
Leveraging Reconfigurability to Raise Productivity
in FPGA Functional Debug

Zissis Poulos1, Yu-Shen Yang2, Jason Anderson1 , Andreas Veneris1, Bao Le1

1Dept. of ECE, University of Toronto, Toronto, Canada. {zpoulos, janders, veneris, lebao}@eecg.utoronto.ca
2Vennsa Inc., Toronto, Canada, terry@vennsa.com

Abstract—We propose new hardware and software techniques for FPGA
functional debug that leverage the inherent reconfigurability of the FPGA
fabric to reduce functional debugging time. The functionality of an FPGA
circuit is represented by a programming bitstream that specifies the
configuration of the FPGA’s internal logic and routing. The proposed
methodology allows different sets of design internal signals to be traced solely
by changes to the programming bitstream followed by device reconfiguration
and hardware execution. Evidently, the advantage of this new methodology
vs. existing debug techniques is that it operates without the need of iterative
executions of the computationally-intensive design re-synthesis, placement
and routing tools. In essence, with a single execution of the synthesis flow, the
new approach permits a large number of internal signals to be traced for an
arbitrary number of clock cycles using a limited number of external pins.
Experimental results using commercial FPGA vendor tools demonstrate
productivity (i.e. run-time) improvements of up to 30× vs. a conventional
approach to FPGA functional debugging. These results demonstrate the
practicality and effectiveness of the proposed approach.

I. INTRODUCTION

As the cost of state-of-the-art ASIC design continues to escalate, field-
programmable gate arrays (FPGAs) have become widely used platforms
for digital circuit implementation. FPGAs carry several advantages over
ASICs, including reconfigurability and lower NRE costs for mid-to-high
volume applications. While there remains a gap between FPGAs and
ASICs in terms of circuit speed, power and logic density [1], innovations
in FPGA architecture, circuits and CAD tools have produced steady
improvements on all of these fronts. Today, FPGAs are a viable target
technology for all but the highest volume or low-power applications.

The reconfigurability property of FPGAs reduces the cost associated
with fixing the various functional errors that can occur during the
design cycle. With ASICs, designers spend considerable time in sim-
ulation/verification before tape out, including, for example, simulation
with post-layout extracted capacitances and cross-talk noise analysis.
Conversely with FPGAs, designers rarely do post-routing full delay
simulations. Instead, reconfigurability allows design iterations to include
actual silicon execution. Designers verify their design in hardware using
the same (or a similar) FPGA they intend to deploy in the field. When
design errors are discovered, the design’s RTL is altered, re-synthesized
and executed in hardware.

The time needed for design cycles in FPGAs is dominated by re-
synthesis (logic synthesis, technology mapping, placement and routing)
tool run-times. FPGA placement and routing can take hours or days
for the largest designs [2], and such run-times are an impediment to
designer productivity. With this observation in mind, in this paper, we
present new techniques for FPGA functional debug that exploit the
reconfigurability concept to raise productivity by reducing the number
of compute-intensive design re-synthesis runs that are needed.

At a high-level, our approaches work as follows: Say, for example, an
engineer wishes to trace a large number, N, of a design’s internal signals
during functional debug, using a small number of available external pins,
m (N >>m). We augment the design with additional circuitry that allow
the N signals to be traced with ⌈N/m⌉ FPGA device re-configurations
and hardware executions. The key value of our approach is that the
design is only synthesized, placed and routed once, rather than ⌈N/m⌉
times. This is achieved by selecting the different sets of m trace signals
through modifications to the FPGA’s configuration bitstream (i.e. the
post-routed design).

While the proposed approach leverages reconfigurability to reduce
loops through the design process, a further contribution of this work
is a new multiplexer (MUX) design scheme for FPGAs that uses
significantly less area than a traditional MUX design. The new MUX
is suitable for use in cases wherein the MUX select inputs are changed
using the FPGA bitstream, instead of using normally routed logic
signals. We also present a design variant to handle the scenario where
limited external pins are available for debugging.

...

f4f3f1f2

s

s

f1
f2
f3
f4

s
s
s

4-LUT
DFF

M
U

X

SRAM cell

Logic block
clk

M
U

X

(a) FPGA logic structures

SRAM config cells

...
in

i1
i2
i3

M
U

X BUF

ss s . . .

