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Abstract—Efficiently managing the parallel execution of various 

application tasks onto a heterogeneous multi-core system 

consisting of a combination of processors and accelerators is a 

difficult task due to the complex system architecture. The 

management of reconfigurable multi-core systems which exploit 

dynamic and partial reconfiguration in order to, e.g. increase the 

number of processing elements to fulfill the performance 

demands of the application, is even more complicated. This paper 

presents a special virtualization layer consisting of one central 

server and several distributed computing clients to virtualize the 

complex and adaptive heterogeneous multi-core architecture and 

to autonomously manage the distribution of the parallel 

computation tasks onto the different processing elements. 
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I.  INTRODUCTION AND MOTIVATION 

Nowadays, multi-core systems are available in many systems 

to fulfill the performance requirements of the applications. 

Embedded systems mainly use heterogeneous systems, 

consisting of processors, accelerators and a communication 

infrastructure, as these achieve a higher energy efficiency 

compared to homogeneous systems. However, achieving an 

efficient scheduling and mapping for the parallel application 

tasks onto these systems is a very complex task. For 

heterogeneous reconfigurable multi-core systems an additional 

challenge is the exploitation of the mutual exclusive tasks in 

the applications and the runtime selection of an appropriate 

underlying hardware for these application tasks.  
Due to the increasing chip-size of modern FPGAs, multi-core 
systems on a single FPGA, distributed over multiple FPGAs, or 
combinations between powerful external processor cores and 
soft-core processors on the FPGA can be found. An example 
for such a system is the Xilinx Zynq platform which combines 
an ARM A9 dual-core processor with a Xilinx FPGA. 
Furthermore, Xilinx supports dynamic and partial 
reconfiguration. This allows adapting the hardware architecture 
at runtime to the demands of the application. This is for 
example done in the RAMPSoC [1] multi-core system. For 
such a system it is not only sufficient to schedule the execution 
of the application tasks and map them onto a specific 
processing element. These kind of systems have a further 
degree of freedom in terms, that the operating system (OS) has 
to select if a task will be executed in software or in hardware 
based on the performance and energy constraints of the 

application. To virtualize the complexity of such a system a 
common programming model is important. 
In this paper a system architecture is presented, which allows a 
virtualized on-chip distributed computing. It uses the message 
passing interface standard programming model (MPI [2]) for 
the communication between the software tasks. Furthermore, 
the MPI programming model was extended to include also the 
communication with hardware accelerators. The task 
scheduling and mapping onto the processing elements is done 
using a distributed virtualization layer, which also hides the 
low-level communication routines required for the inter-
processor communication. Due to this, the user only sees a 
single command shell and is not aware on which physical cores 
the application is executed. 
The paper is organized in the following manner: Related work 
is presented in Section II. The design and functionality of the 
system architecture is given in Section III. Section IV and its 
subsection describe the distributed virtualization layer 
consisting of a Master-OS, several Slave-OSes and special 
OSes for handling hardware accelerators. A case study and 
results are given in Section V. Finally, the paper is closed by 
presenting the conclusions and an outlook to future work in 
Section VI. 

II. RELATED WORK 

Traditionally, operating systems, such as Linux, are 
responsible for the scheduling and allocation of software 
executables. However, the adaptation of the underlying 
hardware architecture at runtime using dynamic and partial 
reconfiguration, like it is done in reconfigurable systems, 
involves additional challenges for operating systems. These 
operating systems need to be able to schedule and allocate 
both, software as well as hardware tasks. The scheduling and 
the allocation of hardware tasks additionally involve the 
knowledge of the availability of hardware resources and also 
the time which is required for the reconfiguration.  
Examples for such operating systems are ReConfigME[3], 
ReconOS[4] and BORPH[5]. All these systems are based on a 
single processor with several hardware accelerators. Therefore, 
all software tasks are mapped on the processors and only the 
scheduling and mapping of the hardware accelerators is 
considered. This restricts these systems, as they cannot execute 
multiple independent applications in parallel.  
With our new approach the handling of hardware accelerators 
is integrated into the design flow as well as into the MPI 
system it is running on. This way multiple applications can be 
handled at the same time by either supplying enough 



processors or speeding up the execution with specially 
designed accelerators. In contrast to Hthreads[6], our approach 
is based on a distributed memory multi-core architecture, 
which leverages the memory bottleneck, as each task has its 
own local memory. 

