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Abstract—Power consumption variability of both on-chip SRAMs and
off-chip DRAMs is expected to continue to increase over the next decades.
We opportunistically exploit this variability through a novel Variability-
aware Memory Virtualization (VaMV) layer that allows programmers to
partition their application’s address space (through annotations) into
virtual address regions and create mapping policies for each region.
Each policy has different requirements (e.g., power, fault-tolerance) and
is exploited by our dynamic memory management module (VaMVisor),
which adapts to the underlying hardware, prioritizes the memory
resources according to their characteristics (e.g., power consumption),
and selectively maps data to the best-fitting memory resource (e.g.,
high-utilization data to low-power memory space). Our experimental
results on embedded benchmarks show that VaMV is capable of reducing
dynamic power consumption by 63% on average while reducing total
execution time by an average of 34% by exploiting: 1) SRAM voltage
scaling, 2) DRAM power variability, and 3) Efficient dynamic policy-
driven variability-aware memory allocation.

I. INTRODUCTION

Hardware variability (e.g., chip-to-chip power consumption varia-
tion) is quickly becoming a major concern for the design community.
ITRS predicts that over the next decade performance variability will
increase from 48% to 66% and total power consumption variability
will increase by up to 100% [1]–[3]. There are many factors that
influence the variation within and across devices (e.g., temperature,
voltage, wear-out, etc.). The memory hierarchy is also affected by
variability [4]. Moreover, variability plays a major role not only in
system performance and power consumption but also in production
costs, since high degrees of variability might cause a device to be
discarded [5]. In order to cope with this expected increase in vari-
ability, designers must build adaptable and tunable software/hardware.
This paper presents VaMV: a Variability-aware Memory Virtualization
approach that allows programmers to exploit such on- and off-chip
memory variability to reduce power consumption through memory
virtualization, while abstracting the underlying hardware variability
from the programmers. VaMV allows programmers to partition their
application’s virtual address space into regions and create mapping
policies for each region. Each policy can be designed to meet different
requirements (e.g., power, performance, fault-tolerance). These user-
defined and programmer-driven policies are then exploited by our
dynamic memory management module (VaMVisor), which adapts to
the underlying hardware, prioritizes the memory resources according
to their characteristics (e.g., power consumption), and selectively
maps program data to the best-fitting memory resource. (e.g., highly-
utilized data to low-power memory space). The novel contributions
of our work are that we:

• Exploit and co-optimize both on-chip and off-chip memory
variability

• Introduce the notion of variability-aware address space partition-
ing (through programmer-driven source-code annotations)

• Present a dynamic variability-aware memory virtualization
(VaMV) layer that transparently maps program data to phys-
ical memories while exploiting variability through the use of
annotations and dynamic memory management (VaMVisor)

Our experimental results on a set of embedded benchmarks show that
VaMV is capable of reducing dynamic power consumption by 63%
on average while reducing total execution time by an average of 34%

by exploiting: 1) Selective voltage scaling to reduce SRAM power
consumption, 2) DRAM power variability, and 3) Efficient dynamic
policy-driven variability-aware memory allocation.

II. RELATED WORK

Various efforts have shown that exploiting variability in off-the-
shelf hardware may lead to promising results. Hanson et al. [6]
measured the power consumption across identical Intel M processors
and found between 3% and 10% variation and up to 2x active power
variation across various DRAMs. Wanner et al. [3] found over 5x
sleep power variation across various Cortex M3 processors. Sartori
et al. [2] looked at frequency variation across processing cores. Pant
et al. [7] proposed hardware signatures to adapt the software stack to
deal with hardware. Gottscho et al. [4] observed up to 17.73% power
variation across different vendor 1GB DRAMs and up to 16.40%
power variation across same vendor DRAMs.