(b) Routing structures

Fig. 1. FPGA hardware structures.

As compared with design re-synthesis for each group of m signals,
experimental results demonstrate that our approach improves run-time
by up to 30×. Our approach also offers stability in the timing charac-
teristics of the circuit being debugged.

The remainder of this paper is organized as follows. Section II reviews
background on FPGA architecture and related work on FPGA functional
debug. The proposed approach to debugging is described in Section III,
as well as various architectures to meet different resource constraints.
Section IV provides experimental results. Conclusions and suggestions
for future work are offered in Section V.

II. BACKGROUND

A. FPGA Architecture

An FPGA is a two-dimensional array of programmable logic blocks
and a configurable routing network. Combinational logic functions in
FPGAs are implemented using K-input look-up-tables (LUTs), which
are small memories capable of implementing any logic function of up to
K variables. As shown in Fig. 1(a), each LUT in an FPGA logic block
is normally coupled with a flip-flop, which can optionally be bypassed.
SRAM configuration cells are programmed to specify the truth table
of the logic function implemented by the LUT, as well as control the
flip-flop bypass MUX.

Fig. 1(b) shows a simplified view of a programmable routing struc-
ture. The inputs to the MUX attach to logic block output pins or routing
conductors in the FPGA device (metal wire segments). The output of
the buffer can drive a routing conductor or a logic block input. Again,
SRAM configuration cells drive the select inputs on the MUX, and the
SRAM values specify a particular input whose signal is driven through
the buffer.

Fig. 1 is intended to illustrate that the logic functionality and routing
connectivity of an FPGA depends entirely on values in the programming
bitstream that is shifted into the FPGA’s SRAM configuration cells
(which are connected in a scan chain). The programming bitstream
also specifies the initial value (logic-0 or logic-1) for each flip-flop in
the device. Our approaches to FPGA functional debug rely on making
changes to the programming bitstream, without having to re-run time-
consuming FPGA synthesis, place and route tools.

B. FPGA Functional Debug

There are two major approaches to perform functional debug with
an FPGA. The first approach is to implement the complete design
in an FPGA device. This is suitable for small designs that do not
need to be executed at a high frequency. Because of the reconfig-
urability, debugging modules can be easily added or modified with
no cost. A set of circuit modifications that enhance debug capability
is presented in [3]. It provides software-like debug features, such as
watchpoints and breakpoints. However, any modification to watchpoints
or breakpoints requires recompilation of designs – a run-time intensive
task. In a somewhat similar manner to what is proposed in this work,

978-3-9810801-8-6/DATE12/ c©2012 EDAA

16 32 64 128 256
0

1000

2000

3000

Traced Nodes

#
 A

L
M

s
 +

 #
 R

e
g
is

te
rs

Fig. 2. Area overhead of SignalTap.

w
w
w

i0
i1
i2

out

w
...

wim

s0s1 sn
. . .

Fig. 3. Multiplexer for signal selection.

Graham et al. improve debugging productivity by instrumenting FPGA
bitstreams [4]. An embedded logic analyzer is inserted into the design
without connecting to any signals. After place-and-route, the signals
targeted for tracing are routed to the logic analyzer by modifying
bitstreams using vendor tools. Although the approach provides flexibility
in choosing the desired internal signals for tracing, it remains a very
complicated procedure. Furthermore, when different sets of signals
are selected for tracing, re-routing needs to be performed, which can
significantly affect the timing closure of the design.

Xilinx’s ChipScope tool provides features to trace different signals
without re-executing place and route [5]. Special logic analyzer hard-
ware is inserted into a design to trace internal signals during design
execution. The captured signals can then be displayed using Xilinx’s
ChipScore Pro Analyzer Tool, running on a connected host computer.
While the approach bears similarity to our own, the techniques and tools
associated with ChipScope are proprietary and not disclosed publicly.

The second approach to using FPGAs for functional debug is that
of embedding reconfigurable logic into SoCs to enhance debug ca-
pability [6], [7]. The programmability of reconfigurable logic can be
applied to implement various debug paradigms, such as assertions,
signal capture and what-if analysis. Those paradigms help engineers
to understand the internal behavior of the chip and provide at-speed
in-system debug. Engineers can instrument the reconfigurable logic on-
the-fly, as needed. However, each change to the debug circuitry incurs
significant cost and overhead.