III. THE SYSTEM ARCHITECTURE 

 

Figure 1.  Virtualization layers 
 

 

A. Hardware Architecture 

The system uses a Network-on-Chip (NoC) called Star-

Wheels NoC [1] which is a hybrid between star and spidergon 

[7]/wheel topology. For data transfers packet- and circuit-

switched routing is supported. This allows high performance 

data channels and best effort packet communication. The NoC 

is divided into 4 Subnets each containing one Superswitch and 

up to 7 Subswitches which are connected with the processing 

elements via a Star-Wheels interface. 

To make the reconfiguration of the MicroBlaze (MB) 

processors easier to use, an encapsulated version is introduced. 

The new MB module consists of a MB together with its block 

RAM (BRAM) (Figure 2. ). With the integrated interface and 

subswitch they can directly be connected to the NoC. The 

memory is divided into 2 parts, differentiated by the use of 

separate BRAM blocks. The OS is located in the upper part 

whereas the lower part is reserved for user applications. The 

lower part can be configured to use up to 128 KB. 

Hardware accelerators have the same interface to the network 

to allow the exchange between processors und accelerators at 

runtime via reconfiguration. A minimal MB is used as a 

microcontroller. It handles the channel creation in the network 

and sends configuration data to the accelerator. Depending on 

the configuration of the MB it is also possible to use it for 

other tasks. A minimum of 4 KB of BRAM is sufficient for 

the MB to work as the microcontroller; extra memory is only 

needed when other applications should also run on the MB. 

For reconfiguration an additional interface is necessary. It is 

placed between the NoC and the processing elements (PE). It 

is used to disable the clock and the communication between 

the PEs to avoid that disturbing signals can leave the modules.  

Like illustrated in Figure 1. the two kinds of reconfigurable 

modules are virtualized by an interface that is provided by a 

kernel module we developed for an embedded Linux running 

on a PowerPC440. To the user, who wants to run a program on 

this architecture, the reconfiguration of the needed modules 

and distribution of particular parts of the complex application 

is transparent and will be done by the kernel module. 
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Figure 2.  Microblaze module with accelerator or additional 

BRAM for operating system 
 

B. Assisted Design Flow 

The MB modules and hardware accelerators are designed to be 

used as a pcore in Xilinx Platform Studio (XPS). They consist 

of VHDL files and pre-synthesized netlists. As the layout of 

the modules has always to be the same, the design is assisted 

by scripts. The most important options of the MB processors 

can be changed (number of pipeline stages, floating point unit 

(FPU), multiplier, divider, barrel shifter, BRAM size). This 

information can be accessed via the Processor Version 

Register (PVR) at runtime. Addresses of the network and other 

parameters of the switches can be changed later in the XPS.  

Designing HW accelerators is done in a similar way. With the 

help of a script a template can be created, where the new 

accelerator can be added as VHDL code or as a netlist. A 

generated VHDL file where the interface and file/entity names 

are predefined can be used as a starting point for own designs. 

IV. THE VIRTUALIZATION LAYER 

A. Embedded Linux as Master 

In our approach an embedded Linux system serves as master. 

It uses the kernel version 2.6.37+ and runs on a PowerPC440. 

This system handles the reconfiguration, placement and 

scheduling of the tasks running on several PEs. These PEs 

communicate over the Star-Wheels-NoC.  

To support and abstract the communication with the Star-

Wheels-NoC with MPI, two separate components are used: a 

loadable kernel module which handles all internal processes 

such as the placement and an MPI-library which abstracts the 

file operations calling methods of the kernel. So the user can 

code a normal MPI-application and the interaction between the 

MPI-library and the module assure a correct execution.  

