
978-3-9810801-8-6/DATE12/©2012 EDAA

Virtualized On-Chip Distributed Computing for

Heterogeneous Reconfigurable Multi-Core Systems

Stephan Werner
1
, Oliver Oey

1
, Diana Göhringer

2
, Michael Hübner

1
, Jürgen Becker

1

ITIV, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
1

Fraunhofer IOSB, Ettlingen, Germany
2

{stephan.werner, oliver.oey, michael.huebner, becker}@kit.edu
1

diana.goehringer@iosb.fraunhofer.de
2

Abstract—Efficiently managing the parallel execution of various

application tasks onto a heterogeneous multi-core system

consisting of a combination of processors and accelerators is a

difficult task due to the complex system architecture. The

management of reconfigurable multi-core systems which exploit

dynamic and partial reconfiguration in order to, e.g. increase the

number of processing elements to fulfill the performance

demands of the application, is even more complicated. This paper

presents a special virtualization layer consisting of one central

server and several distributed computing clients to virtualize the

complex and adaptive heterogeneous multi-core architecture and

to autonomously manage the distribution of the parallel

computation tasks onto the different processing elements.

Keywords- Multiprocessor, Virtualization, Parallel Computing,

FPGA, Reconfigurable Computing

I. INTRODUCTION AND MOTIVATION

Nowadays, multi-core systems are available in many systems

to fulfill the performance requirements of the applications.

Embedded systems mainly use heterogeneous systems,

consisting of processors, accelerators and a communication

infrastructure, as these achieve a higher energy efficiency

compared to homogeneous systems. However, achieving an

efficient scheduling and mapping for the parallel application

tasks onto these systems is a very complex task. For

heterogeneous reconfigurable multi-core systems an additional

challenge is the exploitation of the mutual exclusive tasks in

the applications and the runtime selection of an appropriate

underlying hardware for these application tasks.
Due to the increasing chip-size of modern FPGAs, multi-core
systems on a single FPGA, distributed over multiple FPGAs, or
combinations between powerful external processor cores and
soft-core processors on the FPGA can be found. An example
for such a system is the Xilinx Zynq platform which combines
an ARM A9 dual-core processor with a Xilinx FPGA.
Furthermore, Xilinx supports dynamic and partial
reconfiguration. This allows adapting the hardware architecture
at runtime to the demands of the application. This is for
example done in the RAMPSoC [1] multi-core system. For
such a system it is not only sufficient to schedule the execution
of the application tasks and map them onto a specific
processing element. These kind of systems have a further
degree of freedom in terms, that the operating system (OS) has
to select if a task will be executed in software or in hardware
based on the performance and energy constraints of the

application. To virtualize the complexity of such a system a
common programming model is important.
In this paper a system architecture is presented, which allows a
virtualized on-chip distributed computing. It uses the message
passing interface standard programming model (MPI [2]) for
the communication between the software tasks. Furthermore,
the MPI programming model was extended to include also the
communication with hardware accelerators. The task
scheduling and mapping onto the processing elements is done
using a distributed virtualization layer, which also hides the
low-level communication routines required for the inter-
processor communication. Due to this, the user only sees a
single command shell and is not aware on which physical cores
the application is executed.
The paper is organized in the following manner: Related work
is presented in Section II. The design and functionality of the
system architecture is given in Section III. Section IV and its
subsection describe the distributed virtualization layer
consisting of a Master-OS, several Slave-OSes and special
OSes for handling hardware accelerators. A case study and
results are given in Section V. Finally, the paper is closed by
presenting the conclusions and an outlook to future work in
Section VI.

II. RELATED WORK

Traditionally, operating systems, such as Linux, are
responsible for the scheduling and allocation of software
executables. However, the adaptation of the underlying
hardware architecture at runtime using dynamic and partial
reconfiguration, like it is done in reconfigurable systems,
involves additional challenges for operating systems. These
operating systems need to be able to schedule and allocate
both, software as well as hardware tasks. The scheduling and
the allocation of hardware tasks additionally involve the
knowledge of the availability of hardware resources and also
the time which is required for the reconfiguration.
Examples for such operating systems are ReConfigME[3],
ReconOS[4] and BORPH[5]. All these systems are based on a
single processor with several hardware accelerators. Therefore,
all software tasks are mapped on the processors and only the
scheduling and mapping of the hardware accelerators is
considered. This restricts these systems, as they cannot execute
multiple independent applications in parallel.
With our new approach the handling of hardware accelerators
is integrated into the design flow as well as into the MPI
system it is running on. This way multiple applications can be
handled at the same time by either supplying enough

processors or speeding up the execution with specially
designed accelerators. In contrast to Hthreads[6], our approach
is based on a distributed memory multi-core architecture,
which leverages the memory bottleneck, as each task has its
own local memory.