Finally, several works on selecting the signals that one may wish
to trace for debugging have been proposed [8], [9], [10]. While most
works target ASIC designs, the work in [10] is designed specifically
for FPGAs. It predicts which signals may be useful for debugging and
automatically instruments the design. Any prior work on signal selection
could be used in conjunction with our approach.

III. A RECONFIGURABILITY-DRIVEN APPROACH TO FPGA
FUNCTIONAL DEBUG

This section presents a new approach to enhance the observability
of FPGA designs for functional debug. To debug functional errors in
an FPGA design, the design is first synthesized, placed and routed
on the target FPGA device. The programming bitstream is generated,
programmed into the FPGA, and execution commences. If unexpected
behavior is observed, a set of internal signals is selected to be traced
by a logic analyzer to provide more information. In the conventional
debug process, the design needs to be recompiled and the FPGA
needs to be reprogrammed. Fig. 2 shows the area overhead of Altera’s
SignalTap [11] logic analyzer vs. the number of signals being tapped.
One can see that the overhead grows significantly as the number of
monitored signals increases. Due to the area overhead of the logic
analyzer, usually only a small set of signals are traced at any one time.
The process is repeated until the values for all signals of interest are
acquired. The main issue with this process is that it can take hours to
compile large designs [12]. As such, repeated compilation can introduce
significant time overhead and prolong the overall debug process.

To alleviate the issue, a new design process that avoids recompilation
is presented in this work. The idea is to modify the bitstream directly
when different signals need to be traced. This is achieved by inserting a
multiplexer into the design implemented on the FPGA, with the MUX
inputs being all signals that one potentially wants to trace. Fig. 3 depicts
a multiplexer that can select one of m groups of w signals. The select
signals of the multiplexer are preset to logic-0 or to logic-1. Then,
one can trace different signals by manipulating the bitstream to set the
select signals to different constants. Since there is no re-routing required,
the bitstream modifications can be done easily. As a result, the time
overhead of this process is reduced to a bitstream modification followed
by a bitstream downloading. Bitstream downloading normally requires
only seconds – significantly less overhead than the re-compilation
approach.

LUTs

D
ata in

p
u
ts

S
elect in

p
u
ts

(a) Traditional

i0

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

f1

f2

i12

i13

i14

i15

f1 = i5

f2 = X

f3 = f1
OUT

(b) Proposed

Fig. 4. 16-to-1 MUX implementation in 6-input LUTs.

Another advantage of the proposed process is its negligible effect on
the stability of the design. In the conventional debug process, the design
is re-routed each time when different signals are selected, As a result,
designers often need to readjust the design to meet the various timing
constraints. Even though recent FPGA tools provide incremental com-
pilation to preserve the engineering efforts from previous place/route
steps, experiments show that the speed performance of designs after
incremental compilation can vary. In the proposed process, because all
signals one potentially wants to trace are connected to the selection
module at the beginning, only the original one compilation is necessary.
As a result, selecting different signals through bitstream modifications
minimizes the overall impact on the performance of the design. Note
that although our study targets Altera FPGAs, the proposed debugging
flow is not limited to Altera, and applies equally to FPGAs from other
vendors.

A. An Area-Optimized Multiplexer Implementation

It is well-known that FPGAs are inefficient at implementing multi-
plexers. Therefore, in this section, a novel multiplexer implementation,
optimized in the number of LUTs, is presented. The proposed construc-
tion also takes advantage of the bitstream changes (described above).

Fig. 4(a) shows a traditional 16-to-1 MUX implementation in a
Stratix III FPGA (the image is a screen capture from Altera’s technology
map viewer tool). Observe that five 6-input LUTs are required. In a
traditional MUX, the values of signals on the MUX select inputs can
change at any time while the circuit operates. However, in the proposed
design process, the selected trace signals do not need to change as
the circuit operates. Rather, the set of selected signals is determined
by the FPGA bitstream, and as such, may only change between device
configurations. This makes an alternative MUX implementation possible
– one that consumes only three 6-LUTs in the 16-to-1 case.