To solve a greater problem the user writes a complex MPI-

application and then runs some tools of a specialized tool flow 

[1]. These tools accomplish a communication analysis and 

cluster functions to tasks. This helps separating the complex 

application so that it can be run on several PEs in parallel. The 

only thing the user must do to start the execution of this 

parallelized and distributed application is to run an MPI-

program on the master. It sends an XML-file to the kernel 

module with the MPI_Init-call. This file contains information 

about the tasks and their relations. Additionally, it specify 



which tasks should be placed directly side by side to utilize 

one special feature of the Star-Wheels-NoC: neighbored units 

can directly communicate over their Subswitches. This 

reduces latencies and disburdens the Superswitch. This 

approach could also be of interest in other NoC-topologies 

szch as a 2D-Mesh where each PE can have up to 4 best 

neighbors. 

      
Figure 3.  Task graph described by the XML-file 

To do so, the XML-file only makes notes about a relative 

placement of the tasks as shown in Figure 3. The module takes 

this information and generates with the algorithm shown in 

Figure 4. a linked list with all tasks corresponding to the 

neighborhood (Figure 5. ). After building this list the kernel 

module tries to place the tasks in the network. For this purpose 

it takes the task graph (TG) information the XML-file 

contains. Since the kernel module knows the available 

resources it tries to find an area where the list can be mapped. 

If it finds a subnet where all tasks can be placed as stated in 

the list then the kernel module reconfigures them starting with 

the root-node of the TG. If no such area exists the module 

searches relations in the list with relatively small traffic 

between the tasks and interprets them as predetermined break 

points. So the module can split the list and must than only 

place the resulting fragments of the list. This can be repeated 

until the fragments contain only one task to place. 
 

cnt_tasks = get_tasks(); 
make_matrix(cnt_tasks); 
  
for_all_tasks_in_xml 
 id = get_id(); 
 if ( !exists(id) )  

  append_new_node(); 
  if ( !start ) start = id; 
  
 analyze_BestN(); 
  analyse_SecBest(); 
  analyze_all_GoodN();  

adapt_comm_cost_with_matrix(); 

Figure 4.  Body of the algorithm for relative placement 

 
Figure 5.  List reasulting by analyzing the neighborhood-information 

The facility to split the list and place fragments is important 

when the user runs several applications at the same time. This 

will lead to a fragmentation of the free slots in the NoC. 

Due to the fact that there are two different kinds of PEs in the 

network, two different operating systems (OS) are needed. On 

the normal processors ELEX-OS is running. On the 

microcontrollers of the accelerator nodes which can be used 

by any other node in the network, ACC-OS is used. 

B. ELEX-OS for Slaves 

The ELEX-OS (ELF executing OS) runs on the normal 

processors placed in the NoC. In our approach we use 

MicroBlazes. The major task of ELEX-OS is to load and run 

executable code transferred from the master und to manage the 

communication with the successors of the current node.  

After the processor is started, ELEX-OS waits for a request 

from the master. The system gets the address of itself and the 

the server from the received request and sends back an answer. 

When the master has received the answer-packet, it knows that 

the processor that it just reconfigured is ready for use.  

While the code is executed the interrupt-handler is active. So 

any incoming packet that is received by packet-switching is 

processed by this handler. Data packets are copied in the 

receive buffer of the running application. All other packet 

types such as flexible packets are handled by this handler.  

Also, ELEX-OS has its own optimized MPI-library to support 

point-to-point-communication with MPI_Send and MPI_Recv. 

Furthermore some broadcasting operations are supported, such 

as MPI_Bcast, MPI_Scatter. When the executed application 

calls MPI_Scatter the interaction of the MPI-library and 

ELEX-OS manages the communication of the affected PEs.  

C. ACC-OS for accelerators 

At the moment this OS runs for test and verification issues on 

a minimized MicroBlaze which has only a barrel-shifter as 

special hardware feature. In this configuration the MicroBlaze 

needs 1240 LUTs and 965 FFs. The ACC-OS (Accelerator 

OS) basically presents a finite state machine (FSM) (Figure 6. 

). It is responsible for the registration on the master and the 

handling of incoming packets over the command-channel of 

the Star-Wheels-Interface. The registration process is the same 

as in ELEX-OS. After that the handling of the accelerator 

hardware begins by sending an ACC_READY-command to 

the server. The server answers with information about the 

successors the node has. Now, ACC-OS knows the receivers 

of the output data of the accelerator hardware. To do so, ACC-

OS builds up a channel to the receiver in the same way the 

sender builds up a channel to the accelerator node. If both 

channels are created the accelerator hardware is directly 

coupled to the NoC. 