III. THE SYSTEM ARCHITECTURE

Figure 1. Virtualization layers

A. Hardware Architecture

The system uses a Network-on-Chip (NoC) called Star-

Wheels NoC [1] which is a hybrid between star and spidergon

[7]/wheel topology. For data transfers packet- and circuit-

switched routing is supported. This allows high performance

data channels and best effort packet communication. The NoC

is divided into 4 Subnets each containing one Superswitch and

up to 7 Subswitches which are connected with the processing

elements via a Star-Wheels interface.

To make the reconfiguration of the MicroBlaze (MB)

processors easier to use, an encapsulated version is introduced.

The new MB module consists of a MB together with its block

RAM (BRAM) (Figure 2.). With the integrated interface and

subswitch they can directly be connected to the NoC. The

memory is divided into 2 parts, differentiated by the use of

separate BRAM blocks. The OS is located in the upper part

whereas the lower part is reserved for user applications. The

lower part can be configured to use up to 128 KB.

Hardware accelerators have the same interface to the network

to allow the exchange between processors und accelerators at

runtime via reconfiguration. A minimal MB is used as a

microcontroller. It handles the channel creation in the network

and sends configuration data to the accelerator. Depending on

the configuration of the MB it is also possible to use it for

other tasks. A minimum of 4 KB of BRAM is sufficient for

the MB to work as the microcontroller; extra memory is only

needed when other applications should also run on the MB.

For reconfiguration an additional interface is necessary. It is

placed between the NoC and the processing elements (PE). It

is used to disable the clock and the communication between

the PEs to avoid that disturbing signals can leave the modules.

Like illustrated in Figure 1. the two kinds of reconfigurable

modules are virtualized by an interface that is provided by a

kernel module we developed for an embedded Linux running

on a PowerPC440. To the user, who wants to run a program on

this architecture, the reconfiguration of the needed modules

and distribution of particular parts of the complex application

is transparent and will be done by the kernel module.

Switch

St
ar

-W
h

e
e

ls
 In

te
rf

ac
e

MB

HW accelerator

BRAM BRAM OS

FSL

left

right

diagonal

LMB

CLK

RST

Figure 2. Microblaze module with accelerator or additional

BRAM for operating system

B. Assisted Design Flow

The MB modules and hardware accelerators are designed to be

used as a pcore in Xilinx Platform Studio (XPS). They consist

of VHDL files and pre-synthesized netlists. As the layout of

the modules has always to be the same, the design is assisted

by scripts. The most important options of the MB processors

can be changed (number of pipeline stages, floating point unit

(FPU), multiplier, divider, barrel shifter, BRAM size). This

information can be accessed via the Processor Version

Register (PVR) at runtime. Addresses of the network and other

parameters of the switches can be changed later in the XPS.

Designing HW accelerators is done in a similar way. With the

help of a script a template can be created, where the new

accelerator can be added as VHDL code or as a netlist. A

generated VHDL file where the interface and file/entity names

are predefined can be used as a starting point for own designs.

IV. THE VIRTUALIZATION LAYER

A. Embedded Linux as Master

In our approach an embedded Linux system serves as master.

It uses the kernel version 2.6.37+ and runs on a PowerPC440.

This system handles the reconfiguration, placement and

scheduling of the tasks running on several PEs. These PEs

communicate over the Star-Wheels-NoC.

To support and abstract the communication with the Star-

Wheels-NoC with MPI, two separate components are used: a

loadable kernel module which handles all internal processes

such as the placement and an MPI-library which abstracts the

file operations calling methods of the kernel. So the user can

code a normal MPI-application and the interaction between the

MPI-library and the module assure a correct execution.

To solve a greater problem the user writes a complex MPI-

application and then runs some tools of a specialized tool flow

[1]. These tools accomplish a communication analysis and

cluster functions to tasks. This helps separating the complex

application so that it can be run on several PEs in parallel. The

only thing the user must do to start the execution of this

parallelized and distributed application is to run an MPI-

program on the master. It sends an XML-file to the kernel

module with the MPI_Init-call. This file contains information

about the tasks and their relations. Additionally, it specify

which tasks should be placed directly side by side to utilize

one special feature of the Star-Wheels-NoC: neighbored units

can directly communicate over their Subswitches. This

reduces latencies and disburdens the Superswitch. This

approach could also be of interest in other NoC-topologies

szch as a 2D-Mesh where each PE can have up to 4 best

neighbors.