The new MUX design is based on recognizing that a LUT’s internal
hardware contains a MUX, coupled with SRAM configuration cells. In
our design, the LUT’s internal MUX forms a portion of the MUX we
wish to implement (made possible owing to the MUX select lines being
held constant during device operation). Fig. 4(b) shows the proposed
16-to-1 MUX, where the 16 inputs are labeled (i0-i15). In this case,
the LUT configuration SRAM cells (i.e., the truth table) determine
which MUX input signal is passed to the output. For the purposes of
illustration, in Fig. 4(b), each LUT is labeled with the logic function
needed to select the 6th MUX input (i5) to the output. Only three LUTs
are required: The LUT labeled f 1 passes input i5 to its output. LUT
f 2 can implement any logic function since its output is not observable
(however, to save power f 2 should be programmed to constant logic-0 or
logic-1). LUT f 3 is programmed to pass f 1 to its output. The proposed
design offers significant area savings relative to the traditional design,
and allows signal selection via bitstream changes.

B. Debugging with Limited Output Pins

The debugging architecture described above requires multiple output
pins if a group of signals is traced in one silicon execution. This
approach may not be feasible in cases where the output pins are limited.
Therefore, an alternative architecture that utilizes a parallel-in serial-out
shift register is presented in Fig. 5.

4

4

4

4

4

clkdebug

A
B

C

D

s1 s2

Fig. 5. Multiplexer with a 4-bit Shift Register.

TABLE I
BENCHMARKS.

Ckt.
Fmax

Ckt.
Fmax

ALM Reg (MHz) ALM Reg (MHz)

ethernet 1323 1256 321.85 main 24483 20046 37.47
mem ctrl 1024 1051 266.95 dfsin 13946 16367 118.29

tmu 2336 3425 168.63 aes 8224 9090 129.10
rsdecoder 658 539 730.46 adpcm 11330 9852 101.58

In Fig. 5, only one output pin is used. Values of the target group are
loaded into the shift register in parallel in each clock cycle. Then, the
system clock is stopped, and a second debugging clock is used to shift
out the stored value. There is a trade-off between the number of output
pins and the test execution time. If more output pins are available, the
data can be distributed into multiple shift registers which feed different
output pins. This results in fewer clock cycles for retrieving data from
the shift registers.

This architecture can be improved to obtain all values stored in the
shift registers within one system clock cycle (without stopping the
system clock). Instead of shifting the data with a debug clock supplied
from off-chip, one can use the on-FPGA PLL to synthesize the debug
clock from the system clock, with the debug clock being n times faster
than the system clock, where n is the width of the shift registers. The
advantage of this implementation is that the design does not need to
be halted after each cycle in order to empty the shift registers. This
approach is feasible if the system can be operated at a low frequency.

IV. EXPERIMENTAL STUDY

This section presents the area overhead and timing impact of the
proposed structures. The structures were integrated into benchmarks
selected from the OpenCores and CHStone benchmark suites [13].
The CHStone benchmarks were synthesized from the C language to
Verilog RTL using a high-level synthesis tool [14]. All RTL benchmarks
were then compiled using Altera’s Quartus II 11.0, targeting the 65nm
Stratix III FPGA, with a difficult-to-meet timing constraint (1 GHz).
Table I summarizes the ALM and register utilization of each original
benchmark (i.e. without any debugging structures integrated). The
table also shows the post-routing maximum frequency (Fmax) of the
benchmarks.

In our experimental methodology, registers in each module of each
benchmark were randomly selected as tracing candidates. Benchmarks
were modified such that traced signals were wired to the top-level
of the benchmark and connected to the proposed structures. Altera’s
synthesis attributes, keep and noprune, were used to ensure that all
signals exist after optimization. In the following discussion, the notation,
m-w, represents the tracing setting where m signals are candidates for
tracing and w signals are traced concurrently in one silicon execution.

Experimental results for the structures described in Section III are
presented in the next subsection, followed by an analysis of the
productivity and the stability of the proposed design process.