Aggressively voltage scaling on-chip SRAMs has been shown
to reduce power consumption at the cost of increasing process
variations. Chakraborty et al. [8] propose the idea of exploiting
error maps to correct data-cache faulty cells. Mutyam et al. [9]
proposed the concept of block rearrangement to minimize data-cache
performance loss. Liang et al. [10] proposed replacing 6T SRAM with
3T1D DRAM for caches to address physical device variation. Meng
et al. [11] proposed way prioritization to minimizes cache leakage
to address within-die leakage variation. Li [12] proposed repairing
only important bits to address process variations. Kurdahi et al. [13]
proposed an application level solution to handle process variations in
the memory subsystem.

To the best of our knowledge, we are the first to propose the idea
of transparently exploiting on-chip and off-chip memory variability at
the programmer level through annotations to reduce power consump-
tion. In particular, VaMV differs from [2], [3], [6] because we focus
on memory variability, however, VaMV could be complemented by
other variability-aware approaches (e.g., CPU power consumption).
VaMV is different from [8], [13], [14] in that we selectively voltage
scale on-chip memories and take advantage of the variation (power,
performance, error rates) opportunistically at the system level.
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Fig. 1. VaMV: Variability-aware Memory Virtualization.

III. VARIABILITY-AWARE MEMORY VIRTUALIZATION

A. VaMV Overview

The goal of our Variability-aware Memory Virtualization (VaMV)
layer is to allow programmers to opportunistically exploit variability
across various levels of the memory hierarchy through annotations
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in order to reduce power consumption. Figure 1 shows a high-level
view of VaMV, which has five main components: 1) The application’s
programmer-specified source-code annotated data mapping policies
(Sec. III-D), 2) The application’s priority, which is used to prioritize
use of the memory space among the various applications, 3) The
device’s signature (Sec. III-E), which is based on the memory
subsystem’s characteristics (e.g., power consumption). 4) Current
memory allocation information used to derive available memory
resources and memory re-mapping opportunities (Sec. III-F). 5)
The VaMVisor, which enforces the mapping policies at run-time
while using the application’s priority, the device’s signature, and the
allocation information to efficiently allocate the memory space. For
more details please refer to our technical report [15].

B. Target Platform and Assumptions
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Fig. 2. Chip-Multiprocessor (CMP) with Distributed Memories.

Figure 2 shows our target CMP platform, which consists of a
number of: 1) processing cores, 2) on-chip distributed ScratchPad
Memories (SPMs) ( [16], [17]), 3) off-chip DRAM memories (OMs),
4) a secure DMA (S-DMA) engine to protect the memory space, 5)
a hard drive (HDD), and 6) the VaMVisor.

We make the following assumptions: 1) We have access to hard-
ware signatures representing power consumption variability for on-
and off-chip memories [4], 2) We can selectively voltage scale our on-
chip memories, and consequently a subset of on-chip memories may
have lower power consumption, higher access latencies and higher
error rates than others [18], and 3) Programmers are able to partition
their application’s address space into regions with different require-
ments (power, performance, etc.) through source code annotations.
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Fig. 3. Virtualization Layer Overview.

C. Virtual SPM and Virtual Off-chip Memory

To virtualize the memory space we define the notions of virtual
SPMs (vSPMs [19]) and virtual Off-chip Memory (vOM) that are
mapped to physical on-chip SRAMs and off-chip DRAMs with
varying power and performance characteristics. vSPMs are realized
by locking part of off-chip memory space, defined as Protected Evict
Memory (PEM), in order to extend the available on-chip memory
space. We take advantage of DRAM power variability by mapping
the PEM space to the DRAM with lowest power consumption. vOMs
follow the same notion as virtual memory, however, unlike traditional

memory virtualization schemes, our memory virtualization layer
allows programmers to partition their virtual memory into regions
(within vSPMs/vOMs) and define policies for each region requir-
ing different guarantees (low power, performance, fault-tolerance).
Figure 3 shows an overview of the memory virtualization layer
consisting of two applications (App1, App2) where the programmer
has annotated and partitioned the virtual memory to meet vary-
ing power/performance needs through vSPMs/vOMs as follows: 1)
High-performance/low-latency address space (back-slashed blocks),
2) Normal Vdd address space (gray blocks), 3) Low-power address
space (checkered blocks), and 4) Low-power & fault-tolerant memory
space (forward-slashed blocks).

