validation of the target applications become
popular in the early stage of the design cycle. However, as
implementation details are added to the design, the native
models quickly become obsolete. Keeping them synchronized
with the design is a very tedious and error prone process.

This problem is more challenging on configurable and ex-
tensible processors [1], [2], whose instruction set architecture
(ISA) can be extended during the design process. Because
the processor extensions such as custom instruction prototypes
and custom data types are referenced directly in the target
applications (i.e. applications ported on the configurable and
extensible processors) and the native compiler does not have
any knowledge of such extensions, the target applications
become target dependent and cannot be compiled by the the
native compiler and executed on the host system.

In this paper, we present a tool, NATIVESIM, to auto-
matically generate the functional models for the embedded
processor extensions in the form of C or C++ libraries. The
functional models are called Cstubs. The target applications,
linked with Cstubs, can be modeled natively with little or
no modification. The designers have the freedom to integrate
Cstubs in their MPSoC functional models, which significantly
reduces the workload of maintaining the functional models.

Because Cstubs accurately model the processor extensions
during application execution, they may also be used as vali-
dation tools to validate the embedded processor extensions or
the target applications ported to the embedded processor.

Automatically generating the functional models of embed-
ded processor extensions fills a gap in system exploration,
eliminating the need to rewrite models as implementations are

978-3-9810801-8-6/DATE12/ c⃝2012 EDA

fine tuned. It also provides a fast validation technique for the
embedded processor extensions and the target applications. To
the best of our knowledge, this tool is the first one to extract
the functional models from embedded processor extensions.

II. RELATED WORK

Native simulation, untimed or loosely timed modeling has
been the focus of research for years. A good overview of the
transactional level modeling (TLM) from instruction-accurate
interpretation to native simulation is contained in [3].

Hybrid simulation techniques are proposed in [4], [5] to
execute the target independent portion of the application on
the host system and execute the target dependent portion on an
ISS. On extensible processors, however, the target dependent
portion is usually the timing critical part of the application.
The Cstubs generated by our tool enable simulating the
target dependent portion natively, which helps to improve the
simulation speed further.

Native simulation techniques annotated with timing infor-
mation to estimate the performance of the target application
are presented in [6], [7]. The functional models presented
as Cstubs could possibly be integrated into those native
simulators to extend their capabilities to handle configurable
and extensible processors.

III. METHODOLOGY

In this section, we describe our tool, NATIVESIM, to
generate the functional models from the embedded processor
extensions. We first outline each part of NATIVESIM, and
then present the details of several modules.

An embedded processor can be extended by adding custom
instructions, custom register files, custom states, etc. in the
form of a processor description language. The extensions
are referenced either explicitly or implicitly in the target
application. NATIVESIM generates the C/C++ models of
such extensions so that the target applications utilizing the
extensions can be compiled and executed natively on the host
system.

Fig. 1 describes the flow of generating the functional models
of the processor extensions. The tool first reads in a description
of the processor extension and analyzes the characteristics
of the extension (module 1). It sends different extensions to
different functional model generation modules.

Similar to the general-purpose register file and its built-in
types (e.g. int, short, char), processors can be extended
with custom register files and custom types. The custom types
can be referenced in the target application just like the built-in
types. The custom register file analyzer (module 2) reads in
the description of the custom register files. The custom type
generator (module 3) reads in the description of the custom
data types and generates a model for each custom type. They
are described in Section III-A. Unlike the custom register
files, the custom states are used implicitly by the custom



Fig. 1. Functional model generation flow of processor extensions

instructions. The custom state generator (module 4) generates
the functional model for all architectural visible states of the
processor. It is described in Section III-B.

A custom instruction is not included in the instruction-set of
the base processor. It is implemented by the designers to speed
up a specific application. The custom instruction generator
(module 5) generates the functional models of the computation
part of the custom instructions. The module is described in
detail in Section III-C. If the custom instruction is a load
or store instruction, aside from the computation portion, the
instruction needs to access the memory. Thus, the load/store
model needs to be attached to the instruction model (module
6), which is described in Section III-D. If the endianness of
the host system is different from the endianness of the target
processor, the load or store instruction may not retrieve or
save the desired custom type values in the correct order. A new
processor extension construct is introduced to assist the tool in
identifying such situations and fix the cross endian simulation
issue (module 7). A detailed description of the construct can
be found at Section III-E.

The custom instructions are inserted into the application
code through the means of custom instruction prototypes,
which hide the architecture invisible portions of the custom
instructions. An instruction prototype may contain multiple
custom instructions, which complicates the functional model
generation (module 8). Section III-F describes the functional
model generation of instruction prototypes in detail.