A. Area Usage and Timing Analysis

The area overhead and Fmax of the proposed architectures with
various sizes are depicted in Fig. 6. Four implementations are in-
vestigated: a traditional MUX implementation, a 6-LUT-based MUX
implementation (as proposed in Section III-A), a 4-LUT-based MUX
implementation (same as proposed in Section III-A except using 4-
LUTs instead of 6-LUTs), and a shift-register-based implementation
(as proposed in Section III-B). As shown in Fig. 6(a), the 6-input LUT
implementation uses, on average, 35% fewer ALMs than the traditional
MUX implementation. The 4-input LUT implementation can further
reduce the usage of ALMs. This is because each ALM in a Stratix
III device can contain two 4-input LUTs, and Quartus II may merge
two 4-input LUTs into one ALM. However, there is no user control to
force such an optimization to happen, and therefore, in the remaining
experiments, all multiplexers in the proposed structures are implemented

128−2 128−4 128−8 256−2 256−4 256−8
0

25

50

75

100

Configurations

#
 A

L
M

s

Traditional Mux

6LUT Mux

4LUT Mux

Shift Register

(a) Area

128−2 128−4 128−8 256−2 256−4 256−8
0

200

400

600

800

Configurations

F
m

a
x
 (

M
H

z
)

Traditional Mux

6LUT Mux

4LUT Mux

Shift Register

(b) Fmax

Fig. 6. Area and Fmax of multiplexers.

TABLE II
EFFECTS OF AREA-OPTIMIZED MULTIPLEXER.

(a) Area Increase Percentage (ALMs + registers) (%)

Ckt. 128-2 128-4 128-8 256-2 256-4 256-8

ethernet 6.91 7.10 7.34 10.87 11.26 11.53
mem ctrl 6.12 6.48 6.90 10.57 10.66 11.69

tmu 5.95 6.02 6.11 10.95 10.99 11.12
rsdecoder 11.36 10.52 9.86 13.03 19.05 17.79

main 0.27 0.29 0.65 0.77 0.75 1.15
dfsin 0.46 0.52 0.39 1.08 1.06 1.05
aes 1.14 1.31 1.67 2.54 2.48 2.94

adpcm 1.61 1.52 1.66 1.76 1.59 1.64

(b) Fmax Change Percentage (%)

Ckt. 128-2 128-4 128-8 256-2 256-4 256-8

ethernet -0.28 -0.02 -0.07 -0.31 -0.06 -0.11
mem ctrl -3.2 -10.1 -5.2 -8.19 -12.15 -7.23

tmu 1.99 2.12 2.2 1.06 0.98 0.92
rsdecoder -35.06 -32 -17.51 -33.99 -29.87 -28.51

main -1.81 -1.36 -4.06 -0.43 2.86 2.16
dfsin 3.53 -1.5 3.29 1.57 -0.06 -3.51
aes -0.74 -0.33 0.77 0.17 -0.6 -1.14

adpcm 3.62 2.07 -0.27 1.79 -0.5 -0.36

with the 6-input LUT approach. For the data in Fig. 6, the shift-register
implementation only uses one output pin and is driven with an external
debug clock. Due to the presence of the shift register, the area cost is
slightly greater than the cost with the full multiplexer implementation.

Fig. 6(b) shows the Fmax of each MUX implemented in isolation.
Since the area-optimized implementation requires fewer ALMs to
construct a multiplexer, less parasitic capacitance is introduced on
the critical path. Consequently, multiplexers with the 4-input LUT
implementation have the highest frequency in most cases.

Table II(a) reports the percentage increase in ALMs and registers
of benchmarks when the area-optimized multiplexer is integrated. Two
groups of tracing settings are considered. The worst-case in each group
is shown in bold. Results show that in most cases the area overhead
is less than 10%. The Fmax of the benchmarks with the same tracing
settings is reported in Table II(b). Overall, Fmax is not affected greatly –
changes are mainly due to algorithmic noise. The only exception is with
rsdecoder, with reason being that the critical path for this benchmark
is altered to pass through the multiplexer.

Similar to Table II(a) and Table II(b), the effect of the shift register-
based structure on the area and Fmax of benchmarks is summarized
in Table III(a) and Table III(b), respectively. Here, instead of using
an external debug clock, a faster debug clock is generated from the
system clock using the Stratix III PLL. The faster clock allows us
to shift out the content of the shift-register within one system clock
cycle. As expected, because of the additional shift registers, the overall
area overhead can be a bit higher than the area overhead of the full
multiplexer discussed previously. Furthermore, Fmax drops significantly
in all cases – the system clock speed is limited by the debug clock
speed. For three of the eight benchmarks, Fmax drops more than 50%.