Figure 3. Task graph described by the XML-file

To do so, the XML-file only makes notes about a relative

placement of the tasks as shown in Figure 3. The module takes

this information and generates with the algorithm shown in

Figure 4. a linked list with all tasks corresponding to the

neighborhood (Figure 5.). After building this list the kernel

module tries to place the tasks in the network. For this purpose

it takes the task graph (TG) information the XML-file

contains. Since the kernel module knows the available

resources it tries to find an area where the list can be mapped.

If it finds a subnet where all tasks can be placed as stated in

the list then the kernel module reconfigures them starting with

the root-node of the TG. If no such area exists the module

searches relations in the list with relatively small traffic

between the tasks and interprets them as predetermined break

points. So the module can split the list and must than only

place the resulting fragments of the list. This can be repeated

until the fragments contain only one task to place.

cnt_tasks = get_tasks();
make_matrix(cnt_tasks);

for_all_tasks_in_xml
 id = get_id();
 if (!exists(id))

 append_new_node();
 if (!start) start = id;

 analyze_BestN();
 analyse_SecBest();
 analyze_all_GoodN();

adapt_comm_cost_with_matrix();

Figure 4. Body of the algorithm for relative placement

Figure 5. List reasulting by analyzing the neighborhood-information

The facility to split the list and place fragments is important

when the user runs several applications at the same time. This

will lead to a fragmentation of the free slots in the NoC.

Due to the fact that there are two different kinds of PEs in the

network, two different operating systems (OS) are needed. On

the normal processors ELEX-OS is running. On the

microcontrollers of the accelerator nodes which can be used

by any other node in the network, ACC-OS is used.

B. ELEX-OS for Slaves

The ELEX-OS (ELF executing OS) runs on the normal

processors placed in the NoC. In our approach we use

MicroBlazes. The major task of ELEX-OS is to load and run

executable code transferred from the master und to manage the

communication with the successors of the current node.

After the processor is started, ELEX-OS waits for a request

from the master. The system gets the address of itself and the

the server from the received request and sends back an answer.

When the master has received the answer-packet, it knows that

the processor that it just reconfigured is ready for use.

While the code is executed the interrupt-handler is active. So

any incoming packet that is received by packet-switching is

processed by this handler. Data packets are copied in the

receive buffer of the running application. All other packet

types such as flexible packets are handled by this handler.

Also, ELEX-OS has its own optimized MPI-library to support

point-to-point-communication with MPI_Send and MPI_Recv.

Furthermore some broadcasting operations are supported, such

as MPI_Bcast, MPI_Scatter. When the executed application

calls MPI_Scatter the interaction of the MPI-library and

ELEX-OS manages the communication of the affected PEs.

C. ACC-OS for accelerators

At the moment this OS runs for test and verification issues on

a minimized MicroBlaze which has only a barrel-shifter as

special hardware feature. In this configuration the MicroBlaze

needs 1240 LUTs and 965 FFs. The ACC-OS (Accelerator

OS) basically presents a finite state machine (FSM) (Figure 6.

). It is responsible for the registration on the master and the

handling of incoming packets over the command-channel of

the Star-Wheels-Interface. The registration process is the same

as in ELEX-OS. After that the handling of the accelerator

hardware begins by sending an ACC_READY-command to

the server. The server answers with information about the

successors the node has. Now, ACC-OS knows the receivers

of the output data of the accelerator hardware. To do so, ACC-

OS builds up a channel to the receiver in the same way the

sender builds up a channel to the accelerator node. If both

channels are created the accelerator hardware is directly

coupled to the NoC.

Figure 6. FSM of the ACC-OS

The developer must regard only a few constraints to use ACC-

OS. The accelerator must understand the control commands of

ACC-OS, e.g. GET_STATE. It also must send a DONE to

ACC-OS after all data are processed.

To use the accelerator in an MPI-application the developer can

write a function that initializes the accelerator hardware, e.g.

with a quantization matrix, by using MPI-commands. This

function can be introduced using MPI_Op_create at runtime.

4 512 3
10k 50k 80k 20k

1

4

2 3

5

50.000

10.000

80.000

500

20.000

D. Calling accelerators with MPI

The MPI_Op_create command normally is used to define own

operands for MPI_Reduce. Here it is expanded for defining

own operations to access an accelerator node in the NoC. So

that ELEX-OS knows that an accelerator is to be used if this

function is called, it must be introduced using MPI_Op_create.

This defines a bypass over an internal function which handles

of the accelerator and calls the operation the developer passes

to MPI_Op_create as argument (Figure 7.).