Finally, the functional model writer (module 9) combines
the functional models of all the processor extensions into a
unified library in C or C++.

A. Custom register file analyzer and custom type generator
An embedded processor may contain multiple register files,

with one or multiple data types mapped to each register file.
Similar to the built-in data types short and int, a custom
type variable can be used directly in the application code. The

custom type generator (module 3 in Fig. 1) evaluates each
custom type and the corresponding register file, and generates
the custom type model, which is responsible for storing the
variable values in their memory form.

Because only custom instructions read from and write to
custom register files, the functional models do not model cus-
tom register files directly. Instead, they are modeled implicitly
in the custom instruction models and their interaction with the
custom type models.

A custom type variable must be aligned to the same
boundary as on the target architecture. Its size in memory
may not be the same as the size of its corresponding custom
register file. When the value of a custom type is loaded from
memory, the data may need to be expanded to the size of the
custom register file (e.g. sign extension) by the load instruction
specified by the designer. It can be easily done in the compiler
for the target architecture. However, the functional models of
the processor extension have no visibility into the application
code utilizing the processor extensions. Thus, it is modeled
conservatively that any instruction prototype that references a
custom type value automatically converts the value to a register
file value before the computation and converts it back to a
custom type value after the computation. It is described in
detail in Section III-F.

B. Custom state generator
A custom state behaves like a single entry custom register

file in hardware, but their software implications are very
different. Because a custom state contains one copy of data, the
custom instruction can infer the accessed custom states from
its opcode. The custom state generator (module 4 in Fig. 1)
creates a model for all states of the processor. In a single
processor system, the processor states are unique throughout
the system. Thus, only one copy of the model is needed. In
a multi-processor system, the same processor may be used
in different parts of the system. To keep a separate copy of
the processor states for different processors, the models are
marked as thread local variables and are created and initialized
in the system simulation environment dynamically.

C. Custom instruction computation generator
The instruction set of an embedded processor may be

extended with custom instructions. The computation portion of
a custom instruction is usually written in a language similar to
the hardware description language (HDL), which is a parallel
processing language. In functional modeling (module 5 in
Fig. 1), a bit accurate data flow graph (DFG) is created to
capture the parallel computation. DFG is a unidirectional graph
composed of nodes and edges. The nodes are computation
operators such as addition, subtraction, and bit-wise operators.
The edges are wires connecting the computation operators to
represent the data flow between them. The flow to generate
an optimized DFG is illustrated in Fig. 2. NATIVESIM reads
in the description of a custom instruction and builds an initial
DFG (block 1 in Fig. 2). It then rewrites the DFG based on
the states, register files, and interfaces the operation accesses
(block 2 in Fig. 2).

When several custom instructions perform similar compu-
tation, it is desirable to share hardware for them. Thus, a
hardware block may be used to compute the result of several
custom instructions, each activates a portion of the hardware
block. The hardware block is denoted as a semantic. However,
in functional modeling, each custom instruction is modeled
separately. It is preferrable to duplicate the hardware block
for each custom instruction and specialize the hardware block



Fig. 2. Data flow graph generation for custom instructions.

Fig. 3. Block diagram of the interface between the functional models of the
load/store custom instructions and the host memory.

for it, i.e. only the logic activated by the custom instruction
remain. Step 3 in Fig. 2 specializes the DFG for one custom
instruction.

After that, the DFG is simplified by dozens of optimization
passes (Step 4 in Fig. 2). Each node in the DFG is evaluated
for optimization opportunities. Because one optimization may
trigger other optimization opportunities, the optimization tech-
niques are performed iteratively. The optimization is complete
when no simplification opportunity is identified, or the target
number of iterations is met. The optimized DFG is used in
the instruction prototype generation, which is described in
Section III-F.

D. Load/store model attachment
If a custom instruction is a load or store instruction, besides

accessing the register files and states, it reads data from
memory or writes data to memory. In the target program,
the same memory may be accessed through reads and writes
of standard C variables, through reads and writes of custom
type variables or through instruction prototypes. The native
simulation has no control of the standard C variables so must
insure that the instruction prototypes and the custom type
variables access the memory in a manner that is consistent
with the standard C portions of the application. Thus, a model
of the load/store unit is attached to the load/store instruction
model, as shown in block 2 of Fig. 3.

The load/store unit model is divided into two parts. The first
part retrieves data from the host memory for load instructions
and writes data to the host memory for store instructions. The
second part performs data manipulation usually done by the
the load/store unit, such as rotation, sign extension, raising
exception on unaligned address. The DFG of such data manip-
ulation is built and merged into the DFG of the computation
portion of the load/store instructions. The second part also
handles the cross endian simulation issues, as described in
Section III-E.