D. Programmer-Driven Policy Generation
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Fig. 4. Partitioning the Application’s Memory Space

In order to efficiently exploit the available memory variability,
programmers need to annotate their applications with memory allo-
cation hints in the form of policies. The application’s address space is
partitioned into into virtual regions, which are then associated with
a mapping policy that dictates how to map the data into physical
address space and the type of guarantee needed (power, performance,
fault-tolerance). Figure 4 shows a sample address space partitioning
for JPEG [20], where the programmer has identified: 1) Read-only
and highly utilized data, i.e., look up tables (back-slashed blocks),
2) A temporary buffer for inter-task communication (gray block), 3)
Read-only pixel data (black blocks), and 4) Irregularly access data
(forward-slashed blocks).

Figure 4 (a) shows a traditional mapping of these data blocks,
where variability is not taken into account. Figure 4 (b) shows the
result of our VaMV virtualization layer mapping that exploits: 1)
Data mapping policies customized by the programmer and used to
make dynamic memory allocation decisions. 2) On-chip memory
voltage scaling (using E-RAIDs [16] to deal with process variation),
and 3) DRAM variability. For the sake of illustration, VaMV maps
commonly used read-only data to voltage scaled SRAM protected
by an E-RAID 1 level, pixel data to voltage scaled SRAM (NO
ERAID), and irregular commonly used data to low power DRAM.
A programmer can annotate the application with expected mapping
policies with low-power (LP) memory space in mind. VaMV then
takes these policies and tries to opportunistically enforce them (best
effort), regardless of how the LP memory space is implemented by
the hardware layer. For instance, If there is no noticeable DRAM
power variability, then VaMV will not prioritize DRAMs and follow
a more traditional memory management scheme (e.g., malloc).

E. Hardware Device Signature

The hardware variability signature of the device (e.g., DRAMs and
on-chip SRAMs) allows the VaMVisor to opportunistically exploit the
available memory power variability. Traditional memory allocation
schemes treat on-chip SRAM as precious memory space and off-
chip DRAM as second-tier memory space, while making no other



TABLE I
MEMORY RANKING

Rank Description

R1 Voltage Scaled SRAM: process variations, low power, & increased access latency
R2 Nominal Vdd On-Chip Memories: higher power consumption
R3 Low-power DRAM: characterized at manufacture-time or at run-time
R4 Mid-power DRAM
R5 High-power DRAM

difference. A sample allocation policy would then map commonly
used data to SRAM (what it can fit), and all other data to DRAM.
In order to exploit the device’s signature, VaMV further breaks
down the memory space and ranks it based on the characteristics
of the memories. Table I shows a sample ranking of the various
memories, from most precious resource (R1) to least precious (R5).
First, we voltage scale some SRAM memories, as a result we can
have two types of on-chip memories: 1) Normal SRAM and 2)
Low-power SRAM with their side-effects (e.g., process variations,
higher access latency, etc.). Similarly, DRAMs can be further ranked
based on power consumption, exploiting the inherent chip-to-chip
variability [4]. The VaMVisor then uses this ranking information
(device signature) to prioritize the data/virtual space to physical space
mapping in order to save power.

F. VaMVisor: Policy-Driven Dynamic Allocation
The policy associated with each block will determine how the block

is mapped (e.g., low-power memory space). The application’s priority
is used by the run-time environment to decide how to efficiently use
the memory space (e.g., give higher priority to applications with real-
time requirements). Finally, the current memory mapping information
is used to determine whether it makes sense to re-map data blocks.
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Fig. 5. Multi-tasking Policy-driven Variability-aware Allocation.