 
Figure 6.  FSM of the ACC-OS 

The developer must regard only a few constraints to use ACC-

OS. The accelerator must understand the control commands of 

ACC-OS, e.g.  GET_STATE. It also must send a DONE to 

ACC-OS after all data are processed.  

To use the accelerator in an MPI-application the developer can 

write a function that initializes the accelerator hardware, e.g. 

with a quantization matrix, by using MPI-commands. This 

function can be introduced using MPI_Op_create at runtime. 
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D. Calling accelerators with MPI 

The MPI_Op_create command normally is used to define own 

operands for MPI_Reduce. Here it is expanded for defining 

own operations to access an accelerator node in the NoC. So 

that ELEX-OS knows that an accelerator is to be used if this 

function is called, it must be introduced using MPI_Op_create. 

This defines a bypass over an internal function which handles 

of the accelerator and calls the operation the developer passes 

to MPI_Op_create as argument (Figure 7. ). 

 
Figure 7.  Interaction of ELEX-OS and ACC-OS using MPI_Op_create 

Every time the MPI-application calls the user-operation, the 

MPI-library and ACC-OS manage the channel-creation-

processes. Then ELEX-OS jumps into the user-operation to 

send the data for initializing the accelerator. After returning 

from it the MPI-library and ELEX-OS handle communication 

with the accelerator unit in the NoC. Because of the existing 

channels for receiving and sending words the accelerator can 

process one word per clock period. 

V. CASE STUDY AND RESULTS 

For testing purposes an example design was built on a Xilinx 

ML507 evaluation board with a Virtex 5 XC5VFX70T FPGA, 

as shown in Figure 8. It consists of one PowerPC440 

processor which runs Linux and 3 partitions which can be 

filled with either a MB with 5 pipeline stages, barrel shifter, 

multiplier and 32KB block RAM or a 3x3 Sobel filter 

controlled by a small MB with 3 pipeline stages and a barrel 

shifter. The PowerPC clock runs at 400 MHz, the rest of the 

system at 100 MHz.. For reconfiguration the system uses the 

XPS-ICAP (Internal Configuration Access Port). The 

reconfiguration is done by the Embedded-Linux kernel 

module running on the PowerPC. The bitstreams are located 

on a PC and accessed over NFS. Before reconfiguration 

bitstreams and executables are prefetched by the module by 

copying them in the main memory of the board. The partial 

bitstreams have a size of 308,699 bytes. The average duration 

of a reconfiguration is about 9.1 milliseconds. 

As a simple application scenario image filtering with a Sobel 

operator is realized. The generated XML-file contains the 

relations of the three tasks: 1 sender, 1 accelerator and 1 

receiver. This information is used by the master to place the 

tasks on partitions of the FPGA that correspond with ports of a 

Superswitch of the Star-Wheels-NoC. The software running 

on the sender and the receiver communicates with the 

accelerator using MPI. Therefore a user-operation is 

introduced to the system using MPI_Op_create. This user-

operation initializes the matrix of the Sobel filter. Then the 

data can be sent to the Sobel filter and 1 clock cycle after that 

received by the second MB. 
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Figure 8.  Implemented System on the ML507 board 

VI. CONCLUSIONS AND OUTLOOK 

With our new approach it is possible to use special hardware 

accelerators designed for special tasks in an existing MPI 

application. As the system supports the execution of multiple 

applications at the same time, the accelerators can even be re-

used if the applications share some common tasks. The 

approach is very flexible due to the placement of processing 

elements which are reconfigured in the system at runtime. The 

information the user provides to the master in form of an 

XML-file only contains some recommendations of the 

neighborhood of each task. So the placement algorithm can 

decide autonomously at runtime where in the network the 

tasks should be reconfigured regarding to the occupancy of the 

available partitions on the FPGA. 

Further steps are the implementation of ACC-OS in hardware 

using a FSM to achieve better results in area consumption and 

timing behavior of the accelerating nodes in the NoC. 

Additionally, a defragmentation of the subnets could be 

implemented to ease the constraints for the placement 

algorithm. 
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