E. Cross endian fixer
If the target processor is big endian and the host system is

little endian, the full fledged ISS builds up a target memory
system layer and models the processor on top of it. It keeps
track of the endian difference and swaps the memory data
order at byte boundaries. However, in functional modeling,
even though the application is written for the big endian target
processor, it is compiled and executed on the little endian host
system directly. This memory model mechanism is completely
different from the one in ISS. If the standard C application

code is endian dependent, it must be refactored to be endian
independent. However, even if the C application is endian
independent, the custom instruction may be endian dependent.
When a custom instruction loads data from memory, it expects
that the data in memory are loaded in the order of the target
processor, which may not be the same as the actual order on
the host system.

The Cstubs model the processor extensions implemented
on the target processor, while the rest of the processor and
the memory follow the convention of the host simulation
environment. The order of the data values needs to be swapped
between the host environment and the target processor exten-
sion models, so that they appear in the same order as in the
target processor to the custom instructions, as shown in block
2-a of Fig. 3.

However, the functional models of the custom instructions
in C/C++ code are still compiled and executed on the host sim-
ulation environment. The swapping of bytes is not performed
within one data value. Instead, the swapping is performed
across multiple data values. Thus, the swapping is not needed
when an instruction loads or stores one data element. It
is required if the instruction loads or stores multiple data
elements. This is different from the cross endian modeling
performed by ISS.

In order to make the functional models aware of the
necessary swapping patterns, a new construct is added to
the processor extension description. NATIVESIM reads in the
construct and automatically swaps the data between the custom
instructions and the memory when the endianness of the host
system and the target processor are different, as shown in
block 2-a of Fig. 3. The construct has no effect otherwise.
The construct is defined as follows. It associates a swapping
pattern with one or more custom instructions. op-name is
the opcode name of a custom instruction. swap-pattern
describes the swapping pattern on the memory interface.

cstub swap {op-name [, op-name]+} {swap-pattern}

F. Instruction prototype generator
To utilize the custom instructions in an application, the

designer needs to reference the instruction prototypes in the
application, which are also called as instruction intrinsics.
An instruction prototype consists one or several instructions
that perform one computation task. Instruction prototypes
hide the detailed hardware implementation from the software
application designer. Thus, the same software source code can
be executed on processors with different extensions.

Because the instructions in an instruction prototype are
closely related, the instruction prototype generator creates one
DFG for each instruction prototype by inlining the DFGs of
its composing custom instructions generated in module 5 of
Fig. 1. It may reveal further optimization opportunities to
reduce the size of the DFG of the instruction prototype.

As described in Section III-A, the custom type variables
reside in memory while the custom register file variables
reside in the register files. Their values may be different.
For example, the value -1 of type short is 0xffff when
it is in memory, but is 0xffffffff when it is in a 32-
bit register file. The application code may modify the values
residing in memory without going through custom instructions.
However, the values in custom register files are only accessed
by custom instructions. To avoid the confusion of modeling
two representations of the same value, only the custom type
value in memory is modeled.

However, the custom instructions expect the register file
inputs and outputs to be the values in the register files. Thus,



TABLE I
RUN TIME COMPARISON BETWEEN CSTUBS, ISS, AND TURBOXIM IN SINGLE PROCESSOR SCENARIO

Benchmark Cstubs (s) ISS (s) speedup TurboXim (s) speedup # custom instrs # states
MP3MCH decoder 24.7 7041 285× 86.2 3.5× 400 11
AC3 encoder 33.6 15488 461× 99.6 3.0× 400 11
MS10 decoder 12.5 1403 112× 37.3 3.0× 400 11
OSPF 10.6 50336 4749× 161 15.2× 7 15
IP REASSEMBLY 7.7 41039 5330× 344 44.7× 6 5
ROUTELOOPUP 6.7 8432 1259× 119 17.8× 4 8
NAT 4.6 64871 14102× 385 83.7× 10 14
QOS 3.6 21303 5918× 369 103× 7 11
TCP 9.4 29153 3103× 100 10.6× 10 20

before any custom register file value is used in a custom
instruction, the value needs to be converted from its custom
type value in memory via the load instruction prototype. After
the custom instruction computes a custom register file value,
it is converted back to the custom type value via the store
instruction prototype. This is achieved in the functional models
of the instruction prototypes by inserting the DFG of the
load instruction prototype before each register file input and
inserting the DFG of the store instruction prototype after each
register file output.