The VaMVisor can be implemented as a software module at
the OS/hypervisor level (flexible, no extra hardware needed) or a
hardware module that can be embedded in today’s CMPs as an
augmented arbiter/MMU [16], [21] (lower performance overheads
and reduced power consumption). In this paper we focus on the
HW -assisted VaMVisor with a fixed-size block-based allocation unit,
which takes as input the triplet (AppPriority, BlkPriority, MallocPol-
icy), to determine where to allocate a given block. Figure 5 shows
the execution of a set of applications (App1-4) on two CPUs (CPU0-
1) with 2x4KB SPMs and the status of the memories as vSPMs
are created and blocks are allocated (States S1-S6). On arrival of
the first application (App3), the vSPM is created and the VaMVisor
maps App3’s blocks to SPM0, and the process continues up until S3.
When App4 arrives, the VaMVisor evaluates App4’s block priorities
(BlkPriority) and decides to map them to dedicated off-chip memory
space (PEM). When App5 (forward-slashed block) executes, rather
than evicting all of App1 and App2’s contents from SPM (as in
traditional approaches [22]), the VaMVisor looks at the priorities of
the various blocks, evicts some of the lower priority blocks from SPM
space (App1-3), and allocates the space to App5’s blocks (S5). The
VaMVisor partitions the off-chip memory (OM) space and ranks it to
exploit the variability present in DRAM. An example is to exploit

a utilization-based priority policy, where two applications request
virtual off-chip memory (vOM) space with the same priority (but
utilization is higher for one than the other); the VaMVisor would
then try to map the vOM to the physical OM with the lowest power
consumption. If it cannot serve both requests, then the application
with the highest utilization would be given priority. Of course, the
VaMVisor would try to map the other application’s data to the next
low-power OM. The goal is to exploit the application’s priority and
their data blocks’ priorities to efficiently manage the memory space.

TABLE II
SAMPLE USER ANNOTATIONS AND POLICIES

Data Type Description

T1 Look-up tables (e.g., quantization variables, ziz-zag indices)
T2 Commonly used data (e.g., inter-task communication buffers, variables)
T3 Non-Critical Data (e.g., pixels)
T4 All other

Policy Desctiption

P physical SPM (pSPM) ← {T1,T2,T3}, random-malloc OM ← T4
VE1 virtual SPM (vSPM)/E-RAID1/0.5V ← {T1,T2,T3}, High Power (HP) OM ← T4
VE2 vSPM/E-RAID1/0.5V ← {T1,T2,T3}, Low Power (LP) vOM ← T4
VE3 vSPM/E-RAID1/0.5V ← {T1}, vSPM/NO-ERAID/0.5V ← {T2,T3}, HP OM ← T4
VE4 vSPM/E-RAID1/0.5V ← {T1}, vSPM/NO-ERAID/0.5V ← {T2,T3}, LP vOM ← T4
M1 8×vSPMs/LP PEM ← {T1,T2,T3}, HP OM ← T4
M2 8×vSPMs: E-RAID1 ← {T1}, 3×NO-ERAID & 4×LP PEM ← {T2,T3}; HP OM ← T4
M3 8×vSPMs: E-RAID1 ← {T1}, 3×NO-ERAID & 4×LP PEM ← {T2,T3}; LP vOM ← T4

IV. EXPERIMENTAL EVALUATION

A. Experimental Evaluation Goals and Setup
Our goal is twofold; First, we want to show the benefits of

exploiting DRAM power variability and voltage scaling combined
to reduce power consumption. Second, we want to show how a
programmer can exploit hardware-variability through custom poli-
cies. Our simulation environment is implemented in SystemC with
SimpleScalar [23] and CACTI [24] support. We can simulate a bus-
based Chip-Multiprocessor with distributed on-chip SPMs, 4x1GB
DRAMs from the same vendor & specs [4] (referred to as OMs),
and our VaMVisor as shown in Figure 2. We assume 65nm process
technology for our SPMs. We cross-compiled a set of applications
from Mediabench II [20] and analyzed them to obtain SPM mappable
data sets. We simulate a light-weight hypervisor, where each CPU can
run 1-4 OSes and 1-8 applications. Table II shows a set of sample user
annotations (mapping policies). The base-line policy (e.g., memory
space allocation across random DRAM) starts with P, the (vSPMs/E-
RAID) policies start with V E, and the policies that support multi-
tasking start with M . The various data sets are represented by T . We
now show how to exploit DRAM variability, combine it with SRAM
voltage scaling, and finally show the efficacy of VaMV in exploiting
variability across on-chip and off-chip memories.