TABLE III
EFFECTS OF AREA-OPTIMIZED MULTIPLEXERS WITH SHIFT REGISTERS.

(a) Area Increase Percentage (ALMs + registers) (%)

Ckt. 128-2 128-4 128-8 256-2 256-4 256-8

ethernet 6.81 7.43 7.16 9.71 10.53 11.42
mem ctrl 6.72 6.57 6.92 10.56 11.11 11.93

tmu 6.56 6.20 6.70 9.81 10.29 10.76
rsdecoder 12.36 13.37 12.53 19.21 20.21 19.80

main 0.21 0.25 0.25 0.60 0.64 0.63
dfsin 0.29 0.27 0.39 0.73 0.76 0.85
aes 1.09 1.02 1.13 2.14 2.24 2.17

adpcm 1.22 1.20 1.49 1.70 1.77 1.88

(b) Fmax Change Percentage (%)

Ckt. 128-2 128-4 128-8 256-2 256-4 256-8

ethernet -42.76 -44.2 -44.89 -51.1 -54.26 -53.32
mem ctrl -29.25 -28.05 -28.67 -39.87 -35.37 -31.33

tmu -5.24 -6.08 -6.03 -0.43 -9.68 -7.14
rsdecoder -75.55 -71.96 -69.02 -75 -76.25 -76.41

main 0.77 0.61 -0.72 -2.86 -1.49 0.43
dfsin -10.74 -9.38 -8.57 -10.24 -7.75 -6.02
aes -4.93 -2.98 -1.9 -11.11 -10.22 -11.96

adpcm -3.63 1.1 1.55 4.1 3.36 2.63

TABLE IV
COMPILATION TIME OF SIGNALTAP.

Ckt.
128-8 256-8

Prop. SignalTap (sec) Prop. SignalTap (sec)
(sec) First Incr. Total (sec) First Incr. Total

ethernet 139 134 117 2006 141 134 119 3946
mem ctrl 150 143 124 2129 156 143 123 4073

tmu 169 161 137 2354 179 161 140 4639
rsdecoder 106 103 99 1685 109 103 98 3233

main 1449 1448 293 6141 1453 1448 290 10737
dfsin 706 696 216 4150 711 696 217 7648
aes 465 453 186 3428 466 453 184 5901

adpcm 634 615 226 4234 639 615 225 7815

B. Productivity and Stability

In the last set of the experiments, we evaluate the productivity
and stability of the conventional design process. Altera’s SignalTap
is used as the embedded logic analyzer. As mentioned in Section III,
due to the size of SignalTap, acquiring trace data for a large number
of signals is often achieved by successively tracing multiple smaller
groups. Recompilation is required when different signals are selected.

The experiment is carried out as follows. Two tracing settings are
studied: 128-8 and 256-8. In order to use the incremental compilation
feature in Quartus II, only post-fitting signals are considered. First, the
design is compiled without the SignalTap module. 128(256) post-fitting
nodes are randomly selected after the first compilation. Next, eight
signals from the set are monitored. The procedure is repeated until all
128(256) signals are traced.

The compilation time results are summarized in Table IV. The first
column lists the benchmarks. The next four columns report the results
for the first tracing setting: the compilation time of the proposed process,
the first compilation of the SignalTap process, the average compilation
time of each data acquisition session and the total cumulative compila-
tion time of the SignalTap-based debugging process. The result of the
second tracing setting is reported in the final four columns. As shown in
the table, since the proposed bitstream-modifications-only process only
requires one compilation, the compilation time roughly equals to the first
compilation of the SignalTap process. Although incremental compilation
reduces the compilation time by 4%-80%, each additional compilation
adds time overhead. Overall, the proposed process can save up to 93%
(i.e., 139/2006 for ethernet) in the case of the 128-8 scenario, and
97% (i.e., 109/3233 for rsdecoder) in the case of 256-8.

Incremental compilation tries to preserve the engineering effort from
a previous compilation to minimize the impact on design performance.
While it does well in many cases, experiments show that Fmax can still
vary when the monitored signals are on the critical path. Performance
stability results are shown in Fig. 7(a). In each case, a total of 32 signals
are traced. The x-axis of the plot is the number of traced signals that are
on the critical path. The y-axis is the normalized Fmax, where the base
is the Fmax of the original benchmark. One can see that Fmax drops in
various degrees, as much as 10%. It all depends on what signals are
monitored.