IV. EXPERIMENTAL RESULTS

We have implemented NATIVESIM, which reads in the
processor description in Tensilica Instruction Extension (TIE)
language [8] and generates the functional models of the
processor extensions. The tool is integrated in the Tensilica’s
Xtensa processor generation flow.

We compared the simulation speed between the functional
models of processor extensions (Cstubs), the cycle accurate
models without memory modeling (ISS), and the compiled
functional models of an entire processor (TurboXim). Unlike
Cstubs, which only model the processor extensions, TurboXim
models the entire processor. It has the capability of compiling
the frequently executed target application code traces on the
host system and executing them natively.

The comparison is performed on an Intel Core i7-2600 (4
core with hyper-threading) processor with 8GB memory. The
applications modeled using Cstubs are compiled using GNU
g++ 4.4.4 with -O3 optimization. The same applications mod-
eled using ISS and TurboXim are compiled using xt-xcc 9.0
with comparable optimization. In all performed experiments,
native execution of the target applications linked with Cstubs
generate the same result as simulating the same applications
in ISS or TurboXim.

Table I compares the simulation run time in the single
processor scenario. All simulations utilize one process and one
thread. All benchmarks are manually ported to the Xtensa pro-
cessors and heavily utilize the embedded processor extensions.
The number of added custom instructions and custom states
are specified in the last two columns of the table.
MP3MCH decoder, AC3 decoder, and MS10

decoder are three audio codecs ported to the Xtensa
processors with audio extensions. The Cstubs achieve an
average speedup of 286× over the ISS and 3.2× over the
TurboXim. OSPF, IP_REASSEMBLY, ROUTELOOKUP, NAT,
QOS, and TCP are obtained from EEMBC [9] networking
version 2.0 benchmark suite. They are frequently executed
kernels in the networking domain. The processors are
extended separately to speed up each kernel. The Cstubs
achieve an average speedup of 5744× over the ISS and 45.8×
over the TurboXim. The overall Cstubs speedup is 3924×
over the ISS and 31.6× over the TurboXim. Higher run-time

speedup is obtained on EEMBC networking benchmarks
because the benchmarks contain self-checking code that does
not take advantage of the processor extensions. In the audio
codecs, however, the majority of the application run time
is spent on the custom extensions. Custom extensions may
have complicated semantics that need to be emulated whether
TurboXim or Cstubs is used. Standard C code can be better
optimized in Cstubs using the host compiler.

V. CONCLUSIONS

Fast simulation is essential for architectural exploration
early in the design cycle and the validation of both the
embedded processor extensions and the target applications late
in the design cycle. In this paper, we present a tool to auto-
matically create the functional models of embedded processor
extensions suitable for native simulation. Our experiments
demonstrate that natively executing the target applications
with the functional models of the processor extensions can
achieve orders of magnitude simulation speedup over both the
cycle accurate models and the functional models of the entire
processor.

REFERENCES

[1] XtensaTM microprocessor. Tensilica Inc. (http://www.tensilica.com).
[2] DesignWareTM ARCTM core. Synopsys (http://www.synopsys.com).
[3] F. Pétrot, M. Gligor, M.-M. Hamayun, H. Shen, N. Fournel, and P. Gerin,

“On MPSoC software execution at the transaction level,” IEEE Design
& Test of Computers, vol. 28, no. 5, pp. 32–43, May 2011.

[4] A. Muttreja, A. Raghunathan, S. Ravi, and N. K. Jha, “Hybrid simulation
for energy estimation of embedded software,” IEEE Trans. Computer-
Aided Design, pp. 1843–1854, Oct. 2007.

[5] L. Gao, K. Karuri, Stefan, and Kraemer, “Multiprocessor performance
estimation using hybrid simulation,” in Proc. Design Automation Conf.,
June 2008, pp. 325–330.

[6] P. Gerin, M. M. Hamayun, and F. Pétrot, “Native MPSoC co-simulation
environment for software performance estimation,” in Proc. Int. Conf.
Hardware/Software Codesign and System Synthesis, Oct. 2009, pp. 403–
412.

[7] Y. Hwang, S. Abdi, and D. Gajski, “Cycle-approximate retargetable per-
formance estimation at the transaction level,” in Proc. Design Automation
& Test Europe Conf., Mar. 2008, pp. 3–8.

[8] H. A. Sanghavi and N. B. Andrews, Processor Description Languages,
P. Mishra and N. Dutt (Editors). Morgan Kaufmann Publishers,
Burlington, MA, 2008, ch. 8, pp. 183–216.

[9] EEMBC. EDN Embedded Microprocessor Benchmark Consortium Inc.
(http://www.eembc.org).