B. Exploiting DRAM Variability
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Fig. 6. Exploiting DRAM Variability.

To show the benefits of exploiting DRAM variability, we simulated
a single application running on the system with 4x1GB DRAMs
exhibiting variability from the same vendor/specs [4] and no data
cache/SPMs. All data was directly accessed from DRAM. We then
compared our variability-aware memory allocation approach (VaMV)



with a traditional memory allocation scheme that randomly allocated
data to any of the four 1GB DRAMs (RandomMalloc). Figure 6
shows that our approach can save an average 7.4% dynamic power
consumption by selectively allocating data blocks to the DRAM with
the lowest power consumption.

C. Exploiting SRAM Voltage Scaling and DRAM Variability
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Fig. 7. Exploiting SRAM Voltage Scaling and DRAM Variability.

Next, we combine on-chip SRAM voltage scaling with DRAM
variability by progressively augmenting the complexity of our policies
(VE1 to VE4), and compare their power consumption and perfor-
mance overheads to the baseline policy (P) for a single application.
The first two custom policies (VE1/VE2) incur higher overheads
in both power and performance primarily because we utilized the
entire on-chip memory space for the E-RAID 1 level (reducing
usable on-chip space by half). The next two policies (VE3/VE4)
utilize the on-chip space much better by partitioning the data into
finer E-RAID/NO-ERAID granularities, as a result we observe an
average 16% power consumption reduction with 13% performance
overheads (with respect to P). Memory intensive applications such
as H.263 benefit the most from vOM-based policies (e.g., VE4)
as we observe up to 14% power consumption reduction for H.263
with minimal performance overheads (0.06%). These experiments
show that carefully crafting variability-aware policies to meet an
application’s needs leads to reduced dynamic power consumption.

D. Dynamic Policy-driven Variability-aware Allocation
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Fig. 8. VaMV: Dynamic Policy-driven Variability-aware Allocation.

In the final set of experiments, we demonstrate VaMV’s benefits
by simulating a series of virtualized environments running various
applications (with support of page tables - 1KB mini-pages) con-
currently on a CMP. Figure 8 shows various configurations (x-axis):
{#Apps}x{#OSes}x{#CPUs} with 4x8KB physical SPMs and the set
of applications ran for each configuration (marked by a Y in their
respective row/column). The base-line policy (P) utilized the entire
physical space with context-switching (CX) enabled [22] (e.g., swap
SPM data on CX ).We observe that user-defined policies (M1-M3)
managed to reduce dynamic power consumption by 63% on average
while reducing total execution time by an average of 34% because: 1)
We have up to {8Apps}x{4OSes}x{4CPUs} competing for memory
resources, and traditional malloc (P) is unable to cope with the
demand, and 2) The VaMVisor efficiently manages the memory space

by exploiting the idea of variability-aware dynamic policy-driven
memory allocation.

V. CONCLUSION

This paper proposed a novel Variability-aware Memory Virtu-
alization (VaMV) layer that allows programmers to partition their
application’s address space into virtual regions with different power,
performance, and fault-tolerance guarantees through software anno-
tations. VaMV adapts to the underlying hardware and virtualizes the
memory hierarchy, while opportunistically exploiting techniques such
as voltage scaling to reduce on-chip power consumption and power
consumption variability present in off-the-shelf off-chip memories.
Since this is the first piece of work exploring variability in distributed
SRAM and DRAM memories, we believe that there are many
directions for future work: 1) Studying variability across the entire
memory hierarchy (e.g., caches), 2) Exploiting other types of variabil-
ity (e.g., processor frequency), and 3) Compiler-assisted variability-
aware policy generation (e.g., efficient address-space partitioning,
level of protection).
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