For designs that can be operated at a very high frequency, the
SignalTap module can in fact be where the critical path resides. In
this case, monitoring any set of signals can change Fmax, as shown in
Fig. 7(b). The x-axis of the plot is the data acquisition session, where

5 10 15 20 25 30

0.9

0.92

0.94

0.96

0.98

1

Critical Path Nodes

N
o
rm

a
liz

e
d
 F

m
a
x

ethernet
mem ctrl
tmu
main
dfsin
aes
adpcm

(a) Tracing nodes on the critical path

5 10 15 20 25 30
0.2

0.4

0.6

0.8

1

Debug Session

N
o
rm

a
liz

e
d
 F

m
a
x

rsdecoder

(b) Tracing random nodes

Fig. 7. Stability of SignalTap.

8 signals are traced in each session with 32 sessions in total. The plot
shows that Fmax is unstable from one session to another.

In the proposed debugging approach, since only a single execution
of synthesis, place and route are needed, circuit speed performance is
stable as different sets of signals are traced.

V. CONCLUSIONS AND FUTURE WORK

Functional debugging using FPGA devices provides several advan-
tages over the traditional software simulation approach. This work
presents a set of hardware structures to take advantage of the FPGA
reconfigurability feature to enhance the observability for debugging.
Furthermore, experimental results demonstrate that the new techniques
can improve the productivity of the debugging process up to 30×.
One of the extensions to this work can be the integration of debug
features, such as trigger events, to the proposed structures to enhance
the debugging ability. Another interesting extension is developing a
debugging algorithm that utilizes the proposed structures to provide an
efficient FPGA debugging environment. Lastly, the proposed hardware
and methods can be used in conjunction with FPGA embedded SRAM
blocks to store trace data across multiple execution cycles before
sending the data to the chip output pin(s).

REFERENCES

[1] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Trans. on CAD, vol. 26, no. 2, pp. 203–215, 2007.

[2] M. Gort and J. Anderson, “Deterministic multi-core parallel routing for
FPGAs,” in IEEE FPL, 2010, pp. 78 –86.

[3] L. Lagadec and D. Picard, “Software-like debugging methodology for
reconfigurable platforms,” in IEEE Int’l Symp. on Parallel and Distributed
Processing, 2009, pp. 1–4.

[4] P. Graham, B. Nelson, and B. Hutchings, “Instrumenting bitstreams for
debugging FPGA circuits,” in IEEE FCCM, 2001, pp. 41–50.

[5] ChipScope ILA Tools Tutorial, Xilinx Inc., San Jose, CA, 2003.
[6] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and

D. Miller, “A reconfigurable design-for-debug infrastructure for SoCs,” in
IEEE DAC, 2006, pp. 7–12.

[7] B. Quinton and S. Wilton, “Programmable logic core based post-silicon
debug for SoCs,” in IEEE Int’l Silicon Debug and Diagnosis Workshop,
2007.

[8] H. F. Ko and N. Nicolici, “Algorithms for state restoration and trace-signal
selection for data acquisition in silicon debug,” IEEE Trans. on CAD,
vol. 28, no. 2, pp. 285 – 297, 2009.

[9] Y.-S. Yang, N. Nicolici, and A. Veneris, “Automating data analysis and
acquisition setup in a silicon debug environment,” IEEE Trans. on VLSI,
2011.

[10] E. Hung and S. Wilton, “Speculative debug insertion for FPGAs,” in IEEE
FPL, 2011, pp. 524–531.

[11] Design Debugging Using the SignapTap II Logic Analyzer, Altera, Corp.,
San Jose, CA, 2011.

[12] Increasing Productivity With Quartus II Incremental Compilation, Altera
Corp., San Jose, CA, 2008.

[13] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and quantitative
analysis of the CHStone benchmark program suite for practical C-based
high-level synthesis,” Journal of Information Processing, vol. 17, pp. 242–
254, 2009.

[14] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. Anderson,
S. Brown, and T. Czajkowski, “LegUp: high-level synthesis for FPGA-
based processor/accelerator systems,” in ACM FPGA, 2011, pp. 33–36.