Figure 7. Interaction of ELEX-OS and ACC-OS using MPI_Op_create

Every time the MPI-application calls the user-operation, the

MPI-library and ACC-OS manage the channel-creation-

processes. Then ELEX-OS jumps into the user-operation to

send the data for initializing the accelerator. After returning

from it the MPI-library and ELEX-OS handle communication

with the accelerator unit in the NoC. Because of the existing

channels for receiving and sending words the accelerator can

process one word per clock period.

V. CASE STUDY AND RESULTS

For testing purposes an example design was built on a Xilinx

ML507 evaluation board with a Virtex 5 XC5VFX70T FPGA,

as shown in Figure 8. It consists of one PowerPC440

processor which runs Linux and 3 partitions which can be

filled with either a MB with 5 pipeline stages, barrel shifter,

multiplier and 32KB block RAM or a 3x3 Sobel filter

controlled by a small MB with 3 pipeline stages and a barrel

shifter. The PowerPC clock runs at 400 MHz, the rest of the

system at 100 MHz.. For reconfiguration the system uses the

XPS-ICAP (Internal Configuration Access Port). The

reconfiguration is done by the Embedded-Linux kernel

module running on the PowerPC. The bitstreams are located

on a PC and accessed over NFS. Before reconfiguration

bitstreams and executables are prefetched by the module by

copying them in the main memory of the board. The partial

bitstreams have a size of 308,699 bytes. The average duration

of a reconfiguration is about 9.1 milliseconds.

As a simple application scenario image filtering with a Sobel

operator is realized. The generated XML-file contains the

relations of the three tasks: 1 sender, 1 accelerator and 1

receiver. This information is used by the master to place the

tasks on partitions of the FPGA that correspond with ports of a

Superswitch of the Star-Wheels-NoC. The software running

on the sender and the receiver communicates with the

accelerator using MPI. Therefore a user-operation is

introduced to the system using MPI_Op_create. This user-

operation initializes the matrix of the Sobel filter. Then the

data can be sent to the Sobel filter and 1 clock cycle after that

received by the second MB.
FPGA

Superswitch
rec

interface

rec
interface

rec
interface

MB
Module 0

MB
Module 1

Sobel

Sub-
switch

St
w

h
 in

te
rf

ac
e

PPC

ICAP

Ethernet

Rec GPIO

STWH connection

disable

FSL

PLB

Figure 8. Implemented System on the ML507 board

VI. CONCLUSIONS AND OUTLOOK

With our new approach it is possible to use special hardware

accelerators designed for special tasks in an existing MPI

application. As the system supports the execution of multiple

applications at the same time, the accelerators can even be re-

used if the applications share some common tasks. The

approach is very flexible due to the placement of processing

elements which are reconfigured in the system at runtime. The

information the user provides to the master in form of an

XML-file only contains some recommendations of the

neighborhood of each task. So the placement algorithm can

decide autonomously at runtime where in the network the

tasks should be reconfigured regarding to the occupancy of the

available partitions on the FPGA.

Further steps are the implementation of ACC-OS in hardware

using a FSM to achieve better results in area consumption and

timing behavior of the accelerating nodes in the NoC.

Additionally, a defragmentation of the subnets could be

implemented to ease the constraints for the placement

algorithm.

REFERENCES

[1] D. Göhringer: “Flexible Design and Dynamic Utilization of Adaptive

Scalable Multi-Core Systems”, PhD thesis, 2011, Verlag Dr. Hut München

[2] MPI: A Message-Passing Interface Standard, Version 2.2, Message Passing

Interface Forum, Sept. 2009. Available at: www.mpi-forum.org

[3] G. Wigley, D. Kearney, M. Jasiunas: “ReConfigME: A Detailed

Implementation of an Operating System for Reconfigurable Computing”;

IPDPS 2006, April 2006.

[4] Enno Lübbers. Multithreaded Programming and Execution Models for

Reconfigurable Hardware. PhD thesis, Computer Science Department,

University of Paderborn, 2010. Logos Verlag Berlin.

[5] H. K.-H. So, R. Broderson: “A Unified Hardware/Software Runtime

Environment for FPGA-based Reconfigurable Computers using BORPH”;

ACM Trans. on Emb. Comp. Sys., vol. 7, no. 2, pp. 14:1-14:28 , Feb. 2008.

[6] Jason M. Agron, Hardware Microkernels – A Novel Method for Constructing

Operating Systems for Heterogeneous Multi-Core Platforms, PhD thesis,

University of Arkansas, August 2010

[7] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, A. Scandurra:

“Spidergon: a novel on-chip communication network”; In Proc. of Intern.

Symposium on SoC, Nov. 2004

